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PADLoC: LiDAR-Based Deep Loop Closure

Detection and Registration Using Panoptic Attention

José Arce1, Niclas Vödisch1, Daniele Cattaneo1, Wolfram Burgard2, and Abhinav Valada1

Abstract—A key component of graph-based SLAM systems is
the ability to detect loop closures in a trajectory to reduce the
drift accumulated over time from the odometry. Most LiDAR-
based methods achieve this goal by using only the geometric
information, disregarding the semantics of the scene. In this
work, we introduce PADLoC for joint loop closure detection
and registration in LiDAR-based SLAM frameworks. We pro-
pose a novel transformer-based head for point cloud matching
and registration, and to leverage panoptic information during
training time. In particular, we propose a novel loss function
that reframes the matching problem as a classification task for
the semantic labels and as a graph connectivity assignment
for the instance labels. During inference, PADLoC does not
require panoptic annotations, making it more versatile than
other methods. Additionally, we show that using two shared
matching and registration heads with their source and target
inputs swapped increases the overall performance by enforcing
forward-backward consistency. We perform extensive evaluations
of PADLoC on multiple real-world datasets demonstrating that it
achieves state-of-the-art results. The code of our work is publicly
available at http://padloc.cs.uni-freiburg.de.

Index Terms—SLAM, Deep Learning Methods, Loop Closure
Detection, Point Cloud Registration, LiDAR

I. INTRODUCTION

S
IMULTANEOUS Localization and Mapping (SLAM) is a

core task of autonomous mobile robots. Typically, SLAM

approaches consist of two steps: alignment of consecutive

measurements, e.g., from wheel odometry, followed by loop

closure detection and registration. Reliable loop closure de-

tection enables a robot to recognize places it has seen before

to optimize its world representation and belief of its current

position, reducing the drift over time. Thus, it is considered

a fundamental component of SLAM systems. Many SLAM

systems have been proposed for different sensor modalities

including cameras [1] and LiDARs [2]. While vision-based

methods fail in challenging lighting conditions such as illumi-

nation changes, LiDAR-based approaches are more robust to

such alterations and provide a more accurate representation of

the environment. In this work, we address the joint problem of

loop closure detection and map registration for LiDAR-based
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Fig. 1. We propose PADLoC for joint loop closure detection (green areas on
the map) and point cloud registration in LiDAR-based SLAM. In addition to
geometric information, we leverage panoptic segmentation annotations during
training to facilitate more robust point matching. During inference, PADLoC
does not require any panoptic information.

SLAM. A high-level overview of our approach is depicted

in Fig. 1.

Similar to other fields, learning-based approaches have

started to replace handcrafted methods [3], [4]. Typically, deep

neural networks predict point correspondences which are then

used in differential singular value decomposition (SVD) to

compute the transformation between two point clouds [5], [6].

Motivated by the success of transformers in natural language

processing and computer vision tasks, attention-based architec-

tures were recently introduced for point cloud registration [6],

[7], [8] to encode context across points. While existing works

do not consider the semantic meaning of the different inputs to

a transformer cell, i.e., queries, keys, and values, we explicitly

take advantage of the internal structure by feeding in abstract

features and raw points separately.

Although geometric information suffices for classical point

cloud registration such as Iterative Closest Point (ICP) [9],

they can be further stabilized by integrating semantic infor-

mation [2], [10], [11]. Inspired by recent semantic mapping

approaches [10], [12] and methods that exploit panoptic infor-

mation for vision-based loop closure detection [13], we lever-

age panoptic segmentation of point clouds in this work. Unlike

related methods, our approach requires panoptic labels only

while training but not during deployment, making it more ver-

satile. We evaluate the loop closure detection and point cloud
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registration performance on three real-world autonomous driv-

ing datasets, namely, KITTI [14], Ford campus [15], and an

in-house dataset recorded in Freiburg, Germany. We compare

against both state-of-the-art handcrafted and deep learning-

based methods and demonstrate that PADLoC achieves state-

of-the-art performance. We also present several ablation stud-

ies on the different components of our approach validating our

architectural design choices.

The main contributions of this work are as follows:

1) We propose PADLoC, a transformer encoder architecture

for point cloud matching and registration. Unlike existing

methods, we use separate inputs as keys, values, and

queries effectively, exploiting the transformer structure.

2) We define a novel loss function that leverages panoptic

information for registration. We further propose formu-

lating both geometric and panoptic registration losses as

bidirectional functions that greatly improve performance.

