
Dynamic Covariance Scaling for Robust Map Optimization

Pratik Agarwal Gian Diego Tipaldi Luciano Spinello Cyrill Stachniss Wolfram Burgard

Sp
he

re
25

00
(1

00
0

ou
tli

er
s)

M
an

ha
tta

n3
50

0
(1

00
0

ou
tli

er
s)

Si
m

ul
at

ed
St

er
eo

(b
ad

in
iti

al
es

tim
at

e)

Ground Truth Initial Guess Standard Methods (LM/GN) DCS
Fig. 1. The figure compares the performance of Dynamic Covariance Scaling (DCS) in the presence of outliers and bad initialization. The top two rows
show DCS converging to the correct solution in the presence of outliers for the sphere dataset (top row) and Manhattan3500 (middle row). The bottom row
shows DCS converging to the correct solution for a simulated outlier free dataset initialized with odometry measurements. Here, a robot equipped with a
stereo camera moves in a grid world and observes point features. Levenberg-Marquardt (LM) fails to compute the optimal solution even after 100 iterations,
while DCS is able to obtain a close to ground truth solution within 15 iterations. Using Gauss-Newton (GN) and Dog-Leg results in numerical issues for the
stereo example. The third column shows that in all these cases, standard methods fail to reach the optimum solution.

Abstract—Developing the perfect SLAM front-end that pro-
duces graphs which are free of outliers is hard to achieve due
to perceptual aliasing. Converging to the correct solution is
challenging for non-linear error minimization SLAM techniques
even in the absence of outliers, if the initial guess is far away
from the correct solution. Therefore, optimization back-ends
need to be resilient to outliers resulting from an imperfect
front-end as well as be robust to bad initialization. In this
paper, we present dynamic covariance scaling, a novel approach
for effective optimization of constraint networks under the
presence of outliers and bad initial guess. The key idea is
to use a robust function that generalizes classical gating and
down-weights outliers without compromising convergence speed.
Compared to recently published state-of-the-art methods, we
obtain a substantial speed-up without increasing overheads.

All authors are with the University of Freiburg, Institute of Computer
Science, 79110 Freiburg, Germany

This work has been partially supported by BMBF, contract number
13EZ1129B-iView and European Commission under contract numbers ERC-
267686-LifeNav, FP7-600890-ROVINA and FP7-248873-RADHAR.

I. INTRODUCTION

Building maps with mobile robots is a key prerequisite
for several robotics applications. As a result, a large variety
of SLAM approaches have been presented in the robotics
community over the last decades [5, 4, 19, 12, 7]. One intuitive
way of formulating the SLAM problem is to use a graph.
The nodes in this graph represent the poses of the robot and
position of features observed at different points in time, while
the edges model constraints between them. The edges are
obtained from observations of the environment or from motion
carried out by the robot. Once such a graph is constructed, the
map can be computed by optimization techniques. The solution
is the configuration of the nodes that is best explained by the
measurements.

Most approaches assume that the constraints are affected by
noise but no outliers (false positives) are present, i.e., there
are no constraints that identify actually different places as

being the same one. This corresponds to the assumption of
having a perfect SLAM front-end. In traditional methods, a
single error in the data association often leads to inconsistent
maps. Generating outlier-free graphs in the front-end, however,
is very challenging, especially in environments showing self-
similar structures [22, 17, 3]. Thus, having the capability to
identify and to reject wrong data associations is essential for
robustly building large scale maps without user intervention.
Recent work on graph-based SLAM addressed the issue and
there are now methods that can handle a large number of
outliers [21, 18, 14].

The initial configuration of the graph to be optimized can
also have a strong impact on the final result as the error
minimization procedure may get stuck in a local minima. This
holds for pose-graph SLAM as well as for graphs that contains
robot poses and features. The sensor characteristics and the
choice of the observation function has a strong impact on the
convergence properties.

