Life-long Informative Paths for Sensing Unknown Environments
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Abstract—In this paper, we have a team of robots in a
dynamic unknown environment and we would like them to have
accurate information about the environment for all time. That
is, the error between the robots model of the environment and
the actual environment must be bounded for all time, despite
dynamic changes in the environment. We present an adaptive
control law for the robots to shape their paths to locally optimal
configurations for persistently sensing an unknown dynamical
environment. Persistent sensing tasks are concerned with con-
trolling the trajectories of mobile robots to act in a growing
field in the environment in a way that guarantees that the field
remains bounded for all time. With the adaptive controller, as
the robots travels through their paths, they identify the areas
where the environment is dynamic and shape their paths to
sense these areas. A Lyapunov-like stability proofs is used to
show that, under the proposed controller, the paths converge
to locally optimal configurations according to a Voronoi-based
coverage task, referred to as informative paths. Simulated and
experimental results support the proposed approach.

I. INTRODUCTION

Robots operating in dynamic and unknown environments
are often faced with the problem of deciding where to go
to get the most relevant information for their current task.
Given a dynamic environment that is unknown, and a group
of robots, each with a sensor to measure the environment, we
want to find a set of paths for the robots that will maximize
information gathering in long-term operation. To achieve this,
the robots need to do three things: 1) learn the structure of the
environment by identifying the areas within the environment
that are dynamic and the rate of change for these areas; 2)
compute paths which allow them to sense the parts of the
environment that have high rate of change; and 3) control their
speeds along these paths for all time so that they always have
time-accurate information of the environment. These paths
are called informative paths since they focus on driving the
robots through locations in the environment where the sensory
information is important.

In this paper! we introduce the informative path planning
problem and present a new control algorithm for generating
closed informative paths in unknown environments. The key
insight is inspired by [2]. The robots move along their paths,
marking the areas they observe as dynamic or static. As the
robots discover the static/dynamic structure of the environ-
ment, they reshape their paths to avoid visiting static areas and
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Fig. 1: Path shaping phase of the multi-robot system hardware implementation.
The paths, shown as the blue and red lines connect all the waypoints, shown
as black circles. The dynamic regions (points of interest) are represented as
green dots. As time passes by, the robots shape their paths so they can cover
the dynamic regions of the environment.

focus on sensing dynamic areas. An example of this reshaping
process for two robots can be seen in Figure 1.

The adaptive controller has two key features. The first is an
adaptation law that the robots use to learn how sensory infor-
mation is distributed in the environment, through parameter
estimation. The second feature is a Voronoi-based coverage
controller (building upon [2]) that performs the reshaping of
the paths based on the robots’ estimates of the space.

The informative path problem has many applications. For
example, a surveillance task of a city where the robots could
learn the regions where crime is frequently committed and
generate paths so that they can sense these crime regions more
frequently and sense the safer regions less frequently. In this
paper we are interested in using it to achieve and improve
persistent sensing tasks [3] in unknown environments, where
the robots are assumed to have sensors with finite footprints.

More specifically, in a persistent sensing task we wish for
the robots with finite sensor footprints to conduct their infor-
mation gathering while guaranteeing a bound on the difference
between the robots’ current model of the environment and the
actual state of the environment for all time and all locations.
Since their sensors have finite footprints, the robots cannot
collect the data about all of the environment at once. As data
about a dynamic region becomes outdated, the robots must
return to that region repeatedly to collect new data. In previous
work [3], a persistent sensing controller calculates the speeds



of the robots at each point along given paths (referred to as
the speed profiles) in order to perform a persistent sensing
task, i.e. to prevent the robots’ model of the environment
from becoming too outdated. The intuition behind this speed
controller is to visit faster changing areas more frequently than
slower changing areas.

The persistent sensing problem is defined in [3] as an
optimization problem whose goal is to keep a time changing
field as low as possible everywhere for all time. We refer
to this field as the accumulation function. The accumulation
function grows where it is not covered by the robots’ sensors,
indicating a growing need to collect data at that location, and
shrinks where it is covered by the robots’ sensors, indicating
a decreasing need for data collection. A stabilizing speed
profile is one which maintains the height of the accumulation
function bounded for all time. In this paper we show that
our computed informative paths can be used in conjunction
with the stabilizing speed profiles from the persistent sensing
controller to locally optimize a persistent sensing task.

