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Abstract— The problem of simultaneously localization a robot
and modeling the environment is a prerequisite for several
robotic applications and a large variety of solutions have been
proposed allowing robots to build maps and use them for
navigation. Also the geodetic community addressed large-scale
mapping for centuries, computing maps which span across
continents. These mapping processes had to deal with several
challenges that are similar to those of the robotics community.
In this paper, we explain two key geodetic mapping methods
that we believe are relevant for robotics. We also aim at
providing a geodetic perspective on current state-of-the-art
SLAM methods and at identifying similarities between the
solutions proposed by both communities. The central goal of
this paper is to bring both fields close together and to enable
future synergies.

I. INTRODUCTION

The problem of simultaneously localization and map-
ping (SLAM) is essential for most robotic applications.
Most modern SLAM methods follow the graph-based SLAM
paradigm [29], [16], [37], [20] in which each pose of the
robot or each landmark position is represented as a node in
a graph. A constraint between two nodes, which results from
observations or odometry, is represented by an edge in the
graph. The first part of the overall problem is to create the
graph and is often referred to as the front-end. The second
part deals with finding the configuration of the nodes that
best explains the constraints modeled by the edges and is
typically referred to as a back-end.

In the geodetic mapping community, one major goal has
been to build massive survey maps, some even spanning
across continents. These maps can then be used either
directly by humans or for studying large scale properties of
the earth. In principle, geodetic maps are built in a ’similar
way to the front-end/back-end approach used in SLAM. Con-
straints are acquired through observations between physical
observation towers. These towers correspond to positions
of the robot as well as the landmarks in the context of
SLAM. Once the constraints between observation towers are
obtained, the goal is to optimize the resulting system of
equations to get the best possible locations of the towers
on the surface of the earth. Figure 1 illustrates two such
large scale geodetic network of constraints used for mapping
Europe and North America.
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Fig. 1. Left: Triangulation network spanning across Europe for ED 87
(courtesy of [14]). Right: North American network for NAD 87 (courtesy
of [35]). The NAD 87 network contained roughly 270,000 stations and
required solving 1.8 million equations [8].

SLAM and geodetic mapping have problems in common.
The first challenge is the large size of the maps, i.e., the
number of unknowns. In geodetic mapping, the unknowns are
the positions of the observation towers, while for robotics,
the unknowns corresponds to robot positions and observed
landmarks. For example, the system of equations for the
North American Datum of 1927 (NAD 27) required solving
for 25,000 tower positions and the North American Datum of
1983 (NAD 83) required solving for 270,000 positions [26].

In robotics, front-ends may be unable to distinguish be-
tween similar looking places, which leads to perceptual alias-
ing. In geodetic mapping, the front-end consisted of humans
carefully and meticulously acquiring measurements. Even
this process was prone to making mistakes [35]. Another
challenge comes from the non-linearity of constraints, which
is frequently the case in SLAM as well as geodetic mapping.
A commonly used approximation in both fields is to linearize
the problem around an initial guess.

These similarities warrant studying geodetic mapping
techniques and we believe it may inspire novel solutions
to large-scale, autonomous robotic SLAM. The aim of this
paper is to survey two key approaches of the geodetic map-
ping community and put them in relation to recent SLAM
research. This mainly relates to the Bowie method [9],
[1] used for creating NAD 27 and the Helmert blocking
method [23] used in optimizing the set of equations for
NAD 83.

In the remainder of this paper, we first provide a brief re-
view of graph-based SLAM. Second, we explain the problem
formulation for geodetic mapping and introduce commonly
used terminologies. We continue to explain the approaches



to geodetic mapping including the motivation and insights
central to Bowie’s and Helmert’s solutions. We then highlight
the relationships between existing SLAM approaches and
these geodetic mapping techniques. An extended survey on
geodetic approaches covering other topics such as variable
reordering, robustness to outliers, and additional optimization
methods can be found in [3].