The contribution of this paper is a novel approach, namely
Dynamic Covariance scaling (DCS) which is resilient to
outliers and bad initial guess as shown in Figure 1. At
the same time DCS avoids an increase in execution time.
Our work stems from the analysis of a recently introduced
robust back-end based on switchable constraints (SC) [21]
and uses a robust function that generalizes classical gating
by dynamically scaling the covariance. Compared to state-of-
the-art approaches in robust SLAM back-ends, our strategy
has a reduced computational overhead and typically has better
convergence. The proposed function shares common grounds
with existing robust M-estimators. We also evaluate DCS in
situations considered by Grisetti et al. [6] on SLAM graphs
with bad initial guess. We show that DCS offers similar
convergence properties as compared to [6], without requiring
any condensed measurements, partitioning of the graph, re-
initialization, or similar.

II. RELATED WORK

Various SLAM approaches have been presented in the
past. Lu and Milios [16] were the first to refine a map by
globally optimizing the system of equations to reduce the error
introduced by constraints. Subsequently, Gutmann and Kono-
lige [9] proposed a system for constructing the graphs and
for detecting loop closures incrementally. Since then, many
approaches for minimizing the error in the constraint network
have been proposed, including relaxation methods [11, 5],
stochastic gradient descent and its variants [19, 8], smoothing
techniques [12] and hierarchical techniques [2, 7].

The techniques presented above allow for Gaussian errors in
the constraints of the pose-graphs, i.e., noisy constraints, but
they cannot handle outliers, i.e., wrong loop closing constraints
between physically different locations. Although SLAM front-
ends (loop generation and loop validation) improved over the
last years [3, 17, 22], it is not realistic to assume that the
generated pose-graphs are free of outliers.

Hence researchers recently started using the back-end slam
optimizer to identify outliers. For example, Sünderhauf and

0
0

0.5

1

1.5

2

2.5

3

x

χ2
er

ro
r

Squared error
Scaling function (s)
Scaled error for different s

Fig. 3. Toy example of the DCS cost kernel. The scale function s has a
maximum value of 1, at which DCS behaves like a normal squared error
function. As the error is increased, the scaling function decreases reducing
the χ2 error.

Protzel [21] proposed a technique that is able to switch
off potential outlier constraints. The function controlling this
switching behavior is computed within the SLAM back-end.
Olson and Agarwal [18] recently presented a method that
can deal with multi-modal constraints, by introducing a max
operator. Their approach approximates the sum of Gaussian
model by the currently most promising Gaussian. This allows
for dealing with multi-modal constraints and rejecting outliers
while maintaining computational efficiency. Latif et al. [14,
15] proposed RRR, which handles outliers by finding the
maximum set of clustered edges, consistent with each other.
The key difference of RRR to the previously described two
approaches [21, 18] is that RRR rejects false edges while
the other two always keep rejected edges with a low weight.
Our approach is similar to [21] since we also keep rejected
constraints with a small probability, but it is more principled
and leads to faster convergence.

Recently, Grisetti et al. [6] showed that bad initializations
quickly lead to divergence especially in the context of non-
linear models. They propose to partitions the factor graph
with a divide-and-conquer approach to exploit local estimates.
As shown in [6], this offers a larger convergence basin than
Levenberg-Marquardt and yields convergence to the true solu-
tion in several real world and simulated environments where
other state-of-the-art methods fail.

III. DYNAMIC COVARIANCE SCALING

Dynamic covariance scaling or DCS [1] is a robust estimator
having close resemblance to Geman-McClure [23], which
prevents constraints from adding large errors. DCS handles
outlier constraints by scaling their information matrix and
reducing its effect on the optimizer. In this respect, DCS
is similar to the switchable constraints (SC) approach [21],
where outliers are not rejected but only down weighted. The
difference is that SC optimizes over the scaling variables,
while DCS computes them in closed form.

