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Abstract—In this paper we address the problem of cooperative
localization and target tracking with a team of moving robots.
We model the problem as a least squares minimization problem
and show that this problem can be efficiently solved using
sparse optimization methods. To achieve this, we represent the
problem as a graph, where the nodes are robot and target
poses at individual time-steps and the edges are their relative
measurements. Static landmarks at known position are used to
define a common reference frame for the robots and the targets.
In this way, we mitigate the risk of using measurements and state
estimates more than once, since all the relative measurements
are i.i.d. and no marginalization is performed. Experiments
performed using a set of real robots show higher accuracy
compared to a Kalman filter.

I. INTRODUCTION

Robot localization and target tracking have been areas of
extensive research in mobile robotics. When using mobile
platforms, these two problems are entangled together since
the position of the robots in the environment influences the
estimated position of the targets due to the absence of absolute
measurements.

Several techniques based on probabilistic filtering have been
proposed to address these two problems simultaneously. Single
robot approaches have been extensively used, especially for
tracking people [1], [2]. Multi-robot teams have also received
a lot of attention in addressing this problem in a cooperative
fashion, due to the better performance in terms of accuracy
and efficiency [3], [4], [5]. The major idea behind cooperative
localization and tracking is to explicitly share information
among the robots. The idea is to combine localization esti-
mates and target observations to enrich the individual robot
beliefs. When sharing robot beliefs, care has to be taken to
measure the reliability of the sensed information [6], [7] and
to avoid reusing information [8], [4], as this might lead to
overconfidence and filter divergence.

All the aforementioned techniques rely on the use of a
probabilistic filter. In this paper, we show that least squares
minimization approaches can provide more accurate results
than filtering methods without any increase in computation
time. We formalize the multi-robot cooperative localization
and tracking problem within a graph optimization framework,
where the tracked objects are treated as a moving landmarks
and their states (positions and velocities) are included in the
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parameters to be estimated. The basic idea of having moving
landmarks is not new and has occasionally appeared in the
literature [9], [10]. However, the concept has been mainly
used to separate static from dynamic landmarks (e.g., a piece
of furniture that could be moved around in the office). The
novelty of the approach described here lies in the use of
dynamic objects as means to improve the localization of the
robot team and the targets. Multiple observations of the targets
correlate with the estimate of the poses of the robots, thus
improving the accuracy of each individual robot estimate.
More specifically our approach of multi-robot moving land-
mark graph optimization (MMG-O) consists of the following
steps:

• We create a graph representing poses of the robots and
positions and velocities of the targets (nodes) and the
observations made by the robots (edges).

• We stack all the observations together to create a single
non-linear least squares error function.

• We use a state-of-the-art non-linear least squares
solver [11] to calculate the minimum of this error func-
tion.

The rest of this paper is organized as follows. After discus-
sion related work in the following section, Section III provides
a brief overview of graph based optimization and an in-detail
description of our MMG-O approach. In Section IV we then
present our experimental results obtained with real robots.

II. RELATED WORK

In the previous decade, several techniques for data fusion
and cooperation for multi-robot systems have been investi-
gated. Ong et al. [3] introduce a decentralized particle filter
(DPF) where the particles are transformed into Gaussian mix-
ture models for communication and fusion. It ensures reduced
bandwidth usage and at the same time provides to the whole
team a summary of the individual beliefs of the robots. The ap-
proach has been later extended [12] to account for correlations
between measurements. Those correlations typically arise from
the common past information being communicated among the
robots in a team. Gohring and Burkhard [5] present a novel
approach for cooperative target tracking and localization using
visual relations between static and dynamic objects. These
relations are independent from the position of the robots in
the environment and thus resilient to localization errors. The
method, however, is limited to small or limited environments
or open space, since the robots need to perceive the static
objects continuously to extract the relations. In our previous



work [7] we modified the particle filter to handle complete
and partial occlusions as well as unreliable measurements.

Mourikis and Roumeliotis [13] presented a performance
analysis for different existing cooperative localization meth-
ods. They derive an upper bound for the position uncer-
tainties as a function of the sensors characteristics and the
structure of the graph of relative measurements. They finally
demonstrate that an EKF on the joint space of target and
robot positions leads to improved accuracy. Whereas our
approach is somewhat similar to theirs, the major difference
lies in the full least squares formulation instead of a filtering
approach. Howard et al. [14] introduced a maximum likelihood
estimation approach for multi-robot cooperative localization.
They combine all the relative measurements between robots in
a least squares formulation and use numerical optimization to
find their position. We extend their work by including moving
targets in the least squares problem. The idea of using team-
mates as landmarks was further developed by Martinelli et
al. [15], who used an extended Kalman filter where relative
robot observations are treated as additional measurements in
the filter. Bahr et al. [8] propose a solution for inconsistent
estimates that occur due to re-sharing of old data among robots
in a team while performing cooperative localization. Jung et
al. [16] explore an active cooperative target tracking approach,
where the objective becomes to control the robot team to
move to the next best sensing locations. The approach has
been extended by Zhou and Roumeliotis [4] by reducing the
complexity from being exponential to linear w.r.t. the number
of robots, while keeping a good target accuracy.