3) We study the effect of multiple weighting methods in

SVD to enhance point matching.

4) We extensively evaluate our proposed approach and

compare it to other point cloud matching and registra-

tion methods, using two openly available datasets and

in-house data recorded in Freiburg, Germany.

5) We release our code and the trained models at

http://padloc.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we first provide an overview of LiDAR-

based loop closure detection techniques for SLAM, followed

by various methods for point cloud registration, and finally

describe approaches that leverage semantic segmentation for

either task.

Loop Closure Detection: Traditionally, handcrafted methods

for LiDAR loop closure detection can be categorized into

local feature-based and global feature-based methods. Inspired

by the success of local feature-based methods in images,

approaches from the first category design similar descriptors

and adapt them to 3D point cloud data. 3D keypoint descriptors

such as Fast Point Feature Histograms (FPFH) [16] and

Normal-Aligned Radial Features (NARF) [17] are used to

extract local features, which are then aggregated in a bag-of-

word model to detect loop closures. More recently, HOPN [18]

exploits a bird’s-eye view (BEV) representation and normal

information to increase robustness to noise and viewpoint

changes. Global feature-based approaches, on the other hand,

summarize the whole point cloud into a single fingerprint,

which is then compared against the fingerprints from past

frames to detect loops. The M2DP [19] descriptor projects

the point cloud into multiple 2D planes and combines density

information computed on each plane into a global descriptor.

Scan Context [20] combines a polar coordinate representation

with partitioning to generate an image as a global descriptor.

Subsequent works extended this method by adding additional

information such as intensity [21] and semantic data [22].

Recently, many deep learning-based approaches have been

proposed to overcome some of the limitations of handcrafted

methods. PointNetVLAD [23] is built on top of the Point-

Net [24] architecture and generates a compact descriptor.

OverlapNet [25] projects the point cloud into a range image

and predicts the overlap and the yaw misalignment between a

pair of frames. To increase viewpoint robustness and to reduce

inference time, OverlapTransformer [26] adapts OverlapNet

by including a transformer module. In this work, we build

upon LCDNet [5] that uses learning-based feature extraction

to generate global descriptors. LCDNet significantly improves

loop closure in challenging conditions, such as reverse loops

and, unlike other methods, does not require an ad-hoc function

to compare two global descriptors.

Point Cloud Registration: Standard techniques for point cloud

registration can be broadly classified into two main categories.

The first category comprises the Iterative Closest Point (ICP)

algorithm [9] and its variants [10], [27]. These methods require

an initial guess on the transformation and then iteratively al-

ternate between finding matches between points by exploiting

some heuristics and estimating the transformation based on

these matches. Methods of the second category use a two-

stage approach. They first extract local point features, e.g.,

FPFH [16], and then regress the transformation using robust

estimators such as RANSAC [28]. While methods of the first

category are prone to get stuck in local minima if the provided

initial guess is not accurate enough, approaches of the second

category are sensitive to noise and incorrect matches. Many

deep learning-based approaches have also been proposed to

solve the point cloud registration task. PointNetLK [29] is

a pioneering work that combines an architecture inspired by

PointNet [24] and a modified Lucas-Kanade algorithm to

iteratively improve the registration. Inspired by the success

of transformers in other fields, Deep Closest Point [6] uses an

attention-based module to predict soft matches between two

point clouds, which are fed to a differentiable SVD layer to

infer a rigid transformation. Following the same idea, both

GeoTransformer [7] and REGTR [8] directly learn to predict

point correspondences using both self and cross-attention. Our

previous work LCDNet [5] combines a state-of-the-art feature

extraction architecture with a place recognition head and a

relative pose head for simultaneous loop closure detection and

point cloud registration. In this work, we adapt LCDNet [5]

by integrating a transformer-based registration and matching

module.