The contributions of this paper are:

e a provably stable adaptive controller for learning the
location of dynamic events in an environment and simul-
taneously computing informative paths for these events
in order to locally optimize a persistent sensing task. We
call this the persistent informative controller;

o simulation and hardware implementation.

A. Relation to Previous Work

Most of the previous work in path planning/generation
focuses on reaching a goal while avoiding collision with
obstacles, e.g. [4], or on computing an optimal path according
to some metric, e.g. [5]. Other works have focused on prob-
abilistic approaches to path planning, e.g. [6]. Prior work in
adaptive path planning, e.g. [7], considers adapting the robot’s
path to changes in the robot’s knowledge of the environment.
In this paper, we focus on generating paths that allow the
robots to perpetually travel through regions of interest in
an unknown environment. We use adaptive control tools to
create a novel algorithm for computing informative paths. We
use an approach based on Voronoi partitions, similar to [8].
However, contrary to [8], the environment, although unknown,
is not random, and we are not concerned with optimizing the
trajectory of the agents to minimize the predictive variance,
but rather optimizing the location of agents for a coverage
task in an unknown environment.

The adaptive controller relevant to this thesis was introduced
in [2], where a group of agents were coordinated to place
themselves in locally optimal locations to sense an unknown
environment. This paper builds upon this previous work, but
with some significant changes and additions. The Voronoi
partitions are used by the robots to change the location of the
agents, which are now waypoints defining the robots’ paths.
The paths must be closed paths and must provide good sensing
locations for the robots. Also, we wish the robots to perform
persistent sensing along these paths.

The persistent sensing concept motivating this paper was
introduced in [3], where a linear program was designed to
calculate the robots’ speed profiles in order for them to
perform a persistent sensing task, that is, maintain the height
of the growing accumulation function bounded. The robots
were assumed to have full knowledge of the environment and
were given a pre-designed path. In this paper we alleviate these
two assumptions by having the robots learn the environment
through parameter estimation, and use this information to
shape their paths into useful paths. These two alleviations pro-
vide a significant step towards persistent sensing in dynamic
environments.

In Section II we set up the problem, present locational op-
timization tools using a Voronoi-based approach, and present
a basis function approximation of the environment. In Sec-
tion III, we introduce the persistent informative controller and
prove stability of the system under this controller. Finally, in
Section IV we provide simulated and hardware results.

II. PROBLEM FORMULATION

We assume we are given multiple robots whose tasks are
to sense an unknown dynamical environment while traveling
along their individual closed paths, each consisting of a finite
number of waypoints. The goal is for the robots to identify the
areas within the environment that are dynamic and compute
paths that allow them to jointly sense the dynamic areas. A
formal mathematical description of the problem follows.

Let there be N robots, identified by r € {1,...,N}, in a
convex, bounded area ) C R2. An arbitrary point in Q is
denoted q. Robot r is located at position p, € () and travels
along its closed path consisting of a finite number n(r) of
waypoints. The position of the i** waypoint in robot r’s
path is denoted pf, i € {1,...,n(r)}. Let {p],... ,p:l(r)} be
the configuration of robot 7’s path and let V;” be a Voronoi
partitions of Q, with the i*” waypoint position in robot 7’s
path as the generator point, defined as

Vi ={a€Q:lla—pil <lla—pyl, V0'.i) # (r,i)},
ror'e{l,....,N}, ie{l,....n(r)}, i €{1,...,n(r")}, (1)

where, | - || denotes the [*-norm. We assume that the robot is
able to compute the Voronoi partitions based on the waypoint
locations, as is common in the literature [2].

Since each path is closed, each waypoint ¢ along robot r’s
path has a previous waypoint ¢ — 1 and next waypoint ¢ + 1
related to it, which are referred to as the neighbor waypoints of
i. Note that for each r, i+1 = 1 for i = n(r), and i—1 = n(r)
for ¢ = 1. Once a robot reaches a waypoint, it continues to
move to the next waypoint along its path, in a straight line
interpolation.?