In the DCS formulation, the original least square SLAM [7,
10] formulation,

X∗ = argmin
X

∑
ij

eij(X)TΩijeij(X) (1)

is augmented such that each loop closing constraint of Eq. 1
now has a scaling variable, which scales the χ2

lij
as follows:

X∗ = argmin
X

∑
i

ei,i+1(X)TΩi,i+1ei,i+1(X)

+
∑
ij

s2ij eij(X)TΩijeij(X)︸ ︷︷ ︸
χ2
lij

(2)

The first summand in Eq. 2 refers to the constraints from
odometry or incremental scan-matching and the second one
to the loop closing constraints. The robustness is achieved
by scaling each error term eij with sij or by scaling the
information matrix Ωij with the squared of the scalar s2ij

eDCSij = eij(X)T (s2ijΩij)eij(X) (3)

This reduces the confidence of outlier measurements. The
scaling variable sij is computed as

s = min

(
1,

2Φ

Φ + χ2
l

)
, (4)

where Φ is a free parameter. A detailed derivation of the
scaling function and an analysis of the impact of Φ can be
found in [1].

In sum, we have a closed form solution for computing the
scaling factor s individually for each loop closing constraint. It
depends on χ2

l , which is the original error term for each loop
closing constraint. This formulation dynamically scales the
information matrix of each non-incremental edge by s2 given
by Eq. 4 and thus by a factor that considers the magnitude of
the current error. A gradient always exists in the direction of an
edge and gradually increases in the presence of more mutually
consistent constraints. The cost surface is always quadratic but
the magnitude of the gradient is scaled according to s, which
depends on the current error (χ2

l) and Φ.
In practice, DCS has the effect of down-weighting con-

straints with large errors. Fig. 3 shows a toy example of the
DCS kernel. The scaling function for a constraint remains flat
when χ2

lij
≤ Φ. In this region, DCS behaves like a normal

squared kernel without any scaling. As the error increases,
DCS scales the information matrix gradually. This has the
effect of the error still being squared but with reduced weight.
As, χ2

lij
→∞, s→ 0.

IV. EXPERIMENTS

To support our claims that DCS is resilient both to outliers
and to bad initial guess in the context of non-linear SLAM,
we evaluate it on publicly available datasets. These include
Manhattan3500, Intel Research Lab, City10000, Sphere2500,
CityTrees10000, and Victoria Park datasets. For Manhat-
tan3500, we considered the two different initialization pro-
cedures provided by Olson [19] and g2o [13]. The Intel
Research Lab dataset is available in the g2o package [13]
and the City10000, CityTrees10000, Sphere2500 datasets as
well as the Victoria Park dataset were released with the iSAM
package [12]. We also evaluated additional large-scale datasets
such as the 36 loops of the Lincoln Lab and the five loops of

0 1000 2000 3000 4000 5000

10−5

100

105

Outliers

R
P
E
xy

ManhattanOlson3500

0 1000 2000 3000 4000 5000

10−5

100

105

Outliers

R
P
E
xy

ManhattanG2O3500

0 1000 2000 3000 4000 5000

10−5

100

105

Outliers

R
P
E
xy

Intel

0 1000 2000 3000 4000 5000

10−5

100

105

Outliers

R
P
E
xy

City10000

0 1000 2000 3000 4000 5000

10−5

100

105

Outliers

R
P
E
xy

Sphere2500

Random
Local
Random Grouped
Local Grouped

Fig. 4. Scatter plots showing the error depending on the number and type
of outliers for DCS. ManhattanG2O, Intel, and Sphere2500 converge to the
correct solution even with 5,000 outliers while City10000 and ManhattanOlson
always converges in the case of local outliers. City10000 converges to the
correct solution for up to 1,500 outliers which are not local. ManhattanOlson
is more sensitive to non-local outliers.

the Bicocca multi-session experiment initially evaluated with
RRR [14].

