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Abstract—Ground robotics rely on accurate dynamic models
for high performance control and estimation systems. To use
odometry or predict the robots motion, an accurate model is
needed for the vehicle’s slip. For mobile robots, the mapping
between inputs and resultant behavior depends critically on
terrain conditions which vary significantly over time and space so
cannot be pre-programmed. Integrated Perturbative Dynamics is
used to successively identify systematic and stochastic models
of vehicle slip. This is a real-time algorithm which works
over arbitrary trajectories, with fast convergence along terrain
boundaries, which allows for reliable operation of ground vehicles
over extended periods of time in changing environments. Results
are shown on a tracked surveillance robot as it drives over four
distinct terrain types over 35 minutes. Fast convergence of the
slip mode parameters is observed when the robot crosses terrain
boundaries.

I. Introduction
Accurate dynamic models are essential for high perfor-

mance control and estimation systems. For example, in au-
tonomous vehicle applications, model predictive control can
be implemented to perform path following, obstacle avoidance,
and lane change maneuvers. In state estimation, the velocity
kinematics of the platform are typically the basis for dead
reckoning, or the system model in the estimator. In both
control and estimation, the model is a differential equation
containing unknown parameters, and the performance of the
system depends critically on its accuracy.

In both predictive control and estimation contexts, it is
equally important to understand the stochastic error that re-
mains after the model is well calibrated. Such information
can be a basis for assessing risk in cognition, for computing
expectation in stochastic control, or for modeling system
disturbances in optimal estimation. Integrated perturbative
dynamics (IPD) has been used to model mobile robots and
calibrate the model online using an extended Kalman filter.
Past work has used IPD to identify systematic and stochastic
models of wheel slip [13], powertrain dynamics, and odometry
parameters [14].

A. Vehicle System Modeling

The aspects of wheel-terrain interaction that are needed for
accurate ground robot models are neither well known nor
easily measurable in realistic situations. Some have developed
terramechanics-based models for slip estimation that require
knowledge of tire constants and soil parameters [7] [15].
[3] constructed an artificial neural network that was trained

offline and then used the network in a model predictive
control context. These are offline techniques which cannot
learn changes in the environment or vehicle.

Online published methods are mostly concerned with robust
path-following (e.g. [11]), or the estimation of instantaneous
wheel slip for feedback controllers. Some methods lump all
unknown tire and soil parameters into slip ratios and angles;
extended Kalman filters have been developed for real-time es-
timation of slip ratios and angles using velocity measurements
[17] [10]. These online methods only care about the current
instantaneous wheel slip and cannot be used for trajectory
prediction.

Our approach relies on compensating a 3D wheel odometry
solution for wheel slip. We deal with the case of arbitrary
terrain. Our slip models try to account for the effects of all of
the forces on the vehicle, rather than just those directly related
to the controls. Notably, the composite effects of gravity and
lateral acceleration are modeled to estimate instantaneous slip
based on the control, or odometry, inputs and IMU-derived
attitude.

The calibration of our slip model is based on the Integrated
Perturbative Dynamics approach described in [13]. This ap-
proach uses an integral of the perturbative dynamics of 3D
odometry in order to increase the sensitivity, and improve the
conditioning, of the mapping between the history of wheel
slip along an arbitrary trajectory and the observed pose error
that it causes a few seconds later. This method captures the
underlying disturbance dynamics as a function of all of input
space and is calibrated online based on trajectories executed
under normal operation.

B. Terrain Classification

A vehicle driving in real world off-road conditions will
encounter a large variety of terrains. The online slip identifica-
tion algorithm can handle mixed terrains in one of two ways.
First, we can allow the model to continuously change across
the multiple terrains. Since the natural environment does not
normally have well defined boundaries between terrain types,
this may allow for better seamless transitions and is not reliant
on perception for terrain classification. This is the method we
present in the paper and show, in the results section, that the
slip model parameters can quickly converge after driving over
new terrain



The second method for mixed terrains, uses perception for
terrain classification. We will leave the evaluation between
the two methods for future work but present some prior
work which look at how perception can be used for terrain
classification and self-supervised learning.