We assume that the network of robot’s in the system is a
connected network, i.e. the graph where each robot is a node
and an edge represents communication between two nodes is
a connected graph. This connected network corresponds to the
robots’ abilities to communicate with each other.

2We assume that the waypoints do not outrun the robots under the action
of the informative path controller.



A. Environment Structure

A sensory function, defined as a map ¢ : QQ — R>( (where
R>q refers to non-negative scalars) determines the constant
rate of change of the environment at point q € Q. The function
¢(q) is not known by the robots, but each robot is equipped
with a sensor to make a point measurement of ¢(p,.) at the
robot’s position p;..

The interpretation of the sensory function ¢(q) may be
adjusted for a broad range of applications. It can be any kind
of weighting of importance for points q € Q. In this paper
we treat it as a rate of change in a dynamic environment.

B. Locational Optimization

Building upon [2], we can formulate the cost incurred by
the multi-robot system over the region Q as

N n(r)

W
ZZ/ 1P é(a)dq
r=1 =1
Nnr)
+Z§}—Wzmmﬁ )
r=1 =1

where ||q — pl|| can be interpreted as the unreliability of
the sensory function value ¢(q) when robot r is at pl, and
P} — iyl can be interpreted as the cost of a waypoint
being too far away from a neighboring waypoint for robot r’s
path. W, and W,, are constant positive scalar weights assigned
to the sensing task and neighbor distance, respectively. Note
that unreliable sensing and distance between neighboring way-
points are expensive. The first term couples all robots and their
respective waypoints, making them work together to cover the
environment. The second term couples the waypoints, making
a path for each robot. A formal definition of informative paths
for multiple robots follows.

Definition II.1 (Informative Paths for Multiple Robots). A
collection of informative paths for a multi-robot system cor-
responds to a set of waypoint locations for each robot that
locally minimize (2).

Next we define three properties analogous to mass-

moments of rigid bodies. The mass, first mass- moment
and centroid of V" are deﬁned as M = fvr q)dq,

fVT Wsqé(q)dqg, CT = ]\/IT’ respectively.
Also let ef = C] — p;. From [1], we have
g;fr = —Mje} — Wy(pi,q +pj_1 — 2pj), and an equilibrium

OH 0. Assigning to each waypoint

is reached when opr =

dynamics of the form

pi = uj, 3)
where w] is the control input, we propose the following
control law for the waypoints to converge to an equilib-
rium configuration: uf = (KJ(M[e} + of))/Bl, where
of = Wa(pfyy + P}y — 29}), B7 = MJ +2W,, and K7 is a
uniformly positive definite matrix and potentially time-varying
to improve performance. Note that 3] > 0 and has the nice
effect of normalizing the weight distribution between sensing
and staying close to neighboring waypoints.

C. Sensory Function Approximation

We assume that the sensory function ¢(q) can be parame-
terized as an unknown linear combination of a set of known
basis functions. That is,
Assumption 112 (Matching condition). Ja € RZ; and K :
Q — RZ,, where R, is a vector of non-negative entries,
such that B

¢(q) = K(a)"a, )

where the vector of basis functions K(q) is known by the
robot, but the parameter vector a is unknown.

Let a,.(t) be robot r’s approximation of the parameter
vector a. Then, ¢,(q) = K(q)” @, is robot 7’s approximation
of ¢(q). Then, we define the mass moment approximations as

T = / Wior(a)da, L= [ Wsag,(a)da,
R r
Cr= i,
M

Additionally, we can define a, = a, —
function error, and mass moment errors as

a, and the sensory

ér(q) = ér(q)—qﬁ(q):IC(q)Tdr, (5)
M = M]-M]=| W.K(q)"dqa,, (©6)
vy
L' = L'-L7= [ WeaK(a)Tdga, (7
‘/i’l‘

~ r
cr o= = 8
s (8)

Finally, in order to compress the notation, let &, (¢) and
®p..(t) be the value of the basis function vector and the value
of ¢ at robot r’s position p,.(t), respectively.