II. GRAPH-BASED SLAM IN ROBOTICS

Graph-Based SLAM methods model the individual poses
of a robot as well as landmarks as nodes in a graph.
These nodes are connected through constraints whereas each
constraints can result from odometry, inertial measurement
units, sensor measurements, or similar. Graph-Based SLAM
back-ends aim at finding the configuration of the nodes
that minimize the error induced by constraints. Let x =
(x1,...,%,)T be the state vector where x; describes the pose
of node ¢. This pose x; is typically three-dimensional for
a robot living in the 2D plane. We can describe the error
function e;;(x) for a single constraint between the nodes ¢
and j as the difference between the obtained measurement z;;
and the expected measurement f(x;,x;) given the current
state

f(xi,%5) — zij. (D

The realization of the measurement function f depends on
the sensor setup. For pose to pose constraints, one typically
uses the transformation between the poses. For pose to
landmark constraints, we minimize the reprojection error of
the observed landmark into the frame of the observing pose.
The error minimization can be written as

x* = argminZeij(x)TQijeij(x), (2)
X ’L_]

€;j (X) =

where €);; is the information matrix associated to a constraint
and x* is the optimal configuration of nodes with minimum
sum of error induced by the edges. Linearizing the error
function leads to a quadratic form that can be minimized by
computing its derivative and settung up a linear system.

Multiple improvements have been proposed. First, it is
common to solve the linear system using domain knowledge
and sparse linear algebra methods. Folkesson and Chris-
tensen formulate the least squares problem as an energy-
minimization problem [16]. Dellaert and Kaess explore the
graph SLAM formulation as a factor graph using smoothing
and mapping [12] and use matrix factorization methods such
as QR, LU, and Cholesky decomposition. Other authors
suggest to perform the minimization using relaxation tech-
niques [24], [13], [17], [34], stochastic gradient descent [32]
or variants of that [22].

Second, for dealing with outliers in the constraints, dif-
ferent methods have been proposed [5], [33], [36]. Third,
performing the operations in a non-Euclidean manifold space
allow for better dealing with the angular components. Finally,
hierarchical and submapping approaches have shown to effi-
ciently compute solutions by decomposing the optimization
problem at different levels of granularity [7], [15], [21], [31].

Fig. 2. A simple triangle net. The distance between towers A and B is
physically measured. Angular constraints to all other towers are measured
and the lengths of all other segments are computed with respect to the
baseline AB with the measured angles. Courtesy of [10].

III. GEODETIC MAPPING

Geodetics, also known as geodesy, is the science that
studies the earth at various global and local scales. It mea-
sures, for example, large scale changes in the earth’s crustal
movements, tidal waves, magnetic or gravitational fields. The
aspects of geodesy that are relevant for addressing the SLAM
problem, are related to geodetic mapping. In this section,
we first describe how the massive geodetic surveys, which
typically result in triangle nets, are created. We then explain
the Bowie and Helmert [23] method for obtaining a minimal
error configuration.

The basic principle behind geodetic surveying is triangu-
lation. A large set of observation towers, called Bibly towers
and typically 20m to 30m in height, are built from which
other towers are observed [10]. Geodetic surveyors built large
interconnected mesh of observation towers by triangulating
measurements between them. The resulting mesh of towers
and constraints is commonly called a triangle net. A simple
example of a triangle net is shown in Figure 2. Each line
segment in Figure 2 is a constraint between two observation
towers. Some of these constraints are directly measured while
others are computed using trigonometrical relationships.

The method of obtaining constraints between the observ-
ing towers has evolved over time. Initially, constraints were
distance only or angle only measurements. The distance
measurements were obtained using tapes and wires of Invar,
which has a low coefficient of thermal expansion. Later, more
sophisticated instruments, such as parallax range-finders,
Stadimeter, Tellurometer, and Electronic Distance Measuring
Instruments were used. Angular measurements were obtained
using theodolites. Moreover, measurement constraints used
in geodetic surveys can be differentiated as absolute and
relative measurements. Absolute measurements involve di-
rectly measuring the position of a tower on the surface of
the earth. These include measuring latitudes by observing
stars at precise times and then comparing them to the
existing catalogs. Stars were also used as fixed landmarks for
bearing only measurements from different base towers at pre-
cisely the same time. More sophisticated techniques such as
space systems like very long baseline interferometry position
differences and GPS measurements were later introduced



with improvements in measurement techniques. Once GPS
technology became accurate, only GPS measurements were
used to locate absolute positions of each station. In the Unites
States the new set of observations containing only GPS came
to be known as Continuously Operating Reference Stations
(CORS). Currently new versions of CORS are released by
National Oceanic and Atmospheric Administration (NOAA).