Offline leaning of terrain classification of hand-labeled ter-
rain has combined vision- and laser-based classification [12].
Visual features include color and visual texture. Laser range
features normally include statistics such as spread and standard
deviation of ground height or surface normals. The different
modes of sensing are often combined via Bayesian fusion or
other meta-classifier fusion. Some terrains are better separated
visually, e.g. hard surfaces with different slip, while others are
better separated via laser range, e.g. asphalt and pavement. It
should be noted that there are some terrains which can not be
separated by either, such as snow that is hard or soft-packed.
In these cases, it may be necessary to learn pre-immobilization
detection using proprioception sensors that indirectly ’feel’ the
terrain underfoot [16].

Recent work has been done on Self-Supervised Classifi-
cation, also called Near-to-Far Learning [5] [6] [9]. These
approaches learn the visual appearance of terrain classes by
relying on vibration-based sensing of wheel-terrain interaction
to identify these terrain classes. The remote detection uses
vision or laser features to separate terrain classes using either
Support Vector Machines or Mixtures of Gaussians. The vi-
bration features – which are sensed via accelerometers, gyros,
or microphones – only give an idea of how rough the terrain
is and not how the vehicle would slip on that terrain.

Self-Supervision allow the robot to classify terrains based
on its needs and according to how they affect its behavior
and not necessarily based on human-defined classes. Another
essential point is that this classification is not fixed to a
rigid number of classes but rather results from the robot’s
experience.

Much of the work on self-supervision for terrain classifi-
cation was done by Anelia Angelova [2]. Her visual terrain
classification used texture elements called “textons” which are
clustered with the k-means algorithm. For each terrain, a slip
behavior model was learned off-line which is dependent on the
vehicle’s roll and pitch but not velocity since the rover was
driven at a constant speed. The slip behavior model used a
type of receptive field regression algorithm that applies locally
linear fits to the data to approximate a globally nonlinear
function.

Angelova’s latest published work focuses on supervised
dimensionality reduction to recognize different terrains from
color imagery in a fully automatic fashion, using the robot’s
mechanical sensors as supervision [1]. The intuition is that two
visually similar terrains which are not normally discriminated
in the visual space, and are mapped to the same cluster in
the lower dimensional space, might be discriminated properly
after introducing the supervision. It involves an EM-algorithm
which clusters the inputs and selects the best features to
represents each cluster.

II. Vehicle SystemModeling

For a vehicle moving in contact with a surface, there are
three degrees of freedom of motion as long as the vehicle
remains in contact with the local tangent plane.

Fig. 1. Vehicle inputs and perturbations. Three degrees of freedom remain
in the general case after terrain contact is enforced. Velocity inputs and
disturbances are expressed in the body frame.

It is most natural to express actuation in the body frame.
Given the vehicle’s commanded linear and angular velocities,
we have the following unconstrained kinematic differential
equation for the time derivatives of 2D position and yaw with
respect to a ground-fixed reference frame:

ρ̇ = B(γ, β, θ) · un (1)

or, expressed in full:ẋ
ẏ
θ̇

 =


cθcβ cθsβsγ − sθcγ 0
sθcβ sθsβsγ + cθcγ 0

0 0 cγ
cβ


Vn,x

Vn,y

Vn,θ

 (2)

c = cos(), s = sin(), γ = roll, β = pitch, θ = yaw

where the nominal velocity, un, includes the forward velocity,
Vn,x, the lateral velocity in the body-left direction, Vn,y, and
the yaw rate with positive rotation in the counter-clockwise
direction,Vn,θ - see Figure 1. This system is nonlinear because
the heading angle appears in the coefficient matrix. It should
be noted that we chose a velocity-driven model instead of a
comprehensive physics-based model for simplicity and vehicle
generality.