III. INFORMATIVE PATHS FOR PERSISTENT SENSING
A. Relation to Persistent Sensing Tasks

Previous work [3] developed a way to calculate the speed
of robots traveling along known static paths in order to
sense the environment and maintain the height of the ac-
cumulation function bounded for all time. We assume each
robot is equipped with a sensor with a finite footprint
F.(p;) ={q € Q: |lg—p|| < p}* when the robot is at loca-
tion p,., where p is a constant positive scalar. The accumulation
function grows where it is not covered by any robot sensor, and
shrinks otherwise. Mathematically, the accumulation function,
referred to as Z(q,t) at time ¢ for point q, evolves according
to

dla)— > cla) if Z(q.t) > 0,
. reNg(t)
Z(q,t) = 9
(@) (fb(q)— > cf»(q))+, if Z(q,t) =0,
re€Ng(t)

3 Any footprint shape can be used, and the footprint size does not have to
be the same for all robots. For simplicity, we use a circular footprint with
same size for all robots.



where Ng(t) is the set of robots whose sensor footprints are
over the point q at time ¢, i.e. Ng(t) = {r | q € F,(p;(t))}.

We would like to use the stability criterion for a persistent
sensing task, defined in [3], and plug it into the adaptive
controller, such that the control action increases the stability
margin of the persistent sensing task through time. However,
since the robots do not know the environment, but have
estimates of it, each robot 7 uses the estimated version of
this stability criterion, given by

N

q?)r(q7 t) - Z M

Cyr (q) = §’r‘(qa t) < 0>
r'=1 i (t)

va | or(q,t) > 0.

where gZ)T(q, t) (the estimated sensory function) is the esti-
mated rate at time ¢ at which the accumulation function grows
at point g, the constant scalar c¢,.(q) is the rate at which
the accumulation function shrinks when robot r’s sensor is
covering point q (and is known by the robots), T’ (¢) is the time
it takes robot r to complete the path at time ¢, and 77 (q,t) is
the time robot r’s sensor covers point q along the path at time
t. These two last quantities are calculated by the robots with
the speed profiles. Each robot also knows its estimated stability
margin at time ¢, defined as S,(t) = —(maxq 8,(q,1)). A
stable persistent task at time ¢ is one in which S(t) (the true
version of S’T(t)) is positive, which means the robot is able to
maintain the height of the accumulation function bounded at
all points q. Note that only points q that satisfy ¢,.(q,t) > 0
are considered in a persistent sensing task since it is not
necessary to persistently sense a point that has no sensory
interest. Points that satisfy this condition are referred to as
points of interest.*

In [3], a linear program was given which can calculate the
speed profiles for the paths at time ¢ that maximize 5)(75) (or
S,-(t) for ground-truth), for all . Hence, from this point on, we
assume that the robots know these maximizing speed profiles
and use them to obtain §,(q,t), Vq, V.

(10)

B. Persistent Informative Controller

We design an adaptive control law and prove that it causes
the paths to converge to a locally optimal configuration accord-
ing to (2), while improving the stability margin of the persis-
tent sensing task and causing all of the robots’ estimates of the
environment to converge to the real environment description.
All of the robots’ estimates of the environment converge to
a same estimate due to a consensus term [2] used in their
adaptive laws.

Since the robots do not know ¢(q), but have estimates
q@r(q), the control law becomes

. Kr(Mrer +a)

u; = ; Y
i

K2

4We assume the environment contains a finite number of points of interests.
These finite points could be the discretization of a continuous environment.

where
of = Wa(piyr +pio1 —2p7), (12)
Br = M +2W,, (13)
& = Cf—pj. (14)

Additionally, to incorporate the stability criterion for per-
sistent sensing tasks from (10), let the waypoints have new
dynamics of the form

p; = 1Ijug, (15)
where ] is defined in (11), and
e 85, T r I
Ilr _ 0, if opr u; < 0 and t — t)" > Tawells (16)
1, otherwise,

Tawell 1S @ design parameter, and tff is the most recent time
at which I, switched from zero to one (switched “up”).
Equations (15) and (16) ensure that the estimated stability
margin for the persistent sensing task does not decrease.
Remark I11.1. For positive € — 0, g}f; (t) is not always defined
when arg maxq $-(q,t — €) # argmaxq 3,(q,t + €). In such
gi; (t) refers to gi; (t+e).