Examples of large scale triangle nets are shown in Fig-
ure 1. The left image displays the geodetic triangle net used
for mapping Central Europe in 1987 whereas the right one
shows the triangulation network for mapping North-America
in 1983 (NAD 83). The thick lines in NAD 83 are long
sections of triangulation nets comprising of thousands of
Bibly towers. Connections between multiple sections are
small triangle networks and are called junctions.

The geodetic mapping problem can be broken down into
two major sub problems, the first being the “adjustment
of the vertical”, the second being “adjustment of the net”.
The problem of “adjustment of the net” is finding the
least squares system of the planar triangulation net whereas
“adjustment of the vertical” involves finding parameters to
wrap this mesh network on a geoid representing earth [39].

IV. ADJUSTMENT OF THE NET — GEODETIC BACK-ENDS

The problem of adjustment of the net is similar to the
graph-based SLAM formulation. In the SLAM notation, the
geodetic mesh network consists of observation towers con-
strained by non-linear measurements. These physical towers
are similar to the unknown state vector x = (x1,...,%X,)"
in the SLAM problem.

The task of the back-end optimizer in geodesy is to find
the best possible configuration of the towers on the surface of
the earth to minimize the sum of errors from all constraints.
All non-linear constraints can be linearized using Taylor
series expansion and stacked into a matrix [26]. The least
squares solution can be computed directly by solving the
least square system. Both, SLAM and geodetic problems
inherently contain non-linear equations constraining a set of
positional nodes. The process of linearizing the constraints
and solving the linearized system is repeated to improve the
solution.

The biggest challenge faced by the geodetic community
over centuries was limited computing power. Even with
the most efficient storage and sparse matrix techniques,
there was no computer available which could solve the full
system of equations as a single problem. Bowie proposed
the first feasible approximation of solving the full system of
equations for creating NAD 27.

A. The Bowie Method

The network of constraints during early geodetic mapping
were built in sections and junctions. Sections are long chain
like traverses which join other sections in junctions. Bowie’s
main insight was that he can approximate the net comprising
of sections by collapsing intersections into a single node and
the sections into a single virtual constraint. This is illustrated
in Figure 3. This much smaller least squares system is solved

to recover the positions of the intersections, which can then
be used to compute the sections independently.

The core steps of the Bowie method consist of separating
the sets of unknowns into segments and junctions. The
junctions act as a small set of separator nodes. The junction
nodes are shown as circles in Figure 3. These are not a
single node but a small subnet of towers, which separates
the sections. All nodes in one junction are optimized together
using least squares adjustment but ignore any inter-junction
measurements. After this optimization, the structure of the
junction does not change, i.e., each node in a junction is
fixed with respect to other nodes in that particular junction.

As a next step, new latitudinal and longitudinal constraints
are created between junctions. This is done by approximating
each section with a single constraint. Each of such single
constraints is a two-dimensional longitude and latitude con-
straint. As a result, each junction turns into a single node and
each section into a single constraint. This leads to a much
smaller but approximate problem, which is optimized using
the full least-squares approach.

The above described steps of the Bowie method are sum-
marized in Alg. 1, see also Adams [1]. The full least squares
problem is not solved by matrix inversion but by a variant
of Gaussian elimination called Doolittle decomposition (see
Wolf [40]). The Doolittle algorithm is a LU matrix decompo-
sition method, which decomposes a matrix column-wise into
a lower triangular and upper triangular matrix. The solution
can be computed using forward and backward substitution
steps as with other matrix decomposition methods as well.

Algorithm 1 Bowie method

1: Separate triangle net into junctions and segments

2: Optimize each junction separately

3: Create new virtual equations between junctions treated as a
single node

4: Solve the abstract system of equations comprising of each
junction as a single node and each section as a single constraint

5: Update the resulting positions of stations in the segments using
the new junction values

In essence, the Bowie method generates new, virtual
constraints from sections. The uncertainty of such a virtual
constraint is not equal to the uncertainty of an individual
measurement in the section. Thus, Bowie introduces a weight
for each virtual measurement. These weights are chosen as
the ratio of the length of the section with respect to the sum
of all the section lengths. Hence, the weights are proportional
to the length of the sections so that the larger proportion of
the error is distributed over long sections compared to shorter
ones.