A. Linearized Error Dynamics

We will briefly cover the mathematics of linearizing the
error dynamics of the systematic vehicle model - see [13] for
a full development and explanation of the equations. Pose error
of a path segment is attributed to the initial pose measurement
error and input velocity perturbations due to slip, us. Including
these velocity perturbations, the kinematic differential equation
becomes:

ρ̇ = B(γ, β, θ) · (un + us), us =

Vs,x

Vs,y

Vs,θ

 (3)

In general form, the kinematic differential equation (2) can
be written:

ρ̇ = f
(
ρ(t), un(t) + us(t)

)
(4)

Recall that the state (ρ) is the pose of the vehicle in the ground-
fixed reference frame and the inputs (u) are the linear and



angular velocities in the body frame. By differentiating (4),
we obtain the linearized error dynamics for deterministic or
systematic error:

δρ̇ = F(t)δρ(t) + G(t)us(t) (5)

where F and G are Jacobian matrices:

F =
∂ f

∂ρ
=

0 0 −ẏ
0 0 ẋ
0 0 0

 (6)

G =
∂ f

∂us
= B(γ, β, θ) (7)

This allows us to define the transition matrix, Φ, and the
input transition matrix, Γ:

Φ(t, τ) = e
∫ t
τ

F(ζ) dζ =

1 0 −(y(t) − y(τ))
0 1 (x(t) − x(τ))
0 0 1

 (8)

Γ(t, τ) = Φ(t, τ)B(γ, β, θ) (9)

Using the transition matrices, the solution to the first-order
differential equation (5) is the following vector convolution
integral:

δρ(t) = Φ(t, t0)δρ(t0) +

∫ t

t0
Γ(t, τ)us(τ)dτ (10)

At the end of each path segment, the difference between
current state at the last key frame is used for slip model
identification. To minimize uncertainty, the two key frames
should occur right after GPS, or other position measurements
are made. Starting at the last key frame, we propagate the pose
forward using the past odometry measurements, along with
measured roll and pitch history, and the current perturbation
model coefficients, α.

ρ
k,ipd

=

∫ tk

tk−1

B(γ(τ), β(τ), θ(τ)) ·
(
un(τ) + us(τ, α)

)
dτ (11)

The Kalman filter measurement is the difference between
final measured and final predicted poses (x, y, θ):

z = ρ−1
k−1,ins

⊗ ρ
k,ins

(12)

h(x) = ρ
k,ipd

+ nipd (13)

Here, ⊗ refers to the pose addition found by multiplying the
corresponding Homogeneous Transforms. The measurement
residual is assumed to have a zero-mean Gaussian norm
distribution nipd ∼ N(0,Rsys).

The velocity perturbations have both a systematic and
stochastic component. They are drawn from a distribution:

δu(δα, τ) ∼ N
(
µ
δu

(δα), Q
)

(14)

The systematic component of δu (i.e. the mean of the distribu-
tion from which it is drawn, µ

δu
) is attributed solely to errors

in the parameter estimates, δα. The stochastic component
is characterized by the covariance matrix Q which we will
address in section II-C.

Because both state measurements and the input pertur-
bations have a random component, our observations of the
innovation has additional uncertainty. This measurement un-
certainty is computed using the matrix convolution integral:

Rsys = Φ(t, t0)Σx,meas(t0)Φ(t, t0)T (15)

+

∫ t

t0
Γ(t, τ)Q(τ)Γ(t, τ)T dτ + Σx,meas(t)

B. Parameterization

Of course, wheel slip is not constant but depends on the
commanded trajectory and terrain geometry. Accordingly, we
parameterize the systematic component of us over velocities
and accelerations predicted from the encoder measurements,
and components of the gravity vector, which are available from
the pose filter:

us =

Vs,x

Vs,y

Vs,θ

 = Cα (16)

C =


cx

cy
cθ

 (17)

cx =
[
Vn,x |Vn,θ| (Vn,x|Vn,θ|) gx

]
cy =

[
Vn,x Vn,θ (Vn,xVn,θ) gy

]
cθ =

[
Vn.x Vn,θ (Vn,xVn,θ) gx gy

]
C is a 3×13 matrix in which all off-diagonal element blocks

are zero. The use of absolute values in the parameterization
of Vs,x makes forward slip an even function of the measured
angular velocity (which we observed experimentally). The slip
rate parameter vector, α, includes the coefficients that are
learned by the online filter.