The corrupted versions of the data sets contain both, real
and simulated outliers. For simulated outliers, we used four
different approaches to generate them namely “random”, “lo-
cal”, “random grouped”, and “local grouped” as described
in [21]. Random outliers connect any two randomly sampled
nodes in the graph. Local outliers connect random nodes that
are in the vicinity of each other. For the grouped outliers,
we create clusters of 10 mutually consistent outliers. We
believe that randomly grouped outliers are the most realistic
form of outliers as such constraints are similar to systematic
errors generated due to perceptual aliasing by a front-end. The
outliers are generated using the script provided in the Vertigo
package [20]. For landmark datasets such as Victoria Park
and CityTrees10000, we added wrong loop closures between
random pairs of nodes and landmarks.

For the Bicocca and Lincoln multi-session datasets, we used
the processed datasets provided by Latif et al. [14] in which
loop closures are generated using a place recognition system
subjected to perceptual aliasing. The Bicocca dataset uses a
bag of word-based front-end while the Lincoln Lab dataset
was created with a GIST-based front-end.

A. Robustness against Simulated Outliers

To show the robustness against outliers we evaluated DCS
on both simulated and real outliers. First, we evaluated DCS
on datasets with up to 5,000 simulated outliers. In total,
we evaluated 400 graphs per dataset—100 for each of the
four outlier generation strategy. Scatter plots of the resulting
reprojection error (RPE) after convergence are shown in Fig. 4.
As can be seen, for the ManhattanG2O, Intel and Sphere2500
datasets, DCS always converges to the correct solution. For
ManhattanOlson and City10000, DCS converges in all the
local outlier cases but is sensitive to the non-local outliers.
City10000 fails to converge to the correct solution in some
non-local cases with more than 1500 outliers. Even when
ManhattanOlson does not converge, the RPE is always less
than 10 and appears somewhat constant. This case is further

(a) Victoria Park initialization

101 102 1030

2000

4000

6000

outliers

R
P

E
xy

Victoria Park

(b) RPE error vs Num of outliers

(c) CityTrees10000 initialization

10
1

10
2

10
30

200

400
CityTrees10000

outliers

R
P

E
xy

(d) RPE error vs Num of outliers

Fig. 5. Resulting RPE for Victoria Park and cityTrees10000 dataset in the
presence of a varying number of outliers. Although the initialization is far
from the global minimum, DCS is able to converge to the correct solution for
small number of outliers.

analyzed in Section IV-E.
Most landmark-based SLAM systems provide pose-to-

feature range-bearing constraints and pose-to-pose constraints
only for odometry. Operating on pose-to-feature constraints is
more challenging for outlier rejection since there is no reliable
constraints such as odometry between the feature nodes. In
the previous evaluated pose graphs, every node is constrained
by two odometry edges which are not subjected to being an
outlier. For landmark datasets all constraints to a feature node
are potential outliers and hence create large number of local
minima solutions.

For landmark datasets we corrupt the outlier free Victoria
Park and the CityTrees10000 dataset with up to 1, 000 random
outlier constrains. The outliers are random measurements from
a robot pose to a landmark. Fig. 5 shows the initialization for
these two datasets and the RPE with an increasing number of
outliers. As can be seen from the plots, in these two datasets,
DCS is robust up to around 100 outliers and the robustness
decreases as the outliers are increased thereafter. The fact that
DCS is still able to optimize the Victoria Park dataset from the
initialization shown for 100 random outliers is strong evidence
that the method can be used in synergy with existing front-ends
validation techniques for landmark based system to improve
robustness.

B. Robustness against Real Outliers

Compared to the other datasets evaluated in this paper, the
next two datasets contain outliers created from a front-end
due to place recognition errors. The goal of these experiments
is to evaluate the performance of DCS with an error prone
front-end. We use the data-sets evaluated in [14] and thus
also provide an informal comparison to it. Fig. 6 depicts the
optimization results of DCS on the Biccoca and Lincoln Lab
datasets.

