

About Life-Long Learning in Autonomous Manipulation

Oliver Brock Robotics and Biology Laboratory

Manipulation in Unstructured Environments

Lifelong Learning

Improve behavior based on experience

- Record experience (= sensorimotor trace)
- Categorize experiences
- ▶ Detect regularities / covariances / causalities
- ► Transfer insights to improve performance
- Expand behavioral capabilities

Perceiving 3D Models of Articulated Objects

What the Robot Sees...

Perceiving 3D Models of Articulated Objects

Action 11

Incremental Learning and Transfer

Transfer Through Subgraph Isomorphism

Learning Symbolic Models of Stochastic Domains

$$pickup(X) : \left\{ \begin{array}{l} Y : table(Y), on(X, Y) \\ inhand-nil \\ \\ \rightarrow \left\{ \begin{array}{l} .8 : inhand(X), \neg on(X, Y) \\ .1 : no \ change \\ .1 : noise \end{array} \right. \end{array} \right.$$

A Simple Manipulation Task

purple(a), yellow(b), red(c), green(d), right(a,b), right(b,c), right(c,d), distance(a,b)=1.0, distance(b,c)=10045; stisstore(e,d)=0.0 prismatic(ab,cd)

Learned Rules After One Trial

Context: purple(X)

Action: push_right(X)

Outcomes:

1.0 prismatic()

Learned Rules After Several Trials

Context: yellow(X)

Action: push_backwardright(X)

Outcomes:

1.0 prismatic()

More Learned Rules

Context: numLeft(X)>0

Action: push_right(X)

Outcomes:

1.0 prismatic()

Context: numLeft(X)<=0

Action: push_right(X)

Outcomes:

1.0 -

Conclusion

- What exactly is lifelong learning?
- How does LLL differ for continuous and symbolic domains?
- How can the two domains be integrated? (grounding)
- ► How to achieve generalization?
 - within a task?
 - across tasks?
- How to trust/verify/revise/remove your generalization?
 - exploration / exploitation

Robotics and Biology Lab @ TU Berlin