This parameterization works well in practice but also makes
intuitive sense. Wheel slip is fundamentally caused by forces
acting on the vehicle. The velocity terms Vn,x and Vn,θ are
included because frictional contact forces are proportional to
them. Centripetal acceleration (Vn,xVn,θ) and the components
of the gravity vector (gx, gy) represent the net applied non-
contact forces.

Including forward acceleration (V̇n,x) in the parameterization
of forward slip is intuitively reasonable; however, the results
on our datasets were not affected by when included.

C. Stochastic System Modeling

Ideally, our predictions of state would be perfect after
solving for the optimal parameter values p. In reality this
is never possible due to our use of simplified models (for
fast computation) and random disturbances that can not be
predicted. A model of stochastic dynamics enables us to, at
least, bound the error on our predictions.

One standard technique to estimate uncertainty for a
stochastic process is to repeat the process numerous times,
then compute a sample covariance from the outcomes. How-
ever, the integrated error dynamics in (15) contains the tra-
jectory dependent matrix Γ(t, τ). When calibrating online, we



don’t have the luxury of controlling the reference trajectory
such that the same trajectory is repeated multiple times.
Furthermore, even when we can repeat the trajectory, it can
only be repeated imperfectly.

Predicted variance is computed using the matrix convolu-
tion integral (15) and our current estimate of the stochastic
parameters q.

h(q) = Rsys (18)

We must accept at the outset that online stochastic cali-
bration requires some assumptions. Note first that the initial
residuals computed during on-line calibration will contain both
systematic and random error. In order to correctly calibrate
variance we need to know the mean of the distribution, which
requires accurate estimates of the systematic parameters. We
therefore must accept that the Q matrix that we are calibrating
is not characterizing only random error until the systematic
calibration has converged on the mean. Of course, the mean
itself is not necessarily constant either. We therefore, assume
that the systematic parameters are changing relatively slowly
compared to the time period required to estimate variance.
Finally, the true process of uncertainty propagation for the
system may not be linear; however, a linear approximation
can be evaluated efficiently, and may be the only practical
option online.

Let us define r(ρ) as the observed residual from the system-
atic calibration:

r(ρ) = ρ(t)meas − ρ(t)pred (19)

We choose to formulate our observations of the variance Q
as a scatter matrix of these residuals. Certainly these scatter
matrices depend on Q and on the trajectory. If trajectories
are not repeated during online calibration, we must somehow
predict the scatter matrix observations for a set of trajectories
before presenting the observation to the calibration system.
That problem is tractable using the total probability theorem as
presented in [8]. For now, we will formulate our measurement
as a scatter matrix computed from a single residual; this is
simply the outer product:

zstoch = r(ρ)r(ρ)T (20)

Even though these observations are noisy (and each corre-
sponds to a unique trajectory), every observation improves
our estimate of the stochastic parameters because we are
calibrating trajectory-independent parameters of a “generative”
model (i.e. the Q matrix).

1) Jacobian of the Stochastic Prediction: Here we compute
the Jacobian of the stochastic prediction with respect to the
stochastic parameters. In the simplest case, the Q matrix is
constant (meaning not state or input dependent) and symmet-
ric. The stochastic parameters q are simply the six independent
elements of Q. In this case, the Jacobian with respect to the
element qi j is:

Jqi j =

∫ t

t0
γ
∗i

(t, τ)γ
∗ j

(t, τ)T dτ (21)

where γ
∗i

(t, τ) is the ith column of Γ(t, τ).
Note that the prediction and observation in the stochastic

dynamics are both matrices. To avoid tensors when computing
the Jacobian, it is convenient to reshape the unique elements
of the prediction and observation matrices into vectors.

