
Metric Localization using Google Street View

Pratik Agarwal Wolfram Burgard Luciano Spinello

Abstract— Accurate metrical localization is one of the central
challenges in mobile robotics. Many existing methods aim
at localizing after building a map with the robot. In this
paper, we present a novel approach that instead uses geo-
tagged panoramas from the Google Street View as a source
of global positioning. We model the problem of localization
as a non-linear least squares estimation in two phases. The
first estimates the 3D position of tracked feature points from
short monocular camera sequences. The second computes the
rigid body transformation between the Street View panoramas
and the estimated points. The only input of this approach is a
stream of monocular camera images and odometry estimates.
We quantified the accuracy of the method by running the
approach on a robotic platform in a parking lot by using visual
fiducials as ground truth. Additionally, we applied the approach
in the context of personal localization in a real urban scenario
by using data from a Google Tango tablet.

I. INTRODUCTION

Accurate metrical positioning is a key enabler for a set
of crucial applications, from autonomous robot navigation,
intelligent driving assistance to mobile robot localization
systems. During the past years, the robotics and the computer
vision community formulated accurate localization solutions
that model the localization problem as pose estimation in
a map generated with a robot. Given the importance of
map building, researchers have devoted significant resources
on building robust mapping methods [6, 12, 23, 26]. Un-
fortunately, localization based on maps built with robots
still presents disadvantages. Firstly, it is time consuming
and expensive to compute an accurate map. Secondly, the
robot has to visit the environment beforehand. An alternative
solution is to re-use maps for localization even if they were
not designed for robots.

In this paper, we propose a novel approach that allows
robots to localize with maps built for humans for the purpose
of visualizing places. Our method does not require the
construction of a new consistent map and nor does it require
the robot to previously visit the environment. Our central
idea is to leverage Google Street View as an abundant
source of accurate geotagged imagery. In particular, our key
contribution is to formulate localization as the problem of
estimating the position of Street View’s panoramic imagery
relative to monocular image sequences obtained from a mov-
ing camera. With our approach, we can leverage Google’s
global panoramic image database, with data collected each 5-
10 m and continuously updated across five continents [3, 9].
To make this approach as general as possible, we only make

All authors are with the University of Freiburg, Institue of Computer Science,
79110 Freiburg, Germany. This work has been partially supported by BMBF under
contract number 13EZ1129B-iView and by the EC under contract number ERG-AG-
PE7-267686-LifeNav and FP7-610603-EUROPA2.

Fig. 1. Localization of a moving camera from Street View panoramas of
the Marckolsheim village in France. Four panoramas shown in top-left are
localized with respect to the camera trajectory (black) and estimated 3D
points (orange). The bottom two images show feature matching between
Tango images and rectilinear views of the panorama.

use of a monocular camera and a metric odometry estimate,
such as the one computed from IMUs or wheel encoders.

We formulate our approach as a non-linear least squares
problem of two objectives. In the first, we estimate the
3D position of the points in the environment from a short
monocular camera trajectory. The short trajectories are mo-
tivated by limiting the computation time, restricting the
estimation problem and the presence of abundant panoramic
imagery. In the second, we find panoramas that match the
images and compute their 6DOF transformation with respect
to the camera trajectory and the estimated 3D points. As
the GPS coordinates of the panoramic images are known,
we obtain estimates of the camera positions relative to the
global GPS coordinates. Our aim is not to accurately model
the environment or to compute loop closures for improving
reconstruction. Our approach can be considered as a comple-
ment of GPS systems, which computes accurate positioning
from Street View panoramas. For this reason, we tested our
method on a Google Tango smartphone in two kinds of urban
environments, a suburban neighborhood in Germany and a
main road of a village in France. Additionally, we quantify



the accuracy of our technique by running experiments in a
large parking lot with ground truth computed from visual
fiducials. In the experiments, we show that with our tech-
nique we are able to obtain submeter accuracy and robustly
localize users or robots in urban environments.