Semantic-Aided Mapping and Localization: Only a handful

of works have proposed to leverage semantic information for

large-scale mapping and localization [10], [30], and particu-

larly for loop closure detection. Based on semantic segmen-

tation, SuMa++ [10] filters dynamic objects from a LiDAR-

based map and extends the ICP algorithm with additional

semantic constraints. While SuMa++ does not utilize semantic

information for loop closure detection, RINet [31] explicitly

addresses LiDAR-based place recognition via a rotation in-

variant global descriptor combining semantic and geometric

information. For the same task, SGPR [11] builds a graph

representation of point clouds, which are enriched by both

semantic and instance segmentation and perform graph sim-

ilarity matching. SA-LOAM [2] integrates a semantic-aided

variant of ICP into the popular LOAM pipeline for point cloud

registration. To address loop closure, it uses a similar graph

http://padloc.cs.uni-freiburg.de
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Fig. 2. Overview of our proposed PADLoC architecture for joint loop closure detection and point cloud registration. It consists of a shared feature extractor
(green) followed by a global descriptor head (blue) for loop closure detection and a registration and matching module (orange) to estimate the 6-DoF transform
between two point clouds (red). To train the global descriptor, we use a triplet loss (purple) that compares the anchor point cloud with a positive and negative
sample. For training the registration module, we leverage losses (purple) based on both geometric and panoptic information. Note that during inference, no
panoptic annotations are required, making PADLoC more versatile than other methods.

representation as Kong et al. [11]. SV-Loop [13] is a loop

closure detection method for vision-based SLAM. It separately

proposes loop closure candidates based on raw images and

panoptic segmentation maps, which are then fused to extract

the most feasible candidates. In our approach, we exploit

panoptic annotations of point clouds while predicting both

loop closure detection and point cloud registration. Addition-

ally, we only utilize them during the training process but not

for deployment, making the method more versatile.

III. TECHNICAL APPROACH

In this section, we introduce our novel PADLoC architecture

for joint loop closure detection and point cloud registration.

First, we detail the overall approach comprising the modules

shown in Fig. 2. We then describe the loss functions that we

employ, including our proposed loss that leverages panoptic

annotations of point clouds.

A. Model Architecture

In this section, we describe the individual components

of the PADLoC architecture. We build upon our previously

proposed LCDNet [5], where instead of using a differentiable

approximation of the optimal transport to obtain point matches,

we propose to leverage the cross-attention matrices of trans-

formers. The learnable keys, queries, and values weights yield

a better latent representation of the features, and thus more

reliable matches. As depicted in Fig. 2, the overall PADLoC

architecture consists of three modules: feature extraction, loop

closure detection, and point cloud registration. During training,

we employ a triplet-based training scheme by feeding in

an anchor point cloud along with a positive sample of a

loop closure and a negative sample. Unlike other methods

and as shown in Fig. 3, PADLoC does not require panoptic

annotations during inference.

Feature Extraction: The feature extraction backbone converts

raw input scans into a high-dimensional embedding that is
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Corresponding
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Registration &
matching module
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Fig. 3. During inference, PADLoC does not require panoptic annotations
to extract features. To detect a loop closure, we perform a nearest neighbor
search in the global descriptor space. If a loop is found, the 3D transformation
is computed using the registration and matching module.

used as a common input for both loop closure detection and

point cloud registration. It effectively exploits global and local

contexts and is built upon the PV-RCNN architecture [32].

In detail, a point cloud P, comprising 3D coordinates and

reflectance values, is discretized into a voxel grid which is then

passed through four sparse 3D convolutional layers to generate

the feature maps at different resolutions. The final feature map

is then stacked to form a BEV feature map. Additionally, the

original point cloud is downsampled using the Farthest Point

Sampling (FPS) algorithm to uniformly select n keypoints.

The feature vector of each sampled keypoint is assembled

by combining the feature maps from each convolutional layer

in a neighborhood of the sampled keypoint using the Voxel

Set Abstraction module [32]. The raw input of each sampled

keypoint is also appended to each feature vector, along with

the corresponding entry in the BEV feature map. Finally, these

intermediate features are fed through a multilayer perceptron

to obtain the final feature vector for each sampled point.

This module thus outputs the sampled keypoints Q and the

corresponding features F.

Loop Closure Detection: The global descriptor module of

PADLoC further encodes the previously extracted features to

perform loop closure detection. For this task, we employ the

NetVLAD layer [33] to convert the feature vectors F of the
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Fig. 4. The matching module consists of a transformer encoder that takes
the extracted features of the source keypoints Fs as query, the features of
the target keypoints Ft as key, and the corresponding target keypoints Qt as

value. It outputs both soft correspondences M̂
t
s and projected target points

Q̂t along with confidence weights ŵM . The latter is fed together with the
source keypoints Qs to a registration module that performs weighted SVD

to estimate the final transform Ĥ
t
s.

anchor, the positive, and the negative points to their respective

final descriptor D. In detail, NetVLAD learns k clusters

along with corresponding descriptors, which are aggregated

in a single descriptor v for the entire point cloud. The final

descriptors D of length g are then obtained via a context gating

layer. This learnable pooling operation with weights WG and

bias bG is defined as

D = σ
(
WG · v + bG

)
⊙ v, (1)

where σ(·) refers to the logistic sigmoid function and ⊙
denotes the element-wise multiplication.