Another computational trick to lower the efforts is to
use diagonal covariances for the two-dimensional, virtual,
latitude/longitude constraints. This enables to separate the
system of equations for longitude and latitude. This yields
two least squares problems with half of the original size.

The partitioning of the triangular net into junctions and
sections is done manually. Figure 3 illustrates the original
triangle net and Bowie’s approximated net into segments



Fig. 3.

Bowie method as used for NAD 27 triangle net (left) and the resulting approximation (right). Each small circle represent a junction and the

junctions are connected by sections. Given the values of the junctions, the segments are independent of the rest. Courtesy of [35].

and junctions used for NAD 27. In Figure 3, the small
circles represent junctions and all lines connecting junctions
are sections of triangle nets. These sections and junctions
individually represent a subset of the constraints connecting
stations.

To the best of our knowledge, the Bowie method is the first
implementation of a large scale approximate least squares
system. It was effectively used in creating the NAD 27 as the
triangulation nets were build in sections forming large loops.
The Bowie methods exploits this structure. With time, more
triangulation nets have been created yielding a large number
of new loops. In this process, initially new triangulation nets
were not optimized as a whole. They were integrated into
the existing system by keeping the previous positions fixed.
As the network of constraints became even more denser
a complete optimization of the network of constraints was
required. Helmert’s blocking method was chosen for this new
optimization process to optimize the constraints tractably for
creating NAD 83.

B. Helmert Blocking

Helmert proposed the first method for solving the large
optimization problem arising from the triangulation network
in parallel. His strategy, which was proposed in 1880, is
possibly the oldest technique to partition the set of equations
into smaller problems [23], [2]. Helmert observed that by
partitioning the triangle net in a particular way, one can solve
the overall system of equations in parallel. He outlined that
the whole triangle net can be broken into multiple smaller
subnets. All nodes that have constraints only within the same
subnet are called inner nodes and can be eliminated. All
separator-nodes, i.e., those that connect multiple subnets, are
then optimized. The previously-eliminated inner nodes can
be computed independently given the values of the separator
nodes. As a result, the so-formed subnets can be solved in
parallel. Helmert’s blocking method is outlined in Alg. 2 and
is explained more precisely as a mathematical algorithm by
Wolf in [41].

Consider a simple triangle net shown in Figure 4. In
Figure 4(a), each line segment is a constraint and the end

Triangle net Stacked coefficient matrix
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Fig. 4. Helmert blocking in action. The left column shows a toy example of
triangle net. The right column shows the corresponding stacked coefficient
matrix for each net.

of segments represent a physical observation tower. Helmert
observed that if he divides the triangle net into two halves,
for example as illustrated in Figure 4(b), the top half of
the towers will be independent of the bottom half given the
values of the separators as shown in Figure 4(c). Such a
system can be solved using reduced normal equations [41],
[35].

Let us represent the whole system of equations from the
triangle net in Figure 4(a), as:

Ax =b. 3)

This equation can be subdivided into 3 parts in the
following manner:
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Here, A and x, represent the coefficients and unknowns,
arising from the central separator. A; and As are coeffi-
cients of the top and bottom subnets. The coefficient matrix
[As A1 Aj] in Eq. 4 is shown on the right-hand side of
Figure 4(c). The corresponding system of normal equations
is:

Ny Ny Ny Xs bs
NlT N11 O X1 = bl . (5)
NQT 0 N22 X2 b2

The towers in x; do not share any constraints with towers
in xX5. Both, x; and x5 share constraints with x, but not with
each other. The key element in Eq. 5 is the block structure
of Ni; and Nas. The system of equation in Eq. 5 can be
reduced such that:

Nyx, = bsa (6)

where N, is computed as:
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=12
and b, is computed as:

by =bs— > NiN;'0}. (8)
i=1,2
Once N, has been solved, x; and xo can be computed by
solving:

Nixg = by — Nx, 9
N22X2 = b2 - N;TXS. (10)

Moreover, Wolf states that matrices should never be in-
verted for computing Eq. 6, 9, and 10 [41]. Instead, Cholesky
decomposition or Doolittle-based LU decomposition should
be employed. The steps outlined for computing the reduced
normal forms in Eq. 7 and 8 represent the Schur complement.
The inverse computation in this step is trivial if the subnets
result in block diagonal matrices. If not, both Wolf and
Schwarz mention that each of the subnets can themselves
be sparse and can be further sub divided recursively [41],
[35].