Bicocca initialization Result after optimization

Lincoln Labs initialization Result after optimization
Fig. 6. Qualitative evaluation on 5 sessions of Bicocca (top) and 36 loops of
Lincoln Labs (bottom) datasets that contain outliers generated by the vision
system. Latif et al. [14] report a that RRR solves Bicocca in 314 s whereas
DCS requires only 1.56 s to obtain the solution.

DCS takes 0.79 s (3 iterations) to optimize the Lincoln
Lab dataset and 1.56 s (16 iterations) to optimize the Bicocca
dataset. For the Bicocca dataset, we achieved the best result
with Φ = 5. By visual inspection, we can see that our solution
is close to the reported correct structure in [14]. Compared
to RRR, which reports a timing of 314 s for the Bicocca
dataset, DCS takes only 1.56 s and thus is around two orders
of magnitude faster. SC does not find the correct solution in
the standard settings and requires an additional Huber robust
kernel which takes 5.24 s to find the solution [14].

C. Robustness with respect to Bad Initialization

In the previous sections we showed that DCS is resilient
to outliers in SLAM-graphs with different sensor modalities.
The aim of this experiment is to show that DCS can reach the
global optimum in outlier-free datasets where standard non-
linear methods, i.e., Gauss-Newton, Levernberg-Marquardt
and Dog-Leg fail due to bad initialization. The original Victo-
ria Park dataset contains range-bearing observations of trees,
which are used as point landmarks. It contains a total of
151 landmarks observed from 6.969 poses. This high pose
to landmark ratio makes the problem challenging to converge
for batch methods as illustrated in Figure 7.

Visually, the batch method with Gauss-Newton without
DCS seems to converge to the correct solution as shown in
Fig. 7(a), but a more detailed analysis reveals that this is
not the case. Figures 7(c) and 7(e) show enlarged parts for
the solution obtained by batch methods. Non-existing loops
appears in the odometry chain, which corresponds to local
minima. Figures 7(d) and 7(f) show the correct results obtained
with DCS.

The total χ2 error of the solution with DCS is 390.95 com-
pared to 30, 607.16 with Gauss-Newton, 13, 319.25 with Dog-

(a) batch optimization (b) batch optimization with DCS

(c) Zoomed in section using batch
optimization.

(d) Zoomed in section with DCS.

(e) Zoomed in section using batch
optimization.

(f) Zoomed in section with DCS.

Fig. 7. Optimization of Victoria-Park dataset with range-bearing measure-
ments. The batch solution without DCS converges to the wrong solution. The
errors in the robot poses can be clearly seen as small loops in the odometry
chain. These are not present when used with DCS. The batch solutions have
a total error of 30, 607.16 compared to an error of 390.95 with DCS. Best
results were obtained with Φ = 1.

Leg and 87, 147.58 with Levenberg-Marquardt. The solution
obtained with DCS is similar to the CM approach [6].

D. Comparison to Switchable Constraints

Experiments is this section compare the timing and con-
vergence properties between DCS and SC. Tab. I compares
the time required by DCS and SC to converge in presence
of outliers. This table compares the total time taken for both
these algorithms to reach the optimal solution. As can be seen
from the table, DCS is faster than SC in all cases. The increase
in convergence speed is most noticeable in City10000 dataset.
The optimization process for both methods were stopped when
the change in χ2 was less than the set threshold. In the
next section we show that the reduction of χ2 and RPE is
significantly faster and smoother for DCS compared to SC.

The next set of experiments analyze the convergence behav-
ior of DCS and SC in the presence of 1000 randomly grouped
errors, as this is the most difficult and realistic scenario. Fig. 8
plots the evolution of the RPE (top row) and the χ2 error
(bottom row) during optimization for SC (blue) and DCS
(green). As can be seen from these plots, within at most 6

iterations, DCS converges while SC typically needs between
15 and 20 iterations to converge. The shapes of the plots for
SC reveal a frequent increase of the RPE as well as χ2 error.
We believe this may be indicative of the fact that the Gauss-
Newton quadratic approximation of the cost functions for the
new optimization problem with additional switch variables
in SC is not completely accurate in the neighborhood of
evaluation.