II. RELATED WORK

There exist previous literature about using Street View
imagery in the context of robotics and computer vision.
Majdik et al. [16] use Street View images to localize a
Micro Aerial Vehicle by matching images acquired from air
to Street View images. Their key contribution is matching
images with strong view point changes by generating virtual
affine views. Their method only solves a place recognition
problem. We, on the other hand, compute a full 6DOF
metrical localization on the panoramic images. In [17],
they extended that work by adding 3D models of buildings
as input to improve localization. Other researchers have
matched Street View panoramas by matching descriptors
computed directly on it [25]. They learn a distinctive bag-
of-word model and use multiple panoramas to match the
queried image. Those methods provide only topological
localization via image matching. Related to this work is
the topic of visual localization, which has a long history
in computer vision and robotics, see [8] for a recent survey.
Various approaches have been proposed to localize moving
cameras or robots using visual inputs [2, 4, 5, 13, 24]. Our
work is complementary to such place recognition algorithms
as these may serve as a starting point for our method.
Topological localization or place recognition serves as a pre-
processing step in our pipeline. We use a naive bag-of-words
based approach, which we found to be sufficient for place
recognition. Any of the above-mentioned methods can be
used instead to make the place recognition more robust.

Authors have also looked into localizing images in
large scale metrical maps built from structure-from-motion.
Irschara et al. [10] build accurate point clouds using structure
from motion and then compute the camera coordinates of the
query image. In addition, they generate synthetic views from
the dense point cloud to improve image registration. Zhang
and Kosecka [29] triangulate the position of the query image
by matching features with two or more geotagged images
from a large database. The accuracy of their method depends
on the density of the tagged database images. Sattler et al.
[22] also localize query images in a 3D point cloud. Instead
of using all the matching descriptors, they use a voting
mechanism to detect robust matches. The voting scheme
enables them to select 3D points which have support from
many database images. This approach is further improved
in [21] by performing a search around matched 2D image
features to 3D map features and vice versa. Zamir and
Shah [27] build a dense map from 100,000 Google street
view images and then localize query images by a GPS-tag-
based pruning method. They provide a reliability score of
the results by evaluating the kurtosis of the voting based
matching function. In addition to localizing single images,
they can also localize a non-sequential group of images.

Monocular 
Images

Track SIFT 
Features

Compute 
3D features

Odometry

Rectilinear 
Panoramic 

Views

Matched 
Panoramic 

Views

Compute 
Metric 

LocalizationPlace 
Recognition

First
Optimization

Second
Optimization

Fig. 2. Flowchart illustrating various modules in our pipeline.

Unlike others, our approach does not rely on accurate
maps built with a large amount of overlapping geotagged
images. As demonstrated by the experiments, our approach
requires only a few panoramas for reliable metric localization
with submeter accuracy.

III. METHOD

In this section we outline the technical details for using
Google’s Street View geotagged imagery as our map source
for robot localization. Our goal is not to built large scale ac-
curate maps. Instead, we want to approximately estimate the
3D position of the features relative to the camera positions
and then compute the rigid body transformation between the
Street View panoramas and the estimated points. This allows
us to compute the GPS positions of the camera position in
global GPS coordinates. Our current implementation works
offline. The flowchart shown in Figure 2 illustrates the
workflow between the various modules.

A. Tracking Features in an Image Stream

The input of our method is an image stream acquired
from a monocular camera. We define S = (s1, . . . , sS) as a
sequence of S images. A sequence is implemented as a short
queue that consists only of the last few hundreds frames
acquired by the camera. An image si is a 2D projection
of the visible 3D world, through the lens, on a camera’s
CCD sensor. For estimating the 3D position of the image
points, we need to collect bearing observations from several
positions as the camera moves.

We take a sparse features approach for tracking features in
the stream of camera images. For each image si, we extract
a set of keypoints computed by using state-of-the-art robust
feature detectors, such as SIFT [15]. A description d ∈ Di

is computed from the image patch around each keypoint. Fi

is the set of keypoints and descriptors and is denoted as the
feature set.

Each time a new image arrives, we find feature corre-
spondences between si and si−1. We compute neighbor
matches using FLANN [19] between all elements of Di and



First Optimization Second Optimization

Fig. 3. Optimization problem for estimating the position of the features, y
shown as stars, and the camera positions x shown as frustums. The dotted
lines represent bearing constraints while the solid black line represents the
odometry constraint. The right image shows the optimization problem for
computing the position of the panorama p from the computed 3D points.