During inference, the descriptors are stored in such a man-

ner that allows for efficient querying of the nearest neighbor

in descriptor space. If the distance between the descriptor of

the current scan and its nearest neighbor is below a predefined

threshold, they are considered to form a loop closure. To avoid

matching consecutive scans, we introduce a small temporal

distance between the current scan and potential neighbors.

Point Matching: The matching module shown in Fig. 4 predicts

soft correspondences M̂ t
s between keypoints Qs and Qt of a

source point cloud s and a target point cloud t, respectively.

Additionally, it outputs projected target coordinates Q̂t which

are linear combinations of the original target coordinates with

a one-to-one pairing with the points of the source set and a

confidence weight ŵM for each of these matches. Inspired

by the success of transformers in related tasks, we propose

a novel architecture that performs cross-attention directly on

the encoder part, obviating the need for a decoder by feeding

independent inputs for the queries, keys, and values.

Q̂t = WQ · TEL
(
Fs,Ft,Qt

)
+ bQ, (2)

where TEL(q, k, v) is a transformer encoder layer, as defined

in [34], but applied to independent query q, key k, and value

v inputs. WQ ∈ R
3×f and bQ ∈ R

3 are learnable weights

and biases used to reduce the dimensionality of the output

from the size f of the features F to 3D space. We directly

use the encoder’s attention matrix as our matching M̂ t
s , since

it already encodes the similarity between the features of the

two sets of points. The output of the transformer encoder is

given by the matrix product of the attention matrix and the

weighted values input. Since in our case, we supply the target

coordinates as the value input, it follows that the output of

the transformer encoder corresponds to linear combinations

of the input target points, weighted by the attention matrix

and denoted by Q̂t. These projected points have a one-to-

one correspondence with those of the anchor point cloud.

Moreover, each row in the attention matrix represents the

probability distribution of matching the corresponding point

from the source set to all of the points from the target set,

given that it is non-negative and adds up to one due to the use

of the softmax function.

From the matching matrix M̂ t
s , we compute a confidence

weight for every pair of point correspondences by penalizing

the dispersion of the distributions represented by each row.

We propose using a diversity metric for that purpose, such as

the Shannon Entropy (E), the order-r Hill number (Dr), or the

Berger-Parker index (BP), defined as

E(p) = −
∑

i

pi · log(pi), (3)

Dr(p) =
(∑

i

pri

) 1

1−r

, (4)

BP(p) = max(p), (5)

where p is a vector of probabilities.

The weights ŵM are obtained using either of the afore-

mentioned metrics by normalizing their output to a [0, 1]
range, where the two extreme weights of 0 and 1 respectively

correspond to a uniform and an infinitely sharp distribution.

Point Cloud Registration: To obtain the final relative transfor-

mation Ĥt
s from a source point cloud to a target point cloud,

we perform a weighted version of the Kabsch-Umeyama algo-

rithm that finds the optimal translation and rotation between

two sets of points by minimizing the root mean square error of

the point pairs. First, the correspondences between the sampled

source keypoints Qs and the projected target keypoints Q̂t are

weighted by the matching confidences ŵM . Subsequently, the

optimal translation is computed as the difference between the

weighted centroids of the two point clouds. Finally, the optimal

rotation is obtained via SVD of the weighted covariance matrix

of the two sets of keypoints. This approach is fully differen-

tiable and thus allows end-to-end training by measuring the

error of the predicted transformation with respect to the ground

truth relative pose.

B. Loss Functions

Our total loss function consists of a weighted sum of

the triplet loss LTri for loop closure detection as well as a

geometric loss LGeo and the newly proposed panoptic loss

LPan for point cloud registration. The following paragraphs

describe these losses in greater detail.

Triplet Loss: For the loop closure detection task, we use the

triplet loss. It enforces a small distance between the descriptors

of an anchor point cloud and a positive point cloud, i.e., a loop

closure LiDAR scan while increasing the distance between the

descriptors of the anchor and a negative point cloud, i.e., a

LiDAR scan taken at a different place.

