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Heuristic Search for Repeated Planning

Planning is often a repeated process:
navigation and fllght I partlally known and dynamlc enwronments

- low-dimensional graph
- (relatively) small changes in the graph plus moving start

Incremental graph search techniques
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Heuristic Search for Repeated Planning

Planning is often a repeated process:
solving similar planning problems for repetitive tasks

1 ‘
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- high-dimensional graph
- larger changes in the graph plus different start and goal

graph search with Experience (E-graphs)
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QOutline

» Two Classes of Incremental Graph Search
— Basic idea behind D*, D* Lite, LPA* and its extensions
— Basic idea behind Adaptive A* and its extensions
— What these approaches can and cannot solve and why

« Graph Search with Experience
— Overview of planning with E-graphs
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Basic Idea Behind D*, D* Lite, LPA* and etc.

» Reuse state values from previous searches
cost of least-cost paths to goal at first planning episode
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Basic Idea Behind D*, D* Lite, LPA* and etc.

» Reuse state values from previous searches
cost of least-cost paths to goal at first planning episode
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Application to Autonomous Flight and Navigation

* Anytime D* (=ARA*+ D* Lite) for 4D re-planning in real-time
(<x,y,z,©> for flight and <x,y,®,v> for flight)

...but:
- require iterating over all
edges whose cost change

- effective only when changes
are relatively small

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Application to Autonomous Flight and Navigation

« Anytime D* (=ARA*+ D* Lite) for 4D re-planning in real-time
(<x,y,z,©> for flight and <x,y,®,v> for flight)

e “ e ...but:
: 5 - require iterating over all
edges whose cost change

- effective only when changes
are relatively small

S Limited to:
- relatively low-d planning
- re-planning in partially-known and
dynamic environments

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Maxim Likhachev Carnegie Mellon University 9



Basic idea behind Adaptive A* and its variants
 Improve (“learn”) heuristic values
heuristics of expanded states

initial heuristics that states expanded improved according to:
estimate cost-to-goals during planning h(s) = g(s)-solution cost
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little bookkeeping but:
- less effective as incremental search
- mostly for low-d problems (e.g., 2D target pursuit)
- also limited to small changes
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Basic idea behind Adaptive A* and its variants

 Improve (“learn”) heuristic values

heuristics of expanded states

initial heuristics that states expanded Improved according to:
estimate cost-to-goals during planning h(s) = g(s)-solution cost
8| 7 5] 4 8] 7]6|5]4 ‘ ‘ 8]7]6|5]4
716 4] 3]

Instead of reusing numeric values (g-values
6|9 3 or h-values), need to reuse the actual plans
o2 | 4 2 - - :

Need new incremental graph searches that:

4 | 3 - support the re-use of experience

Maxim Likhachev

- support re-planning in high-D problems

little bookkeeping but:
- less effective as incremental search
- mostly for low-d problems (e.g., 2D target pursuit)
- also limited to small changes
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QOutline

» Two Classes of Incremental Graph Search
— Basic idea behind D*, D* Lite, LPA* and its extensions
— Basic idea behind Adaptive A* and its extensions
— What these approaches can and cannot solve and why

« Graph Search with Experience
— Overview of planning with E-graphs
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Planning with Experience Graphs

« Many planning tasks are repetitive
loading a dishwasher

opening doors

moving objects around a warehouse

« Can we re-use prior experience to
accelerate planning, in the context of
search-based planning?

« Would be especially useful for high-
dimensional problems such as mobile
manipulation!
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Planning with Experience Graphs

Given a set of previous paths (experiences)...

e Do
2»¢
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Planning with Experience Graphs
Put them together into an E-graph (Experience graph)
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Planning with Experience Graphs
E-Graph [Phillips et al., RSS’12]:

— Collection of previously computed paths or demonstrations
— A sub-graph of the original graph

Maxim Likhachev Carnegie Mellon University
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Planning with Experience Graphs

Given a new planning query...
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Planning with Experience Graphs

...re-use E-graph. For repetitive tasks, planning becomes much faster

start
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Planning with Experience Graphs