Di−1. A match is considered valid if the distance to the
best match is 0.7 times closer than the second best [15]. As
these correspondences only consider closeness in descriptor
space, in addition we employ a homography constraint to
consider the keypoint arrangement between two images. We
use the keypoints of the matched descriptors for a RANSAC
procedure that computes the inlier set for the perspective
transformation between the two images. We call a track Tj ,
the collection of all the matched keypoints relative to the
same descriptor over the consecutive image frames S. A
track is terminated as soon as the feature cannot be matched
in the current image. For an image stream S, we collect the
set of tracks TS consisting of the features FS .

Note that tracks have different length. Some keypoints
are seen from many views, while others are seen from few.
Intuitively, long tracks are good candidates for accurate 3D
point estimation as they have longer baselines. We only
perform feature matching across sequential image frames. No
effort is spent on matching images which are not sequential:
this work does not make any assumption on the motion of the
robot, on the visibility of the environment or on the existence
of possible loops.

B. Non-Linear Least Squares Optimization for 3D Point
Estimation

The next step is to compute 3D points from the tracks
TS . In our system, we have rigid body odometric constraints
between consecutive camera poses xi and xi+1, associated
to frame si and si+1. Our method is agnostic to the kind of
odometry: it can be computed by integrating IMUs, wheel
encoders, or by employing an IMU-assisted visual odometry.
In our problem formulation, we consider the monocular
camera calibrated and all the intrinsic parameters known.

Each keypoint in track Tj corresponds to a 3D point yj

observed in one of the images with pixel coordinates u, v.
If we consider a pinhole camera model, the camera matrix
C projects a point yj into the camera frame:

C =

 fx 0 cx
0 fy cy
0 0 1

 (1)

The direction vector

d = C−1[u, v, 1]T , (2)

can be interpreted as the direction of yj with respect to the
camera center. Then, we compute the elevation and bearing

angles:

θ = arccos

 dz√
d2x + d2y + d2z

 (3)

ϕ = arctan

(
dy
dx

)
(4)

A least squares minimization problem can be described by
the following equation:

F(x,y) =
∑
ij

eij(x,y)
TΣ−1ij eij(x,y)

+
∑
k

ek,k+1(x)
TΛ−1k ek,k+1(x) (5)

Here
• x = (xT

1 , . . . ,x
T
n )

T is a vector of monocular camera
poses, where each xi represents a 6DOF pose.

• y = (yT
1 , . . . ,y

T
m)T is a vector of 3D points in the

world associated to the tracked features.
• eij(x,y) is a vector error function that computes the

distance between a measurement prediction ẑij(x,y)
and a real measurement zij = [θij , φij ]. The error is 0
if zij = ẑij , that is when the measurement predicted
via ẑij(x,y) from the states xi and yj is equal to the
real measurement.

• ẑij(x,y) computes the bearing and azimuthal angles
from camera pose xi to feature yj in the camera frame.

• Σ−1ij represents the information matrix of a measure-
ment that depends on the state variables in x.

• ek,k+1(x) is a vector error from the predicted odometry
measurements.

• Λ−1k represent the information matrix of the odometry.
We initialize the camera position x with odometry and

the feature positions y by triangulation. We employ the
optimization framework g2o [14] as our non-linear least
squares solver. First, we solve Eq. 5 by keeping x fixed:

y∗ = argmin
y

F(x,y) (6)

This results in an improved estimation of y. Second, we
perform a full joint optimization of all the estimated 3D
points y and camera poses x.

(x∗,y∗) = argmin
x,y

F(x,y) (7)

The use of RANSAC helps improve the feature corre-
spondences but does not guarantee an absence of outliers.
Therefore, the robust methods developed in the previous
chapters are used to improve the robustness against such
errors. We use Dynamic Covariance Scaling kernel, a robust
M-estimator to improve convergence and to handle wrong
data associations [1].