LTri = max {d(Da,Dp)− d(Da,Dn) +m, 0} , (6)

where the descriptors of the anchor, the positive, and the

negative sample are denoted by Da, Dp, and Dn, respectively.
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Fig. 5. The multi-matched object loss penalizes matching an object in
the anchor point cloud to multiple objects in the positive sample. Unlike
the semantic misclassification losses, the multi-matched object loss does
not consider the semantic class, as depicted in (a). By exploiting a graph
representation shown in (b) of the point cloud, it enforces that all points of
the same object are matched to points of another object.

d(·) is a given distance function and m refers to the desired

separation margin.

Geometric Loss: We formulate our geometric loss LGeo as

a sum of a pose loss LPos and an auxiliary matching loss

LMat . For the pose loss, we compare the predicted relative

transformation Ĥp
a from the anchor to the positive sample with

the ground truth transformation Hp
a by applying both to the

coordinates of the same sampled point cloud Qa. Then we

compute the mean absolute error in the Euclidean space.

LPos = mean
(
abs

(
Ĥp

a ·Qa −Hp
a ·Qa

))
(7)

We further evaluate the geometric correspondence between

the sampled anchor Qa and positive points Qp leveraging the

predicted matching matrix M̂a
p . In detail, we transform the

anchor points with the ground truth transformation Ha
p and

project the positive sample with M̂a
p .

LMat = mean
(
abs

(
Hp

a ·Qa − M̂a
p ·Qp

))
(8)

Panoptic Loss: In addition to the geometric point correspon-

dences, we propose to leverage panoptic information to register

two point clouds. In detail, we formulate a novel panoptic loss

LPan as the sum of semantic misclassification losses LSem

and LMes as well as a multi-matched object loss LMmo .

We treat the matching process as a classification task, where

the projected positive points are assigned a semantic class.

While a cross-entropy loss is commonly used in classification

problems, due to the fact that the proposed class logits are

not the output of either a logistic or softmax activation, we

empirically found that a mean absolute error resulted in a

more stable training process. First, we use the semantic labels

to construct one-hot encoded matrices Ka and Kp for the

anchor and positive samples, respectively. Using the predicted

matching matrix M̂a
p , we define the semantic loss as

LSem = mean
(
abs

(
Ka − M̂a

p ·Kp
))

. (9)

Additionally, to allow flexibility in the semantic misclassi-

fication, we define a mapping from the semantic class labels

to a set of super-classes, e.g., both car and truck belong to the

vehicle class. Further details can be found in Sec. IV-A. Anal-

ogously to the semantic loss, we construct one-hot encoded

matrices Ja and Jp and define the meta-semantic loss as

LMes = mean
(
abs

(
Ja − M̂a

p · Jp
))

. (10)

In our novel multi-matched object loss, we further exploit

the instance labels to encourage the network to match entire

objects consistently from one point cloud to the other. This is

done by penalizing matches of points from a single object in

the anchor to multiple objects in the positive sample. Unlike

the previously introduced semantic misclassification losses, the

multi-matched object loss does not consider the semantic class

of objects, as depicted in Fig. 5 (a).

Since instance labels may not be consistent throughout a

driving sequence, it is not feasible to purely rely on the IDs.

Therefore, we construct adjacency matrices Oa and Op of a

graph representation of the point clouds, where nodes represent

points and edges connect points of the same instances of a

semantic class. The predicted matching matrices M̂a
p and M̂p

a

can then be considered as weighted, directed, bipartite graphs

between the two sets of points (see Fig. 5 (b)). Finally, we

formulate the multi-matched object loss as

LMmo = mean
(
(1−Oa)⊙

(
M̂a

p ·Op · M̂p
a

))
, (11)

where ⊙ denotes the element-wise multiplication.

Reverse Losses: Finally, we add a second instance of the regis-

tration module that processes the swapped source s and target t

inputs and predicts the inverse relative transformation. Both

the geometric and the panoptic losses can be reformulated

accordingly. The total loss is then formulated by averaging

the results of both the original and the reverse versions.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed PADLoC architec-

ture with respect to multiple handcrafted and learning-based

methods. We perform several experiments and present both

the loop closure detection and the point cloud registration

results. Finally, we evaluate the design choices in PADLoC

by performing multiple ablation studies and provide a brief

efficiency analysis.

A. Implementation Details

We perform experiments on two publicly available au-

tonomous driving datasets, namely the KITTI odometry bench-

mark [14] and the Ford campus vision and LiDAR dataset [15].