Similar ideas for simultaneous localization and tracking
have also been extensively studied in a single robot context.
A conditional particle filter for localizing a mobile robot in a
known environment while at the same time tracking multiple
people was presented by Montemerlo et al. [2]. This work has
later been extended by Schulz et al. [1], where a sample-based
joint probabilistic data association filters have been presented
to deal with uncertainty in data association.

III. MULTI-ROBOT MOVING LANDMARK GRAPH
OPTIMIZATION

In this paper, we follow the notation of Kümmerle et al. [11]
to provide a mathematical description of the MMG-O problem
in terms of least squares minimization of a sparse system.
Let N be the number of robots tracking O objects, treated
as a moving landmarks, for T time-steps in an environment
containing L static landmarks. Note that, without loss of
generality, the formulation can easily be extended for unknown
landmarks, given known data associations.

Let xn
i be the pose of the nth robot in the team at the

ith time-step, oo
i the position and velocity of the oth object

at time-step i and ll the position of the lth landmark. Let
zi,i+1,n be the mean and Ωi,i+1,n be the information matrix
of a virtual measurement between the pose at time i and i+1
of robot n. This can be either coming from odometry or local
matching algorithms. Let ẑr(xn

i ,x
n
i+1) be the prediction of the

measurement between them. The error term er
i,i+1,n described

Fig. 1. An example of the pose-graph representation of the MMG-O depicting
the nth robot in the team, the oth object (moving landmark), two static
landmarks numbered 1 and 2 and the edges connecting all these nodes.

by the edge is

er
i,i+1,n = zi,i+1,n − ẑr(xn

i ,x
n
i+1). (1)

Let zi,l,n be the mean and Ωi,l,n be the information matrix
of a virtual measurement of the landmark l from robot n at
time i. Let ẑl(xn

i , l
l) be the prediction of the measurement.

The error term el
i,l,n of the edge is

el
i,l,n = zi,l,n − ẑl(xn

i , l
l). (2)

Similarly, the error el
i,o,n between the object o and the robot

n at time i is

el
i,o,n = zi,o,n − ẑl(xn

i ,o
o
i ). (3)

The motion of the objects is modeled using a constant velocity
motion model with random acceleration, which leads to the
following term eo

i,i+1,o for the edge between consecutive
object positions:

eo
i,i+1,o = oo

i+1 −Aoo
i − ν, (4)

where A is the matrix modeling discrete-time constant velocity
and ν is a zero mean error with information matrix Ωi,i+1,o.

Now let x be the vector obtained by stacking all the
variables. The solution of the MMG-O is the value x∗ that
minimizes the following function

x∗ = argmin
x

F(x), (5)



where

F(x) =

N∑
n=1

T−1∑
i=1
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+
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eo
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>Ωo
i,i+1,oe

o
i,i+1,o. (6)

Here, Cl and Co are respectively the set of all the observations
between any robot and any static or moving landmark. Fig. 1
provides a visual explanation on how the graph is built. While
green nodes represent landmark locations, black nodes indicate
the robot poses and red nodes stand for target positions.
The red arrows indicate the motion of the individual targets.
Robot observations of static and moving objects are shown
respectively with green and blue arrows.

The formulation of the final objective function (6) is similar
to the one obtained by Grisetti et al. [17] and Kümmerle et
al. [11]. Hence, following their procedure, we can approximate
it using a Taylor expansion around an initial guess for x and
applying error minimization via iterative local linearizations
or least squares minimization on a manifold.

IV. EXPERIMENTS AND RESULTS

We implemented the MMG-O approach using the g2o
framework and applied it within a RoboCup Soccer Middle
Sized League scenario, where the primary requisites for a
team of robots successfully playing soccer are : i) accurate
localization for the individual robots and ii) continuous track-
ing of the soccer ball. The localization and/or ball tracking
failures in such a scenario owe much to the field size and
symmetry, limited sensor range, occlusions as well as dynamic
and fast movements of the robots and/or the ball. This makes
the robot soccer scenario an interesting and suitable test bed
for evaluating the performance of our MMG-O approach.