Note that we are not aiming at an accurate reconstruction
of the environment. In our approach, we only perform data
association between sequential images as we do not compute



Fig. 4. A panorama downloaded from Street View (top) with the extracted
rectilinear views (bottom). Each image has a 90◦ field-of-view. These are
considered pinhole cameras, free of distortion and they overlap horizontally
to aid matching across image boundaries.

loop closures or perform large baseline feature triangulation.
There may be situations where a track is broken due to oc-
clusions or changes in the viewpoint. We do not try to merge
tracks in such scenarios. This is avoided for the process to
be less computationally demanding. Doing a full bundle-
adjustment will definitely help in a better reconstruction of
the environment but that is not the goal of our work.

C. Matching of Street View Panoramas with Camera Images

Google Street View can be considered as an online brows-
able dataset consisting of billions of street-level panoramic
images acquired all around the world [9]. It is of key
importance that each image is geotagged with a GPS po-
sition. This position is highly accurate and it is the result
of a careful optimization at global-scale by Google [13]. In
particular, Street View images are acquired by vehicles with
a special apparatus consisting of cameras mounted around a
spherical mounting. All camera images are stitched together
to form a spherical panoramic image represented via a plate
carrée projection. This results in a high quality image often
exceeding 20M pixels resolution for each panorama.

Google provides public APIs for requesting virtual camera
views of a given panorama. These views are rectilinear pro-
jection of the spherical panorama with a user selected field-
of-view, orientation and elevation angle. Rectilinear views
can be considered as undistorted images from a pinhole
camera, free of distortion. A panorama can be selected via its
GPS position or its ID. An example of a panorama acquired
from Wall Street, New York, is illustrated in Figure 4.
For robustness, we extract rectilinear horizontal overlapping
images. The overlapping region aids in matching at image
boundaries. We do not use the top and the bottom image as
it often contains only sky and floor.

In order to match panoramas with monocular camera
trajectories we first need a candidate set of panoramas.
In our approach we rely on an inaccurate GPS sensor to
download all panoramic images in a certain large radius of
approximately 1 km. The motivation behind this approach is

that a robot will roughly know which neighborhood or city
it is operating in. First, we collect all the rectilinear views
from the panoramic images P and build a bag-of-words
image retrieval system [7]. We compute SIFT keypoints and
descriptors FP for all rectilinear panoramic views in P and
group them with k-means clustering to generate a visual
codebook. Once the clusters are computed and we describe
each image as histograms of visual words, we implement
a TF-IDF histogram reweighing. For each camera image,
we compute the top K images from the panoramic retrieval
system, which have the highest cosine similarity. This match
can be further improved by restricting the search within a
small radius around the current GPS location or from the
approximate location received from cellular network towers.
Second, we run a homography-based feature matching, sim-
ilar to the one used for feature tracking in Section III-A to
select the matching images from K. These matched images
are used as the final candidate panoramic images used to
compute the global metric localization explained in the next
section.

D. Computing Global Metric Localization
To localize in world reference frame, we compute the rigid

body transformation between the moving camera imagery
and the geotagged rectilinear panoramic views. We look for
the subset of features F∗ = {FP ∩ FS} that are common
between the monocular images S and the top K panoramic
views. The 3D positions of F have been estimated using
the methods in Section III-B. We consider the rectilinear
views as perfect pinhole cameras: the focal length fx, fy are
computed from the known field-of-view; cx, cy is assumed
to be the image center. We follow the same procedure of
Section III-B for computing the azimuthal and bearing angles
for each element of F∗ using Eq. 3 and Eq. 4.

To localize the positions of the K panoramas from the
feature positions y, we formulate another non-linear least
squares problem similar to Eq. 5:

G1(p,y) =
∑
ij

eij(p,y)
TΣ−1ij eij(p,y) (8)

where
• p = (pT

1 , . . . ,p
T
8×m)T is a 6DOF vector of poses as-

sociated to the rectilinear views taken from m panorama
images.

• y is the vector of the estimated 3D points.
• eij(p,y) is the same error function defined for the

optimization Eq. 5. This is computed for all F∗ between
panorama view pi and 3D points yj .

• Σ−1ij represents the information matrix of the measure-
ment.

For robustness, we connect multiple views from the same
panorama that are constrained to have the same position but
a relative yaw offset of 90◦.