...re-use E-graph. For repetitive tasks, planning becomes much faster

Theorem 1: Algorithm is complete with
respect to the original graph

Theorem 2: The cost of the solution is within a
given bound on sub-optimality

start

d

TN M
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Planning with Experience Graphs
* Reuse E-Graph by:

— Introducing a new heuristic function

— Heuristic guides the search toward expanding states on the E-Graph
within sub-optimality bound &

start
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Planning with Experience Graphs

* Focusing search towards E-graph within sub-optimality bound &

2)
V = h G
‘ .
goal
e

Heuristic computation finds Traveling off the E-Graph uses Traveling on E-Graph
a min cost path using an inflated orlglnal heuristic uses actual costs

two kinds of “edges” Ve N 7 ™
he (so) mm Z min{e ghG(sz,szH) ¢t (8;,5i11)}
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Planning with Experience Graphs

« Focusing search towards E-graph within sub-optimality bound &

DS

heuristics hé(s) is guaranteed to be e-consistent

a min cost path using an inflated orlglnal heuristic uses actual costs

two kinds of “edges” Ve N 7 ™
he (so) mm Z min{e 5hG(sz,sz+1) ¢t (8;,5i11)}
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Planning with Experience Graphs

Theorem 5. Completeness w.r.t. the original graph G:

Planning with E-graphs is guaranteed to find a solution, if
one exists In G

Theorem 6. Bounds on sub-optimality: The cost of the
solution found by planning with E-graphs Is guaranteed to
be at most e-suboptimal:

cost(solution) <¢ cost(optimal solution in G)
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Planning with E-Graphs for Mobile Manipulation

e Dual-arm moblle manlpulatlon (10 DoF)
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Planning with E-Graphs for Mobile Manipulation

Kitchen environment:
- moving objects around a kitchen _
- bootstrap E-Graph with 10 representative goals
- tested on 40 goals in natural kitchen locations ‘
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Planning with E-Graphs for Mobile Manipulation

Kitchen environment: planning times

- Success (of 40) | Mean Time (s) | Std. Deuv. (s)
©)

Success (of 40) | Mean Speed-up

Max planning time of 2 minutes
Sub-optimality bound of 20 (for E-Graphs and Weighted A*)

All sampling methods are from OMPL
Shortcutting was applied to sampling methods
Sampling methods (which require configuration space goals) are given the goal found by E-Graphs
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Planning with E-Graphs for Mobile Manipulation

Kitchen environment: path quality ratio (method/E-graph)

Method Object XYZ Std. Dev. | Base XY Path | Std. Dev.
Path Length Length Ratio
Ratio

RRT-Connect
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Planning with E-Graphs for Mobile Manipulation

Kitchen environment: path consistency

58 goals (between the two locations)

Similarity Dynamic
(without Time
warping) Warping

+ RRT* was unable to solve these cases

H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-26, no. 1, 1978.
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Conclusions

 EXisting incremental heuristic searches (D*, D* Lite, LPA*,
Adaptive A*, etc.) are more suitable for

* lower-dimensional planning problem

* re-planning while operating in partially-known environments and
dynamic environments

» mostly because they “repair” the numeric value functions (g-values
or h-values)

* Need new incremental heuristic searches that use plans to
speed up planning rather than repair “value functions™

 Planning with Experience graphs is a step towards it
« suitable for both high-D as well as low-D problems

 developed mainly for improving planning for repetitive tasks
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Future Directions

« Storing and loading Experience Graphs depending on the
tasks and situations

» Use demonstrations as experiences

* Incremental searches for High-D planning problems

Maxim Likhachev Carnegie Mellon University
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e Students who contributed to this work: e Collaborators:

— Ben Cohen — Sachin Chitta
— Mike Phillips — Sven Koenig
— Andrew Dornbush — Dave Ferguson
— Jon Butzke

— Brian MacAllister
— Alex Kushleyev

« Sponsors: Willow Garage, ARL, DARPA

Some of the software is available open-source (standalone and ROS
compatible):  http://www.sbpl.net/Software
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