Algorithm 2 Helmert Blocking

1: Given a partitioning scheme, establish the normal equations for
each partial subnet separately

2: Eliminate the unknowns for all nodes which do not have
constraints with neighboring partial subnets

3: Established the main system after eliminating all the inner
nodes containing only intra-subnet measurements

4: Solve the main system of equations containing only separator
nodes

5: Solve for inner nodes given the value of separator nodes

Al

Fig. 5. Helmert blocking applied to North America with ten levels. The
legend in the bottom left corner shows progressive levels of partitions. The
first partition, cuts the continent into east-west blocks, whereas the second
cut partitions each half into north-south blocks. Hence, each geographical
block is partitioned into four regions and this method is recursively
performed on each sub-block. Courtesy of [35].

Helmert himself provided simple instructions for creating
subnets and for partitioning the blocks, which is critical
for his method. He first instructed to pick a latitude such
that it partitions all the towers roughly into halves. Next,
a longitude is chosen for each upper and lower half to
partition the Northern and Southern regions into Eastern and
Western partitions. Each obtained geographical rectangular
block is recursively partitioned into four further blocks.
The proposed method is simple but effective, since the
Geodetic triangulation network is built roughly as a planar
graph and the density of the net was approximately similar
across different locations. Helmert’s approach to partitioning
triangle nets also shares resemblance to nested dissection
variable reordering strategies [18] used to efficiently factorize
sparse matrices. The use of variable re-ordering significantly
improves the computation and memory requirements for
matrix decomposition methods [11], [4].

The nested dissection variable reordering scheme was
initially proposed for solving a system of equations for nxn
grid problems arising from finite-element discretization of a
mesh [18]. Helmert’s proposal to divide a triangulation net
recursively along latitudes and longitudes has strong resem-
blance with the nested dissection variable reordering scheme
to minimize fill-in in matrix decomposition methods [6].
It was used by Avila and Tomlin for solving large least
squares using the ILLIAC IV parallel processor for optimiz-
ing geodetic networks [6]. Later, Golub and Plemmons used
the Helmert blocking variable ordering strategy for solving
large system of equations using orthogonal decomposition
techniques such as QR decomposition for the system of
equations arising from the geodetic network [19].

In sum, the Bowie method is an approximation of Helmert
Blocking. The approximation uses single level subnets and
an approximate optimization of the junction nodes. The
optimization of the highest level in Helmert Blocking con-
sists of junction nodes and is computed via reduced normal
equations. In contrast to that, the Bowie method uses virtual
constraints at the highest level. The main difference is that
the system of equations created by the virtual constraints



is much smaller and sparser and hence easier to optimize
than the full set of reduced normals as in the exact Helmert
blocking method.

Although graph partitioning and submapping has been
frequently used in robotics, to the best of our knowledge,
Helmert’ method has not been referenced in the robot
mapping community—only Triggs et al. [38] mention it as
an optimization procedure in their bundle adjustment survey.

V. RELATION TO SLAM BACK-ENDS

The SLAM community started using sparse linear algebra
and matrix decomposition methods recently [12], [28], [25].
In contrast to that, the geodetic scholars were using LU
and Cholesky decomposition for a long time—Cholesky
decomposition was developed in the early 1900s for geodesy
and map building. This section aims at highlighting some
of the similarities between the methods developed by both
communities.

Grisetti et al. [21] propose an efficient hierarchical multi-
level method for optimizing pose-graphs. The higher the level
in the hierarchy, the smaller the pose-graph. At each level, a
subgraph from a lower level is represented by a single node
on the higher level. The optimization is primarily carried
out at the higher levels and only propagated down to the
lower level if there is a significant update to the pose of
a node. Each edge in the higher level is computed via a
new deduced virtual measurement, which is created after a
local optimization. The gain in speed by this method results
from the fact that computationally expensive optimizations
are only performed when the pose of a node in the coarse
representation gets affected more than a certain threshold.

The virtual measurements created by Grisetti et al. are
from the idea itself similar to those in the Bowie method
explained in Section IV-A. The Bowie method creates a two-
level hierarchy instead of the multiple levels as in [21]. Both
methods use a single node from a dense sub-graph in the
higher, coarser level and add a virtual deduced measurement
between the smaller new problem instances. A difference is
that given a geodetic network consisting of sections, each
edge in the Bowie method represents a sub-graph whereas
in the hierarchical approach of Grisetti et al., only nodes
represent sub-graphs. Furthermore, Grisetti et al. compute
the uncertainty of a virtual constraint explicitly.