The optimization problem becomes

G2(p,y) = G1(p,y)

+
∑
k

ek,k+1(p)
TΛ−1k ek,k+1(p) (9)



1

2 3

4 5

6
7

89

Fig. 5. The left figure shows an example of an AprilTag placed above
a manhole from where a panoramic image was acquired. The right figure
illustrates an aerial view of the parking lot for the parking lot experiment.
Red crosses highlighting the positions of the panoramas. The numbers
represent the AprilTag ID.

where ek,k+1(p) is the error between two rectilinear views
computed from the same panorama. The optimal value for
p∗ can be found by solving:

p∗ = argmin
p

G1(p,y) (10)

or alternatively by solving:

p∗ = argmin
p

G2(p,y) (11)

After optimization, the panoramic views are in the frame
of reference of the monocular camera trajectory x. Now, it is
trivial to compute the relative offset between the map and the
panorama, hence computing precise global GPS coordinates
of the camera images. 1

IV. EXPERIMENTAL EVALUATION

We evaluated our method in two different scenarios. In
the first, we considered an outdoor parking lot area and
placed visual fiducials for estimating the accurate ground
truth. In the second, we used a Google Tango device in two
different urban scenarios. The first scenario is in Freiburg,
Germany where we personally uploaded panoramas acquired
with mobile devices. This is required as Street View is
only partially available in Germany. For the second scenario,
we tested our technique on panoramas from Street View
collected by Google in Marckolsheim, France. All of the
panoramas used in these experiments are publicly available.

A. Metric Accuracy Quantification

The parking lot experiment is designed to evaluate the
accuracy of our method. It is full of dynamic objects and
visual aliasing. Note that most of the structures and buildings
are only on the far-away perimeter of the parking lot.

Using GPS as ground truth is not sufficient as our method
aims at providing accurate estimations, potentially better than
GPS accuracy. For reference, we collected spherical panora-
mas by using a smartphone, on visually distinct landmarks

1In our experiments, some of the panoramas were manually acquired
with a cell phone and hence the panorama rig is not fixed. By optimizing
the additional rig parameters we are more robust to small errors in the
panorama building process. Additionally, we do not have any constraints
between different panoramas collected from different places. Each panorama
is independently optimized.

Panorama

April Tag

Fig. 6. The left figure shows the robot used to conduct the parking
lot experiments and the right figure illustrates the final monocular camera
positions with the estimated position of the panorama and April tag in the
parking lot.

1 2 3 4 5 6 7 8 9

6.00 3.14 0.99 1.65 5.36 2.94 1.22 0.53 1.29
0.72 1.07 - 9.62 4.91 2.00 5.53 0.70 1.28

- - - - - 3.35 0.74 1.07 4.03
- - 0.37 1.03 3.92 5.34 2.07 0.39 1.07
- 0.47 0.58 0.37 12.38 5.89 1.53 0.55 2.59

TABLE I
ERROR (IN METERS) BETWEEN ESTIMATED POSE OF EACH INDIVIDUAL

PANORAMIC VIEW COMPARED TO THE GROUND TRUTH TAG.

such as manholes. Then, as a ground truth we placed visual
fiducials, namely AprilTags [20] above the manholes from
where the panoramas were acquired. The fiducials serve as a
way to compute the ground truth positions of the manually
acquired panoramas. AprilTags come with a robust detector
and allow for precise 3D positioning. We use the tag family
36h11 and the open source implementation available from
[11]. Figure 5 shows one such tag from the view of the
camera with the tag detection and detected id superimposed
on the image. Figure 5 also illustrates the aerial view of
parking lot with the position from where the panoramas were
generated (red crosses). The numbers represent IDs for each
April Tag. To have a fine estimate of the panoramic image
pose, we use non-linear least squares to optimize for the
full 6D tags positions from the computed camera poses as
illustrated in Figure 6.

For these experiments, we used a robot equipped with
an odometry estimation system and a monocular 100◦ wide
field-of-view camera. We performed 4 runs around all 9
AprilTags and 1 shorter run. In total we performed a total
of 5 different runs in the parking lot. The position of
panoramas and AprilTags are computed with respect to the
camera positions. Tables I and II report the error between
the computed pose of the panorama and the associated tag
for the 5 runs. Figure 7 shows examples of feature matches
between three panorama views and camera images. Each of
the three images in Figure 7 show the matched features and
homography of the rectified panorama projected on to the
image acquired from the monocular camera.