For our method, the evolution of χ2 and RPE is smooth and
almost monotonous. The plots illustrate that DCS requires a
smaller number of iterations and offers a faster convergence
while at the same time being robust to outliers. This is also
apparent from the video submitted with the paper, available
at http://www.informatik.uni-freiburg.de/%7Eagarwal/videos/
icra13/DCS.mp4. Note that the absolute χ2 values for SC and
DCS have to be interpreted differently since SC introduces
extra switch prior constraints contributing to the overall error.

E. Degenerate cases

Experiments in this section are designed to bring out subtle
differences and challenges which remain to be solved even
with these state-of-art methods.

Investigations of the failure cases in ManhattanOlson found
is Section IV-A reveal an interesting behavior. We analyses
two specific failure cases, one with 501 and one with 4,751
random outliers. After converging, both solutions appear to
have similar configuration, even though the second case is
subjected to roughly ten times more outliers, shown in Fig. 9.
They are locally consistent and appear to have converged to
a similar local minimum. The scaling values of each false
positive edge is shown in the plots in Fig. 9. The problem
here is that three parts of the graph are only sparsely connected
(see Fig. 9-left). By adding non-local and mutual consistent
outliers, there exists configurations in which the system cannot
determine all outliers correctly. SC shows a similar issue with
ManhattanOlson, which the authors solved by introducing an
additional robust Huber kernel at the expense of an even slower
convergence [21].

The parking garage dataset is a difficult real world dataset
compared to all the previous ones. This is mainly because of
the sparse nature of loop closures. Each deck of the parking
garage is connected by two odometry chains. SC had reported
degenerate behavior with this dataset [21]. The authors argued
that since only a small number of constraints connect the
decks robust methods were not able to outperform non-robust
methods.

DCS is able to reject outliers even in this dataset. We
also added mutually consistent constraints between decks at
multiple levels and compared both methods with standard
parameters as shown in fig 10. We believe DCS is able to
reject outliers as the gradients of odometry edges and correct
loop edges outweigh those provided by the outliers.

V. CONCLUSION

In this paper, we presented dynamic covariance scal-
ing (DCS), a principled method to cope with outliers and

http://www.informatik.uni-freiburg.de/%7Eagarwal/videos/icra13/DCS.mp4
http://www.informatik.uni-freiburg.de/%7Eagarwal/videos/icra13/DCS.mp4

TABLE I
OPTIMIZATION TIME NEEDED BY SC AND DCS IN THE PRESENCE OF 1000 TO 5000 OUTLIERS WITH RANDOM(R), LOCAL(L), RANDOM-GROUPED(RG)

AND LOCAL-GROUPED(LG) OUTLIER GENERATION STRATEGIES.

Dataset 1000 2000 3000 4000 5000
R, L, RG, LG R, L, RG, LG R, L, RG, LG R, L, RG, LG R, L, RG, LG

ManG2O
SC 4.70, 1.91, 3.11, 1.55 8.17, 2.93, 4.46, 2.85 10.11, 3.45, 11.89, 5.11 11.21, 2.80, 11.17, 3.32 24.53, 3.14, 15.33, 4.67

DCS 2.09, 0.86, 1.41, 0.88 3.83, 1.07, 2.80, 1.00 5.47, 1.25, 4.24, 1.17 7.62, 1.44, 6.27, 1.38 9.29, 1.69, 8.42, 1.59

ManOlson
SC 14.53, 2.21, 10.65, 2.21 18.96, 2.80, 15.45, 2.71 39.34, 3.41, 39.94, 3.27 53.29, 4.69, 36.71, 4.54 67.44, 5.33, 61.16, 5.09

DCS 4.62, 1.08, 3.40, 1.07 6.57, 1.35, 3.23, 1.27 26.21, 1.57, 20.21, 1.46 29.24, 1.84, 26.46, 1.71 16.80, 2.03, 14.00, 1.93

