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Especially in 3D mapping but also in most other robotic
applications you need to handle 3D poses that include
orientations. Orientations are tricky because their rep-
resentation is in the SO(3) space, which is a mani-
fold. In applications Euler angles are used frequently,
but also axis-angle, matrices and quaternions are com-
mon for the representation of rotations and orientation
in the specific state. The problem arises when you have
to represent an orientation as a flat vector with indepen-
dent variables, as needed for estimation algorithms such
as the Kalman Filter family or other least square opti-
mizers, which work by stepwise adding small rotations
to the orientation state. All representation of orientation
with three independent variables such as the Euler an-
gles suffer from singularities. Indeed it can be proven
that there is no representation of SO(3) with only three
parameters, that is singularity-free. For the other repre-
sentations you need to handle their special characteris-
tics to integrate them in the straight-forward algorithms.
This implies that each algorithm has to be modified to
actually handle orientations.

We propose a clean view onto the 3-manifold of rota-
tions by encapsulating these special operations into new
operators. These operators work for different represen-
tations (matrix, quaternion, . . . ), cleanly cover theory,
and provide a basis for a concrete implementation.

While your state representation S may contain any
number of manifolds the numerical calculations work
only in vector space Rn. Changes to rotations are han-
dled as small local changes that are added to the state.
The operators we like to introduce are � and �, which
replace the vector based operations + and − on mani-
folds. We define as follows:

� : S × Rn → S (1)
� : S × S → Rn (2)

That means you can add a vector of a small change in
rotation to the state with � and conversely get a small
rotation as a vector from two states with �. This defines

an axiom for the interplay of � and �:

s1 � (s2 � s1) = s2 with sn ∈ S (3)

With this representation of operators, most algorithms
can be extended to manifolds by simply replacing +
with � and − with � as here for the sigma point gen-
eration in the UKF (see figure 1). When implement-

GENERATE-SIGMA-POINTS(µ,Σ)
1 sigmapoints[]← µ
2 U ← CHOLESKY(Σ)
3 for i = 0 to N
4 do sigmapoints[]← µ� Ui−1

5 sigmapoints[]← µ�−Ui−1

6 return sigmapoints

Figure 1: Pseudo code for sigma point generation with
manifolds in the UKF

ing states with manifolds, the introduction of this op-
erators also leads to a clean view on the programming
part. By implementing a state class variable with opera-
tions embedded you can write down the same algorithm
for different representations of orientation. We used this
view on orientation with success already in related re-
search [1]. And we are pushing the idea even further to
have a general least square optimizer framework using a
manifold abstraction written in C++, which enables the
user to define states with arbitrary mixtures of vectors
and manifolds and make calculations based on the �
and � operator. The most usual and most useful mani-
folds (matrix, quaternion) are readily usable. The use of
particular language features (namely templates in C++)
gives this approach even high-performance in runtime.
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