The errors reported in Table I correspond to optimizing the
individual views of the panoramas without any constraints
among them. This corresponds to the optimization in Eq. 10.



(a) 135 (b) 180 (c) 225

Fig. 7. Matching 3 views of the same panorama to monocular images. 90◦ field-of-view rectilinear projections and the corresponding feature matches
for each view can be seen. Homography projection of the panoramas on the monocular image is shown in green.

1 2 3 4 5 6 7 8 9

10.11 3.14 1.09 1.65 3.44 3.61 1.22 0.36 1.29
0.72 1.07 - 5.80 3.27 0.80 1.51 0.68 1.28

- - - - - 3.35 0.70 1.07 0.90
- - 0.37 1.03 2.84 5.34 2.07 0.60 1.07
- 0.47 0.59 0.42 3.75 5.88 1.53 0.55 3.39

TABLE II
ERROR (IN METERS) BETWEEN ESTIMATED POSE OF THE CONNECTED

PANORAMIC VIEWS COMPARED TO THE GROUND TRUTH TAG.

0 1 2 3 4 5 6 7 8 9 10 11

0.2

0.4

0.6

0.8

1.0

Individual Views
Joined Views

Cumulative Error Historgram

C
u

m
u

la
ti

v
e
 F

re
q

u
e
n

cy

Error in Meters

Fig. 8. Cumulative error histogram for the parking lot experiment.
The optimization of the connected panoramic views (blue) improves the
performance.

That is, if two views of a panorama match at a certain
place, we optimize them independently each other. Table II
reports errors when all the views of the panoramas are
connected together. This corresponds to the optimization in
Eq. 11. Connecting views from the same panorama together
improves the accuracy as can be seen from Figure 8. The
system does not report localization results if the matching
rectilinear views are estimated too far with respect to the
current pose.

The panorama acquired from the position of tag id 5 and
6 is localized with least accuracy as most of the estimated
3D features are far way (>50 m). The panoramas from the
tags 8 and 9 are localized with the highest accuracy as
the tracked features are relatively closer (15 m-20 m). As
expected, the localization accuracy decreases with increase in
the distance to tracked features. Points that are far away from
the camera show small motion. In these cases, small errors

Fig. 9. Matches between monocular images and Street View panoramas
for a railway underpass used for the Tango experiments. The middle image
shows the aerial imagery of the location, superimposed with localization
results of the panoramic view with respect to the camera trajectory. The
second panorama is acquired under the bridge while the other two are
outside. The images on the right show example matches that were found
between the monocular images and extracted rectilinear panoramic views.

in the odometry estimate and in the keypoint position in
the image cause considerable errors in the estimated feature
distances in 3D. Nevertheless, about 40% of the runs we
are within a 1 m accuracy, 60 % within 1.5 m. This is
significantly lower than the accuracy on mobile devices (5
to 8.5 m) which use cellular network and GPS [28].

Despite our efforts in providing accurate ground truth, this
is not free of errors. Especially because the exact center of
the panorama is unknown. Manually acquired panoramas are
difficult to generate and often the camera center moves. The
individual images which are stitched together often do not
share the same exact camera center.

B. Urban Localization with a Google Tango Device

In order to show the flexibility of our approach, we
evaluated our algorithm with a Google Tango device in two
urban environments. We used the integrated visual inertial
odometry estimated on the Tango device for our method.
Tango has two cameras: one that has a high resolution but



Fig. 10. Optimized 3D points with the estimated panorama position
overlaid on Google maps (top). An example of matching between panorama
views and Google Tango images. As both cameras are pointing in different
directions, the features used internally for visual inertial odometry are
different from the features used for localizing Street View panoramas.

a narrow field-of-view, and another one, that has a lower
resolution but a wider field-of-view. The narrow field-of-view
camera has a frame rate of 5Hz, the other streams at 30Hz.
We use the higher resolution camera as the monocular image
source for our framework, meanwhile the wide angle camera
is used internally by the device for the odometry estimates.
Throughout our experiments, we found the odometry from
Tango to be significantly more accurate indoor than outdoor.
This is probably due to a relatively weak feature stability
outdoors and the presence of only small baselines when
navigating in wide areas. To alleviate this problem, we
mounted a mirrored 45− 90− 45 prism on the narrow-field-
of-view camera and pointed the wide field-of-view to the
floor. In this way, the Tango device reliably tracks features
on the asphalt and computes accurate odometry estimates,
meanwhile the other camera points at the side. Figure 11
shows the prism mounted Tango device.