Intel
SC 0.54, 0.42, 0.51, 0.39 1.20, 0.94, 1.18, 0.94 1.60, 1.22, 1.61, 1.20 2.00, 1.52, 2.01, 1.50 2.37, 1.78, 2.44, 1.74

DCS 0.34, 0.22, 0.31, 0.21 0.52, 0.31, 0.52, 0.34 0.69, 0.45, 0.71, 0.42 0.85, 0.53, 0.85, 0.50 1.00, 0.58, 1.08, 0.58

City10000
SC 47.61, 30.06, 41.11, 29.86 108.2, 33.84, 79.50, 33.52 212.8, 41.14, 134.9, 39.04 285.7, 43.82, 207.1, 40.70 389.9, 49.98, 446.5, 49.92

DCS 10.09, 3.98, 7.88, 3.93 36.94, 4.80, 15.74, 4.53 51.60, 5.95, 34.02, 5.65 218.8, 6.92, 50.09, 6.44 262.9, 8.04, 393.2, 7.37

Sphere2500
SC 53.83, 11.09, 48.26, 10.62 115.5, 14.88, 108.9, 16.03 240.1, 24.10, 170.3, 18.55 218.7, 30.78, 230.2, 57.22 310.7, 67.53, 281.8, 63.37

DCS 19.52, 7.83, 16.84, 7.51 42.52, 9.22, 38.39, 9.02 50.58, 10.40, 50.32, 9.94 66.51, 11.31, 69.39, 11.36 90.12, 12.35, 97.07, 11.97

0 5 10 15 20
10

−6

10
−2

10
2

R
P
E
xy
S
C

Number of iterations

ManhattanOlson3500

0 5 10 15 20
10

−3

10
0

10
3

R
P
E
xy
S
C

Number of iterations

City10000

0 5 10 15 20
10

−3

10
0

10
3

R
P
E
xy
S
C

Number of iterations

Sphere2500

0 5 10 15 20
10

−6

10
−2

10
2

R
P
E
xy
D
C
S

0 5 10 15 20
10

−3

10
0

10
3

R
P
E
xy
D
C
S

0 5 10 15 20
10

−3

10
0

10
3

R
P
E
xy
D
C
S

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
S
C

Number of iterations

ManhattanOlson3500

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
S
C

Number of iterations

City10000

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
S
C

Number of iterations

Sphere2500

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
D
C
S

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
D
C
S

0 5 10 15 20
10

2

10
4

10
6

χ2
er
ro
r
D
C
S

Fig. 8. The figure plots RPE (top row) and χ2 error (bottom row) for 20 iterations for SC and DCS. While DCS converges within 6 iterations or less, SC
needs between 15 and 20 iterations to converge. The shapes of the plots for SC reveal a frequent increase of RPE and χ2 error which tend to indicate that
there are more local minima in the SC formulation compared to DCS.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
501 wrong constraints, fp =2 (s>0.05)

va
lu
e
of
s

Number of constraints
1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1
4751 wrong constraints, fp =4 (s>0.05)

va
lu
e
of
s

Number of constraints

Fig. 9. Left: Ground truth configuration for Manhattan3500. The dataset reveals three sparsely connected region illustrated by the colored ellipses. The other
four images are designed to illustrate the two failure cases, obtained for 501 and 4,751 random outliers, in the ManhattanOlson dataset. The images show
the local minima maps in both situations together with the scaling values for the false positive constraints. The plots show that even if our method fails to
converge to the optimal solution, the number of false positives accepted by the system is small, evident by a small scaling factor. With 501 outliers only two
constraints have a scale value of more than 0.05 and with 4,751 outliers only four outliers have a scale value more than 0.05.