The parameter a, is adjusted according to

/0 we (1)K (1)K () d,

cases

A,

A7)

A

t

[ ook, o ar.as)
0

where w,.(t) is a positive constant scalar if ¢ < 7,,, and zero

otherwise, and 7, is some positive time at which part of the

the adaptation for robot r shuts down to maintain A, and A,

bounded. Let

n(r)

r=> | WK(@)(a-p) dap;, (19
i=1 7V
) N
&pre7, = —b, — V(Ardr - )\7‘) —¢ Z lr,r’(&r - &r')a (20)

r’'=1
where ¢ > 0 is a consensus scalar gain, and [, ,» can be

interpreted as the strength of the communication between
robots 7 and r’ and is defined as

I - {Dmax - ”pr —pr’Ha if ”pr —pr’” < Diax
rrl =

. (21)
0, otherwise.

Since a(j) > 0, Vj, we enforce a.(j) > 0, Vr,Vj, by the
projection law [2],

élr = F(éprer - projréprer)a (22)

where I' € R™*™ is a diagonal positive definite adaptation
gain matrix, and the diagonal matrix Iy _is defined element-
wise as
0, ifa.(5) >0,
Loroj, (7) = 0, if G,(j) =0 and apre, (j) > 0,
1, otherwise,

(23)
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Fig. 2: Environment for the
multi-robot hardware imple-
mentation.

Fig. 3: Initial paths for the
multi-robot hardware im-
plementation

where (j) denotes the j*" element for a vector and the j**
diagonal element for a matrix.

Theorem III.2 (Convergence Theorem for Persistent Sensing
by Multiple Robots). Under Assumption I1.2, with waypoint
dynamics specified by (15), control law specified by (11), and
adaptive law specified by (22), we have
(i) Yimg oo I7 (0| M7 ()E7 (1) + a7 (1)]] = 0,
vre{l,...,N}, Vie{l,...,n(r)},

(ii) limy o0 [|dp, ()] = 0,
Vre{l,...,N}, V7 | w.(1) >0,

V. e {1,...,N}

We refer the reader to [1] to view the details of the
proof. Properties (ii) and (iii) from Theorem III.2 together
imply that the robots will learn the true sensory function for
the environment if the union of their trajectories while their
weights are positive is rich enough. Therefore, we can design
the initial waypoint locations such that, between all robots,
most of the dynamic unknown environment is explored (see
Figure 3).

The stability margin can theoretically worsen while I, for
some 7, i, cannot switch from one to zero because it is waiting
for ¢t — tz’i > Tawell. HOWeVer, Tawen can be selected arbitrarily
small and, in practice, any computer will enforce a 74ye; due to
discrete time steps. Therefore, it is not a practical restriction.
As a result, intuitively, (i) from Theorem III.2 means that
limy o0 || M7 (£)é5(t) 4+ af(t)|| = O only if this helps the
persistent sensing task. Otherwise lim;_, I7 (t) = 0, meaning
that the persistent sensing task will not benefit if the ‘"
waypoint in robot r’s path moves.

(iii) limy_yo0 (@ — @) = 0,

IV. IMPLEMENTATION AND RESULTS

We simulated the system many times and executed an
implementation with two quadrotors more than 10 times. Here
we present a case for N = 2 robots, n(r) = 44 waypoints,
Vr. A fixed-time step numerical solver is used with a time
step of 0.01 seconds and 74ye = 0.009. The environment
parameters are 0 = 0.4 and pyue = 0.2, a(j) = 60, for
j € {3,4,5,10,15,20,23,24,25}, and a(j) = 0 otherwise.
The environment created with these parameters can be seen in
Figure 2. The parameters a,., A, and \,., for all r are initialized
to zero. The parameters for the controller are K] = 90, Vi, r,
I" = identity, v = 3000, W,, = 6, W, = 150, w,, = 3, Vr and
p = 0.12. In addition, Dy, is assumed to be very large, so that
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Ly ()¢ =20, Vr,r’, Vt. The environment is discretized into
a 10 x 10 grid and only points in this grid with ¢,.(q) > 0 are
used as points of interest in (10). By only using this discretized
version of the environment, the running time for experiments
is greatly reduced. For more sensitive systems, this grid can
be refined.