The first urban scenario has been run on roads
around the University campus in Freiburg, Germany.
In particular, around the area with GPS coordinates
48.0125518, 7.8322567. The panoramas used in the Tango
experiments are public and can be viewed on Street View.
In the experiment, we crossed a railway line by using an
underpass where GPS connection is lost, see Figure 9. Our
method is able to estimate 3D points from the images
acquired from Tango and then match them to the nearby
panoramic images, see Figure 9. Then, we moved into the
suburban road with houses on both sides. This location is
challenging due to the fact that all houses look similar. Also
in this case, our approach is able to correctly estimate the
3D points of the track and localize the nearest panorama, see
Figure 10. In the figure, the black points are the estimated
3D points while the circles in the center of the image are
the positions of the panorama views. The pose of the Tango
device is overlayed on the street.

To test our technique in a Street View panorama acquired
by Google, we ran another experiment on the main road of
the village of Marckolsheim, France. Despite being a busy
road, our technique correctly estimated 3D points from the
Tango image stream and successfully estimated the panorama
positions, see Figure 1.

Fig. 11. Google Tango with the prism attached to the narrow field of view
camera. The screen shows the camera used for visual odometry pointing
downwards, while the narrow field of view camera points sidewards.

V. DISCUSSION

Our method can use any kind of odometric input. In
the case of Tango, the odometry is based on the work of
Mourikis and Roumeliotis [18] that makes use of visual
odometry and IMUs to generate accurate visual-inertial
odometry (VIO). This system is offered by the Google’s
Tango device libraries. When implemented on Tango, our
method uses the two onboard cameras. One is the wide angle
camera, that is used exclusively for VIO and the other is
the narrow FOV camera, that is used for matching against
Street View imagery. It is important to note that they point in
different directions and do not share views. For this reason,
the resulting features for VIO and 3D localization are not
directly correlated. Note also that our two step optimization
can in principle be done in one step. Our choice to do
it in two steps resulted from a practical perspective: the
first is used to compute a good initial solution for the
second optimization. For the scope of this paper, we are
not interested in using the panoramas to build an accurate
large model of the environment: we aim at localizing without
building new large scale maps where Street View exists.

VI. CONCLUSION

In this paper, we present a novel approach to metric
localization by matching Google’s Street View imagery to a
moving monocular camera. Our method is able to metrically
localize without requiring a robot to pre-visit locations to
build a map where Street View exists.

We model the problem of localizing a robot with Street
View imagery as a non-linear least squares estimation in
two phases. The first estimates the 3D position of tracked
feature points from short monocular camera streams, while
the second computes the rigid body transformation between
the points and the panoramic image. The sensor requirements
of our technique are a monocular image stream and odometry
estimates. This makes the algorithm easy to deploy and
affordable to use. In our experiments, we evaluated the metric
accuracy of our technique by using fiducial markers in a
wide outdoor area. The results demonstrate high accuracy in
different environments. Additionally, to show the flexibility
and the potential application of this work to personal local-
ization, we also ran experiments using images acquired with
Google Tango smartphone in two different urban scenarios.
We believe that this technique paves the way towards a new
cheap and widely useable outdoor localization approach.



REFERENCES

[1] P. Agarwal. Robust Graph-Based Localization and Mapping.
PhD thesis, University of Freiburg, Germany, April 2015.

[2] M. Agrawal and K. Konolige. FrameSLAM: From Bundle
Adjustment to Real-Time Visual Mapping. IEEE Transactions
on Robotics, 24(5):1066–1077, 2008.

[3] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon,
A. Ogale, L. Vincent, and J. Weaver. Google street view:
Capturing the world at street level. Computer, (6):32–38,
2010.