Fig. 10. Parking garage dataset with sparse connection. (Left) The original datasets with wrong loop closures connecting different decks in red. Note: the
z-axis is scaled up to clearly show the wrong edges. (Center) SC returns the wrong solution while DCS rejects the outliers(right). This figure shows DCS
being able to reject outliers even in the challenging case of datasets with minimal graph connectivity.

bad initialization in graph-based SLAM systems. We showed
that DCS generalizes the switchable constraint method of
Sünderhauf and Protzel [21], while introducing a substantially
lower computational overhead. This is achieved by analyzing
the behavior of the error function and deriving an analytical
solution for computing the weighting factors. We implemented
and thoroughly evaluated our approach. We supported our
claims with extensive experiments and comparisons to state-
of-the-art methods on publicly available datasets. The results
show a comparable robustness to outliers as well as accuracy
but with a convergence rate that is substantially faster. The au-
thors have released the source code of the approach presented
in this paper with the latest version of g2o.

VI. ACKNOWLEDGEMENT

We thank E. Olson for the manhattanWorld dataset, Y. Latif
for providing the processed Bicocca and Lincoln Lab datasets,
E. Nebot and A. Ranganathan for original and processed Vic-
toria Park datasets, M. Kaess for City10000, CityTrees10000,
and Sphere2500 datasets, N. Sünderhauf for the Vertigo
package and his open source implementation of switchable
constraints.

REFERENCES

[1] P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard.
Robust map optimization using dynamic covariance scaling. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2013.

[2] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. An ATLAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2003.

[3] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and
mapping in the space of appearance. Int. Journal of Robotics Research,
27(6), 2008.

[4] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization
and mapping via square root information smoothing. Int. Journal of
Robotics Research, 25(12):1181–1204, 2006.

[5] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on
Robotics, 21(2), 2005.

[6] G. Grisetti, R. Kümmerle, and K. Ni. Robust optimization of factor
graphs by using condensed measurements. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

[7] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.
Hierarchical optimization on manifolds for online 2D and 3D mapping.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2010.

[8] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network
optimization for efficient map learning. IEEE Transactions on Intelligent
Transportation Systems, 2009.

[9] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the IEEE Int. Symp. on Comput. Intell. in
Rob. and Aut. (CIRA), 1999.

[10] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrating generic
sensor fusion algorithms with sound state representations through en-
capsulation of manifolds. Information Fusion, 2011.

[11] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2001.

[12] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental
smoothing and mapping with efficient data association. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.

[13] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2011.

[14] Y. Latif, C. Cadena, and J. Neira. Robust loop closing over time. Proc.
of Robotics: Science and Systems (RSS), 2012.

[15] Yasir Latif, César Cadena, and José Neira. Realizing, reversing,
recovering: Incremental robust loop closing over time using the irrr
algorithm. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 4211–4217. IEEE, 2012.

[16] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4, 1997.

[17] E. Olson. Recognizing places using spectrally clustered local matches.
Robotics and Autonomous Systems, 2009.

[18] E. Olson and P. Agarwal. Inference on networks of mixtures for robust
robot mapping. In Proc. of Robotics: Science and Systems (RSS), 2012.

[19] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2006.

[20] N. Sünderhauf. Vertigo: Versatile extensions for robust inference using
graphical models, 2012.

[21] N. Sünderhauf and P. Protzel. Switchable constraints for robust pose
graph slam. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012.

[22] G.D. Tipaldi, M. Braun, and K.O. Arras. FLIRT: Interest regions for
2D range data with applications to robot navigation. In Proc. of the
Int. Symposium on Experimental Robotics (ISER), 2010.

[23] Z. Zhang. Parameter estimation techniques: A tutorial with application
to conic fitting. Image and vision Computing, 15(1):59–76, 1997.

	Introduction
	Related Work
	Dynamic Covariance Scaling
	Experiments
	Robustness against Simulated Outliers
	Robustness against Real Outliers
	Robustness with respect to Bad Initialization
	Comparison to Switchable Constraints
	Degenerate cases

	Conclusion
	Acknowledgement
	References