A. Test Bed and Experimental Scenario

We used a team of four robots (OMNI1 to OMNI4)
equipped with a three-wheeled omni directional drive and a
dioptric vision system consisting of a fish-eye lens facing
downwards (Fig. 2(a)). Each camera has of resolution of
640x480 pixels. The team of robots was placed in one half
of the field (Fig. 2(b)) and was controlled remotely by human
users. An orange colored soccer ball was manually moved
around in the field. The odometry data of the robots and
the images acquired from their cameras were logged on a
laptop mounted on each individual robot and used for the
experiments.

The experiment lasted for approximately 6 minutes. The
odometry data was saved at 40 Hz and the images were
stored at approximately 25 Hz. A pair of overhead stereo

(b)
(b)

Fig. 2. An OMNI robot (a) and a typical scenario on the soccer field (b).

cameras were used to obtain the ground truth positions of
the robots and the ball at 25 Hz. Due to the system used to
measure the ground truth, only the position of the ball and
the robots could be recorded and neither their orientations nor
their velocities. All the observations and the ground-truth data
were time-synchronized. A pre-processing step was performed
on the images saved by the robots to compute the observations
(range and bearing) of six known static landmarks and one
orange ball. The graph was initialized using the odometry
measurements and the ball observations.

We evaluated the result provided by MMG-O against the
ground-truth and compared it with an EKF for cooperative
localization and object tracking, similar to the one presented
by Mourikis and Roumeliotis [13]. In the EKF, the state
vector estimated at any time-step i consists of all the poses
of the robots (x1

i , . . . ,x
N
i )
> ∈ R3×N and the 2D position

and velocity oball
i ∈ R4 of the ball. In the prediction step

we used the odometry information for the robot poses and
for the ball positions we implemented a constant velocity
and zero mean white Gaussian acceleration noise model [18].
In the update step, observations of static landmarks and the
ball,coming from each robot, are synchronized to obtain a joint
measurement vector.

In subsection IV-B we present the results of the MMG-
O compared with the EKF on the data from the two robots
OMNI1 and OMNI2 for localization and ball tracking. The
aim of this experiment is to present a proof of concept of
the MMG-O and the higher accuracy achieved by it compared
with the EKF based approach.

In subsection IV-C we extended the comparison to all the
four robots OMNI1 to OMNI4. The aim here is to show
the scalability of our approach while still achieving a higher
degree of accuracy over the EKF=based approach.

In the video accompanying this paper we present the re-
sults of the MMG-O experiment overlaid on the stream of
images from the stereo camera used to compute the ground-
truth. Each robot has a uniquely colored plate placed on
top of it (OMNI1:Magenta, OMNI2:Brown, OMNI3:Red and
OMNI4:Blue). The stereo camera uses these plates for detect-
ing the positions of the robots. The ground-truth is marked
in the video frames with an overlaid black circle around the
plates on top of the robots and the orange ball except for the
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OMNI 2 (Brown hat robot) Localization error plot (MMG-O)
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Orange ball tracking error plot (MMG-O)
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Fig. 3. Experiment with two robots: The X-axis in these plots represent the number of time-steps between two consecutive frames. The Y-axis represents
the root mean square error between the ground-truth and the MMG-O (left) or EKF (right) estimate of the robots and the ball. Note that only the time-steps
when the ground-truth was available are shown in the plots.

TABLE I
STATISTICAL ESTIMATES OF THE 2 ROBOTS EXPERIMENT RESULTS.

MMG-O Cooperative EKF
Mean Median Variance Mean Median Variance
(m) (m) (m2) (m) (m) (m2)

OMNI1 0.069 0.066 0.001 0.274 0.123 0.272
OMNI2 0.147 0.127 0.006 0.294 0.261 0.077

Ball 0.426 0.240 0.314 0.583 0.356 0.357

instances during which the markers of the robots or the ball
could not be detected due to occlusions. The estimates of the
robot positions are marked in the video frames by overlaying
a circle of the same color as the plate on to of the robot. These
circles are centered at the position estimates for the particular
robot and are placed at the same height as of the plate on
top of the robot from the ground level to facilitate easy visual
comparison. The estimate of the orientations of the robots are
indicated by a radial line from the center of the circle. The
position estimates of the orange ball are marked by an orange
circle overlaid to the video frames.

B. Experiment with Two Robots

Here, we present the results obtained by applying MMG-O
and the EKF to the data of OMNI1 and OMNI2. The green-

colored plots in the left column of Fig. 3 display the error of
the positions of the robots and the ball as estimated by MMG-
O with respect to the ground-truth, while the red-colored plots
in the right column of Fig. 3 display the respective errors of
the EKF based approach. Table I shows the mean and variance
of the errors presented in Fig. 3.