[4] M. Cummins and P. Newman. Highly scalable appearance-
only SLAM - FAB-MAP 2.0. In Proceedings of Robotics:
Science and Systems (RSS), 2009.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
Monoslam: Real-time single camera slam. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 29(6):
1052–1067, 2007.

[6] F. Dellaert. Square root SAM. In Proceedings of Robotics:
Science and Systems (RSS), pages 177–184, 2005.

[7] L. Fei-Fei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 524–531. IEEE, 2005.

[8] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-
Mancha. Visual simultaneous localization and mapping: a
survey. Artificial Intelligence Review, pages 1–27, 2012.

[9] Google Inc. The never-ending quest for the perfect map.
http://googleblog.blogspot.de/2012/06/
never-ending-quest-for-perfect-map.html/,
2012.

[10] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From
structure-from-motion point clouds to fast location recogni-
tion. In Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2599–2606, 2009.

[11] M. Kaess. AprilTags C++ Library, 2013. URL http://
people.csail.mit.edu/kaess/apriltags.

[12] M. Kaess, H. Johannsson, R. Roberts, V. . Ila, J. J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and mapping
using the Bayes tree. International Journal of Robotics
Research (IJRR), 31(2):216–235, 2012.

[13] B. Klingner, D. Martin, and J. Roseborough. Street view
motion-from-structure-from-motion. In IEEE International
Conference on Computer Vision (ICCV), pages 953–960,
2013.

[14] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph optimization.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3607–3613, 2011.

[15] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2),

2004.
[16] A. L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza.

MAV urban localization from Google street view data. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3979–3986,
2013.

[17] A. L. Majdik, D. Verda, Y. Albers-Schoenberg, and D. Scara-
muzza. Micro air vehicle localization and position tracking
from textured 3d cadastral models. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), pages 920–927, 2014.

[18] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3565–3572, 2007.

[19] M. Muja and D. G. Lowe. Fast matching of binary features.

In Computer and Robot Vision (CRV), pages 404–410, 2012.
[20] E. Olson. AprilTag: A robust and flexible visual fiducial

system. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[21] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based
localization by active correspondence search. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 752–765, 2012.

[22] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image
retrieval for image-based localization revisited. In British
Machine Vision Conference (BMVC), page 7, 2012.

[23] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and
B. Nebel, editors, Exploring Artificial Intelligence in the New
Millenium. Morgan Kaufmann, 2002.

[24] A. Torii, M. Havlena, and T. Pajdla. From google street view
to 3d city models. In Computer Vision Workshops (ICCV
Workshops), 2009.

[25] A. Torii, J. Sivic, and T. Pajdla. Visual localization by
linear combination of image descriptors. In Computer Vision
Workshops (ICCV Workshops), 2011.

[26] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W.
Fitzgibbon. Bundle adjustmenta modern synthesis. In Vision
algorithms: theory and practice, pages 298–372. Springer,
2000.

[27] A. R. Zamir and M. Shah. Accurate image localization based
on google maps street view. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 255–268,
2010.

[28] P. A. Zandbergen and S. J. Barbeau. Positional accuracy
of assisted gps data from high-sensitivity gps-enabled mobile
phones. Journal of Navigation, 64(03):381–399, 2011.

[29] W. Zhang and J. Kosecka. Image based localization in urban
environments. In 3D Data Processing, Visualization, and
Transmission, Third International Symposium on, pages 33–
40. IEEE, 2006.

http://googleblog.blogspot.de/2012/06/never-ending-quest-for-perfect-map.html/
http://googleblog.blogspot.de/2012/06/never-ending-quest-for-perfect-map.html/
http://people.csail.mit.edu/kaess/apriltags
http://people.csail.mit.edu/kaess/apriltags

	Introduction
	Related work
	Method
	Tracking Features in an Image Stream
	Non-Linear Least Squares Optimization for 3D Point Estimation
	Matching of Street View Panoramas with Camera Images
	Computing Global Metric Localization

	Experimental Evaluation
	Metric Accuracy Quantification
	Urban Localization with a Google Tango Device

	Discussion
	Conclusion

