
Bridging Implementation and Theory: A Clean View on
Parametrization of States with 3-D Rotations by Defining a

Encapsulation Operator

Jörg Kurlbaum Udo Frese

Universität Bremen

Christoph Hertzberg

Especially in 3D mapping but also in most other robotic
applications you need to handle 3D poses that include
orientations. Orientations are tricky because their rep-
resentation is in the SO(3) space, which is a mani-
fold. In applications Euler angles are used frequently,
but also axis-angle, matrices and quaternions are com-
mon for the representation of rotations and orientation
in the specific state. The problem arises when you have
to represent an orientation as a flat vector with indepen-
dent variables, as needed for estimation algorithms such
as the Kalman Filter family or other least square opti-
mizers, which work by stepwise adding small rotations
to the orientation state. All representation of orientation
with three independent variables such as the Euler an-
gles suffer from singularities. Indeed it can be proven
that there is no representation of SO(3) with only three
parameters, that is singularity-free. For the other repre-
sentations you need to handle their special characteris-
tics to integrate them in the straight-forward algorithms.
This implies that each algorithm has to be modified to
actually handle orientations.

We propose a clean view onto the 3-manifold of rota-
tions by encapsulating these special operations into new
operators. These operators work for different represen-
tations (matrix, quaternion, . . . ), cleanly cover theory,
and provide a basis for a concrete implementation.

While your state representation S may contain any
number of manifolds the numerical calculations work
only in vector space Rn. Changes to rotations are han-
dled as small local changes that are added to the state.
The operators we like to introduce are � and �, which
replace the vector based operations + and − on mani-
folds. We define as follows:

� : S × Rn → S (1)
� : S × S → Rn (2)

That means you can add a vector of a small change in
rotation to the state with � and conversely get a small
rotation as a vector from two states with �. This defines

an axiom for the interplay of � and �:

s1 � (s2 � s1) = s2 with sn ∈ S (3)

With this representation of operators, most algorithms
can be extended to manifolds by simply replacing +
with � and − with � as here for the sigma point gen-
eration in the UKF (see figure 1). When implement-

GENERATE-SIGMA-POINTS(µ,Σ)
1 sigmapoints[]← µ
2 U ← CHOLESKY(Σ)
3 for i = 0 to N
4 do sigmapoints[]← µ� Ui−1

5 sigmapoints[]← µ�−Ui−1

6 return sigmapoints

Figure 1: Pseudo code for sigma point generation with
manifolds in the UKF

ing states with manifolds, the introduction of this op-
erators also leads to a clean view on the programming
part. By implementing a state class variable with opera-
tions embedded you can write down the same algorithm
for different representations of orientation. We used this
view on orientation with success already in related re-
search [1]. And we are pushing the idea even further to
have a general least square optimizer framework using a
manifold abstraction written in C++, which enables the
user to define states with arbitrary mixtures of vectors
and manifolds and make calculations based on the �
and � operator. The most usual and most useful mani-
folds (matrix, quaternion) are readily usable. The use of
particular language features (namely templates in C++)
gives this approach even high-performance in runtime.

References

[1] Oliver Birbach. Accuracy analysis of camera-
inertial sensor based ball-trajectory prediction.
Master’s thesis, Universität Bremen, 2008.