Also Ni et al. propose back-ends, which divide the original
problem into multiple smaller sub problems [31], [30]. These
smaller problems are then optimized in parallel. The first
approach [31], partitions the problem into a single level
of sub-maps, while [30] partitions each map recursively
multiple times. The speed-up is mainly due to caching the
linearization result of each subgraph. In both methods, all
nodes in a subgraph are expressed with respect to a single
base node. This allows for efficiently re-using the lineariza-
tion of the constraints within each subgraph. This insight
results in a reduction of the total computation time. Boundary
nodes and constraints, which connect multiple subgraphs,
need to recomputed at each iteration, while cached results
for constraints concerning nodes inside a subgraph can be

reused. The methods of Ni et al. would result in a batch
solution if each non-linear constraint within a subgraph is
re-linearized at every iteration, but they show experimentally
that by not doing so, a high speed-up in optimization time
is achieved at the expense of small errors.

The sub-maps methods proposed by Ni et al. show strong
similarities to Helmert’s approach of partitioning the triangle
nets into subnets. The idea of anchoring sub-maps in [30] has
a similar motivation as Bowie’s idea for anchoring junctions
and moving them as a whole by shifting the anchor nodes
and not re-optimizing each subgraph. The recursive nested-
dissection algorithm, which is at the heart of Ni et al.’s sub-
map-based methods, is similar to Helmert’s strategy of re-
cursively partitioning a planar triangulation net [19]. Further-
more, the out-of-core parallel Cholesky decomposition-based
non-linear solver for geodetic mapping proposed by Avila
and Tomlin in 1979 [6] uses Helmert blocking and is thus
strongly connected to [30]. Note, however, that the geodetic
community was generating the partitioning manually with
domain knowledge and that the triangle-nets have a simpler
and more planar structure than typical SLAM graphs.

VI. CHALLENGES IN ROBOTIC MAPPING

All though there are similarities between the problems
of both communities, it is also important to highlight the
additional challenges that autonomous robots, which rely
on working SLAM solutions, face compared to geodetic
mapping.

First, SLAM systems are fully automated while geode-
tic mapping inherently involves humans at all levels of
the process. It is difficult for automated front-end data-
association methods to distinguish between visually similar
but physically different places and this is likely to occur, for
example, in large man-made buildings. Perceptual aliasing
creates false constraints, which often introduces errors in
the localization and map building process. Data association
errors in geodetic survey can be assumed to be more local.

Second, the quality of the initial guess is often differ-
ent. The initial configurations that is available for geodetic
triangle networks are typically substantially better than the
pose initializations of typical wheeled robots using odometry
as well as flying or walking robots. A good initial guess
simplifies of even enables the use of polygon filling and other
types of approximations.

Third, the geodetic triangle networks are almost planar,
while most SLAM graphs are not. Helmert’s simple parti-
tioning scheme of segmenting along latitudes and longitudes
works only because the graphs are almost planar. It has been
shown that for planar graphs, recursive nested dissection [18]
is optimal. In [27], the authors prove that planar or approx-
imately planar SLAM graphs can be optimized in O(n!-%)
by using the nested dissection reordering. Comparable results
can be expected for Helmert’s Blocking strategy given their
similarity. The way most modern SLAM methods work,
however, leads to a highly non-planar graph.



VII. CONCLUSION

This paper provides a survey of two geodetic mapping
methods and aims at providing a geodetic perspective on
SLAM. We showed that both fields share similarities when
it comes to the error minimization tasks. There are, however,
also differences: geodetic triangular nets have a simpler
structure, which can be exploited in the optimization, meth-
ods for robotics must be autonomous while the geodetic
surveys always have humans in the loop, and often the
geodetic community had a better initial configuration to
begin with. The central motivation for this paper is to connect
both fields and to enable future synergies among them.

SLAM researchers have often gone back to the graph
theory and sparse linear algebra community for efficient
algorithms. It is probably worth to also look into the geodetic
mapping literature given that they addressed large-scale error
minimization and developed highly innovative solutions to
solve them.
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