The environment and, therefore, sensor measurements are
simulated. The growing behavior of the accumulation function
over the environment follows the description from (9). As an
implementation detail, although p = 0.12 for purposes of
the persistent informative controller, a value of p = 0.126
(5% increase) was used on the physical robot to consume
the accumulation function in the environment, which allows
to overcome the effects of small tracking errors from the
quadrotors and the effects of the discretization of the path
for the persistent sensing task.

The initial paths can be seen in Figure 3, where each robot
has a “zig-zagging” path across a portion of the environment,
and between both robots, most of the environment is initially
traversed. We first allowed the robots to go through their initial
paths without reshaping them so that they can sample most of
the space and learn the distribution of sensory information in
the environment. Therefore, we present results in two separate
phases: 1) learning phase, and 2) path shaping phase. The
learning phase corresponds to the robots traveling through their
whole paths once, without reshaping them, in order to learn
the environment. The path shaping phase corresponds to when
(15) is used to reshape the paths into informative paths, and
starts after the learning phase is done by both robots. In the
path shaping phase, w, = 0, Vr.

A. Learning Phase

_In the learning phase, we can see from Figure 4 that
or(q) — 0, Vq € @ for one of the robots. Since the consensus
error converges to zero in accordance with (iii) from Theo-
rem II1.2 and shown in Figure 5, then we can conclude that
the adaptation laws cause q@r(q) — 0,Vq € @, Vr. This means
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that the union of both robots’ trajectories was rich enough to
generate accurate estimates for all of the environment. Figure 6
shows that the mean over both robots of fot w(7)(Pp,. (7)) 2dT
converges to zero, in accordance with (ii) from Theorem III.2.
Finally, for this learning phase, we see in Figure 7 that the
Lyapunov-like function V, is monotonically non-increasing.

B. Path Shaping Phase

Figure 12 shows snapshots of the multi-robot implemen-
tation during the path shaping phase. We can see how the
path evolves under this controller in the path shaping phase in
Figures la to 1d. Figure 8 shows quantity I7(¢)|| M (¢)é! (t)+
ol (t)|| converging to zero, Vi, in accordance to (i) from
Theorem III.2. Figure 9 shows the Lyapunov-like function V,
monotonically non-increasing and reaching a limit. Figure 10
shows the persistent sensing task’s stability margin increasing
through time, as expected. The chattering in the stability
margin is due to the discretization of the system, and can
be reduced by shortening the length of time steps. Finally,
Figure 11 shows the mean over all points of interest of the
value of the accumulation function over time. As shown, this
value initially increases on average due to the initialization
of the system. Later, it starts to decrease and reaches an
approximate steady-state behavior that corresponds to the
locally optimal final configuration of the system. The hardware
implementation was run for more than 10 times, generating
informative paths that are practically identical to the simulated
cases.

V. CONCLUSION

This paper uses a Voronoi-based coverage approach, build-
ing upon previous work in [2], to generate an adaptive
controller for robots to learn the environment sensory func-
tion through parameter estimation and shape their paths into
informative paths that can be used for persistent sensing,

(a) Iteration O

(b) Iteration 20

(c) Tteration 1130

Fig. 12: Three snapshots of the hardware implementation of the multi-robot
system during the path shaping phase at different iteration values. The paths,
shown as the blue and red lines, connects all the waypoints corresponding
to each robot. The points of interest in the environment are shown as green
dots, and the size of a green dot represents the value of the accumulation
function at that point. The robots are the blue-lit and red-lit quadrotors, and
their sensor footprints are represented by the colored circles under them.

i.e. locally optimal paths for sensing dynamic regions in
the environment and performing persistent sensing tasks. The
persistent informative controller was implemented with two
quadrotor robots, generating results that support the theory.
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