2) Stochastic Measurement Uncertainty: Next we derive
the measurement uncertainty Rstoch. In practice, we found that
correct calculation of the measurement uncertainty is critical
to performance.

Recall that the stochastic measurement zstoch is just the outer
product of the residual r(ρ) = ρ(t)meas − ρ(t)pred, reshaped into
a vector. Assuming the mean is known, zstoch can be viewed
as a sample covariance for a single sample, in which case, the
measurement uncertainty Rstoch would be the covariance of a
sample covariance.

To clarify, let us express each term in full. Assume, for
example that the residual contains three elements: x, y, and θ.

r(ρ) =
[
x y θ

]T
(22)

Rsys =

V(x) C(x, y) C(x, θ)
V(y) C(y, θ)

V(θ)

 (23)

In (23), V and C are abbreviations for variance and covariance
respectively. Because zstoch is a function of a random vector,
it too is a random vector with its covariance Rstoch:

zstoch =
[
xx xy xθ yy yθ θθ

]T
(24)

Rstoch =


V(xx) C(xx, xy) C(xx, xθ) . . .

V(xy) C(xy, xθ) . . .
V(xθ) . . .

...
...

...
. . .

 (25)

Each element of zstoch is a product of random variables. The
variance and covariance of products of random variables (i.e.
the elements of Rstoch) can be calculated using the following
two rules (from [4]):

V(ab) = V(a)V(b) + C2(a, b) (26)
C(ab, cd) = C(a, c)C(b, d) + C(a, d)C(b, c) (27)

The rules (26) and (27) assume all random variables (a,b,c,d)
have an expected value of zero. Assuming that the mean
residual is zero is reasonable once the systematic parameters
p are correctly calibrated. The variance and covariance terms
required by the rules are obtained from Rsys.

D. Extended Kalman Filter

Kalman filters are an excellent means of online calibration
using the IPD formulation. They make utilizing the mea-
surement uncertainties, derived above, straightforward. Fur-
thermore, the Q matrix in Kalman filters provides explicit
control over the relative weight of history and the present
measurement. The state x is simply the vector of parameters
to be identified (α or q). The process update adds uncertainty



without changing the parameter estimates:

x
k|k−1

= x
k−1|k−1

(28)

Pk|k−1 = Pk−1|k−1 + Qk (29)

The measurement update equations in an extended Kalman
filter are:

rk = zk − h(x
k|k−1

) (30)

S k = HkPk|k−1HT
k + Rk (31)

Kk = Pk|k−1HT
k S −1

k (32)
x

k|k
= x

k|k−1
+ Kkrk (33)

Pk|k = (I − KkHk)Pk|k−1 (34)

where S is the covariance of the innovation r, K is the Kalman
gain, and P is the state estimate covariance.

Note that x , P, and Q in script font refer to variables in a
calibration Kalman filter, which are not to be confused with the
analogous variables in the system model such as the vehicle
pose.

III. Experimental Validation

Tracked vehicles are possibly the worst case for slip since
they must slip by design during any turn. Data was collected
on a custom surveillance robot similiar to the Foster-Miller
TALON. Even though the IPD system identification algorithm
was originally developed for skid-steered and Ackermann
vehicles, the vehicle motion model is general enough to
use directly on a tracked robot with no changes. The robot
was instrumented with encoders on each track, GPS, and an
Honeywell HG1930 IMU including accelerometers and gyros.
The GPS data was post-processed with a nearby base station
for high accuracy positioning. The presented techniques should
work for other pose measurements system which provide good
accuracy for short periods such as visual odometry or high
performance inertial navigation. The robot was driven on
soft dirt, asphalt, loose rocks, and grass at relatively high
speeds, for the robot’s size, of up to 1.7 m/s and 3 rad/s. The
identification algorithm ran continuously across all the terrains
for a total time of 35 minutes.