From Fig. 3 and Table I we can infer that MMG-O is able
to reduce the mean error in position estimates for OMNI1 by
a factor of 4, for OMNI2 by a factor of 2, and for the orange
ball by a factor of 1.3 compared to the EKF-based approach.
Please note that the difference in accuracy is mainly due to
the different path of the two robots, showing the benefit of the
iterative relinearization of MMG-O.

C. Experiment with Four Robots

The extension of the MMG-O to the four robots case shows
more interesting results. Figure 4 presents the error plots of
all the four robots and the orange ball for both the MMG-O
(green-colored plots on the left column) and the EKF-based
approach (red-colored plots on the right column). In the EKF-
based approach, the robots (most notably OMNI4) often tend
to loose their position due to noisy observations and odome-
try measurements. However, as soon as better measurements
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OMNI 3 (Red hat robot) Localization error plot (MMG-O)
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Fig. 4. Experiment with four robots: The X-axis in these plots represent the number of time-steps between two consecutive frames. The Y-axis represents
the root mean square error between the ground-truth and the MMG-O (left) or EKF (right) estimate of the robots and the ball. Note that only the time-steps
when the ground-truth was available are shown in the plots.

arrive, the filter is updated correctly and the error is reduced.
The effect of noise is mitigated in MMG-O thanks to the
iterative re-linearizations and the batch processing. This can
be observed in the error plots for the EKF-based approach

in Fig. 4, when compared to MMG-O. The latter is able to
maintain an acceptable estimate for all these robots even in the
case of highly noisy measurements and observations. From
Fig. 4 and Table II we can infer that MMG-O outperforms



TABLE II
STATISTICAL ESTIMATES FOR THE EXPERIMENTS WITH FOUR ROBOTS.

MMG-O Cooperative EKF
Mean Median Variance Mean Median Variance
(m) (m) (m2) (m) (m) (m2)

OMNI1 0.077 0.070 0.002 0.298 0.118 0.295
OMNI2 0.141 0.120 0.006 0.296 0.265 0.075
OMNI3 0.090 0.086 0.003 0.166 0.124 0.024
OMNI4 0.267 0.221 0.030 0.493 0.276 0.327

Ball 0.399 0.226 0.327 0.528 0.315 0.334

TABLE III
COMPARISON OF THE TOTAL COMPUTATION TIME TAKEN BY MMG-O

AND THE COOPERATIVE EKF APPROACH ON THE FULL DATASET.

MMG-O EKF
2 Robot Exp. 13.75s 13.38s
4 Robot Exp. 19.38s 137.95s

the EKF-based approach by a factor of 3.8 for OMNI1, 2.1
for OMNI2, 1.8 for OMNI3, 1.8 for OMNI4 and 1.3 for the
orange ball.

D. Computation Time Comparison

For a fair comparison of the computation time, we ran
both, the MMG-O and the EKF-based approach, on the
same machine (Quad-Core Intel(R) Core(TM) i5 CPU 750
with 2.67GHz and 8GB RAM). Table III presents the total
time taken by both implementations on the same dataset. For
MMG-O, this reflects the total time taken by the g2o for the
whole graph of the dataset, while it shows the total time
taken to iterate once over the whole dataset for the EKF-
based approach. The graph for MMG-O consists of 50.000
nodes in the case of four robots and 30.000 in the case
of two robots, requiring respectively 87 and 60 iterations to
converge. By exploiting the sparsity of the MMG-O graph,
our approach is able to scale linearly with respect to the
number of robots and targets, while in the EKF formulation the
required computation grows quadratically. This makes the use
of MMG-O an appealing alternative to EKF for cooperative
localization and tracking, being MMG-O more accurate and
more scalable with increasing numbers of robots.

V. CONCLUSION

In this paper we presented a novel approach for cooperative
localization of a team of robots while jointly tracking moving
targets. We model the problem as graph-based optimization,
where the poses of the robots, of the moving targets and of
the static landmarks are jointly estimated in a least squares
minimization framework. We presented a mathematical for-
mulation of this problem described an implementation using
g2o. We tested our approach in a robot soccer scenario and
compared it to an EKF-based approach. The results show that
our approach leads to increased accuracy in the estimation
and to an improved scalability in scenarios in which a higher
number of robots is required. In the future, we plan to extend

our approach so that it can also deal with unknown data
associations and heterogeneous robots with different sensors.
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