Scatter plots of pose prediction errors (i.e. the residuals
ρ(t)meas − ρ(t)pred) for the test are shown in Figure 2. At each
timestep, the pose of the vehicle is predicted two seconds
in the future using the latest estimate of the slip parameters.
Two seconds later, the final pose is measured and parameter
estimates are updated using the pose residual. This process is
repeated for overlapping path segments. Each dot in Figure
2 represents the along-track and cross-track error of a single
pose prediction; all data is processed but (for legibility) only
1000 data points are plotted. These data points are equally
spaced in time and span the entire 35 minute experiment.

In Figure 2(a), pose predictions are made assuming no slip;
i.e. us = 0 and so u = un. This is the default skid-steer motion
model commonly used when nothing is known about wheel
slip. These kinematic predictions are quite poor under condi-
tions of steep slopes, high speeds, and persistent understeer.
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Fig. 2. Scatter plots of along track and cross track error for the robot
on various surfaces. Each point represents predicted pose error at the end
of a two-second path segment. Figure (a) figure shows predicted pose
error assuming no slip; the figure (b) shows online prediction error during
calibration. The three standard deviation error ellipse of the points is also
shown.

Figure 2(b) shows prediction error during online calibration
with an initial estimate of zero for all slip parameters.

Pose predictions during online calibration are significantly
more accurate than no-slip predictions. Note that the mean
error is reduced from 26.7 cm to 8.5 cm. Furthermore, the
standard deviation of along track error and cross track error
are both reduced by 60% respectively. The mean of predicted
heading error is reduced by 83% with a standard deviation
reduction of 71%.

The error that is not removed by the systematic calibration
is accurately characterized by the calibrated stochastic model.
Each dot represents a path segment of unique shape for
which a unique pose error covariance P′(t) is predicted by the
calibrated stochastic model according to (15). As described
in [8], the average of these predicted covariances (denoted
by the dashed ellipse) is precisely the calibrated estimate of
the sample covariance of the set of trajectories. The sample



covariance (denoted by the solid ellipse) is computed offline
for comparison.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

calibration time (s)

m
, 
ra

d

Mean error vs. calibration time

 

 

position err

heading err

Fig. 3. Plots of the mean pose prediction error vs. calibration time as the robot
drives over grass. The model is calibrated for 0-330 seconds of driving then
evaluated on holdout data (the remainder of the 10.5 minute grass data). The
solid (blue) line denotes the mean Euclidean distance error of the predicted
(x,y) position for a 2 second path segment. The dashed (green) line denotes
the mean of the absolute value of predicted heading error.

The time to converge depends primarily on the initial
parameter estimates and the diversity of input trajectories.
Figure 3 shows the pose prediction performance on holdout
grass data after calibrating for limited periods ranging from
0 to 330 seconds. Based on pose prediction error, the filter
nearly converges within seconds of driving when starting from
the uncalibrated case (i.e. all slip parameters initialized to
zero) given a sufficient set of trajectories. In practice, one
could use the parameters calibrated for the same vehicle on
different terrain as a better initial guess, thereby decreasing
the convergence time.

IV. Conclusion and FutureWork

The tracked surveillance robot drove over four distinct ter-
rains while continuously updating it’s systematic and stochas-
tic slip model of the robots motion. The robot had no percep-
tion to perform terrain classification. Instead, we relied on the
fast convergence of the slip parameters when the robot crossed
a terrain boundary. Future work will look at how perception,
with self-supervised learning, can classify terrain to predict
the robot’s motion across terrain boundaries.

The calibration system runs continuously during vehicle
operation, as opposed to learning the parameters suitable for
various terrain during a special calibration run. It should be
emphasized that the presented method is a real-time algorithm
which works over arbitrary trajectories which allows for con-
tinuously adjusting of the robot slip model over changes in
both the terrain and the robot’s handling for extended periods
of time.
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