Additionally, we also present results on a more challenging

in-house dataset recorded in Freiburg, Germany. For training

PADLoC, we leverage the ground truth panoptic annotations

from the SemanticKITTI dataset [38]. If not specified other-

wise, we train all learning-based models on sequences {00, 05,

06, 07, 09} of KITTI and evaluate on sequence 08. For the

results on the Ford and Freiburg datasets presented in Table I,

we do not retrain the methods but use the weights trained

on KITTI. Unless otherwise specified, we use n = 4096
keypoints, set the feature size to f = 640, the descriptor

length to g = 256, and the number of clusters k = 64. To

improve the invariance of the model with respect to the inputs’

position and orientation, we augment the data during training
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TABLE I
COMPARISON OF LOOP CLOSURE DETECTION AND POINT CLOUD REGISTRATION PERFORMANCE

KITTI Seq. 08 [14] Ford Seq. 01 [15] Freiburg (in-house)

Method AP Max-F1 EP rerr [°] terr [m] AP Max-F1 EP rerr [°] terr [m] AP Max-F1 EP rerr [°] terr [m]

H
an

d
cr

af
te

d

M2DP [19] 0.05 0.10 0.00 — — 0.89 0.88 0.89 — — 0.71 0.68 0.74 — —

Scan Context✳ [35] 0.65 0.62 0.00 3.11 — 0.97 0.95 0.94 16.68 — 0.81 0.79 0.82 52.70 —

LiDAR-Iris✳ [36] 0.64 0.62 0.71 1.84 — 0.90 0.64 0.50 1.66 — 0.81 0.78 0.82 46.24 —

ISC✳ [21] 0.31 0.32 0.55 6.27 — 0.62 0.70 0.00 6.15 — 0.82 0.75 0.79 51.02 —
ICP (pt2pt) [9] — — — 160.63 2.41 — — — 9.56 2.79 — — — 89.43 2.37
ICP (pt2pl) [9] — — — 160.73 2.49 — — — 9.16 2.62 — — — 89.25 2.25

L
ea

rn
in

g

DCP [6] — — — 46.06 2.59 — — — 12.14 3.42 — — — 45.70 2.30
SGPR [11] 0.06 0.13 0.00 — — 0.11 0.27 0.01 — — 0.15 0.31 0.05 — —

OverlapNet✳ [25] 0.32 0.37 0.50 65.45 — 0.79 0.81 0.84 9.44 — 0.76 0.72 0.76 70.91 —
LCDNet [5] 0.76 0.74 0.50 0.37 0.19 0.97 0.93 0.72 1.82 1.44 0.84 0.73 0.71 10.08 0.91

PADLoC (ours) 0.81 0.78 0.51 0.37 0.16 0.98 0.85 0.95 1.50 1.33 0.83 0.74 0.74 9.30 1.41

Comparison of the average precision (AP), the maximum F1 score, and the extended precision (EP) [37] for loop closure detection as well as rotation
error rerr and translation error terr for point cloud registration of PADLoC with previous methods. All learning-based models are trained on the KITTI
odometry benchmark dataset. PADLoC uses panoptic annotations from the SemanticKITTI dataset. Methods denoted with ✳ only estimate the yaw
between two point clouds instead of a full 6-DoF transformation. Bold and underlined values denote the best and second best scores, respectively.

by applying a random rigid transformation to the input point

clouds with a uniform translation of ±1.5m in the x and y

axes and ±0.25m along z, and a uniform rotation of ±3° for

the roll and pitch angles and ±180° for the yaw. We train all

our models on a server with 4 NVIDIA RTX A6000 GPUs

for 150 epochs with a batch size of b = 8. We use the Adam

optimizer with an initial learning rate of λ = 0.004, halved

after epochs 40 and 80, and with a weight decay of 5× 10−6.

The total loss function is computed as a weighted sum

of the components described in Sec. III-B, with weights

wTri = 1.0, wPos = 1.0, wMat = 0.05, wSem = 0.125,

wMes = 0.5, and wMmo = 10.0. We use a triplet margin of

m = 0.5 and the L2 distance as the distance function in Eq. 6.

For the semantic super-classes, we follow the definitions of

Cityscapes [39] and group the semantic labels into flat, human,

vehicle, construction, object, nature, and void. Based on the

ablation study presented in Sec. IV-D, we use the Berger-

Parker index to compute the confidence weights.

B. Loop Closure Detection

To evaluate the loop closure detection performance, we

compare PADLoC with the handcrafted methods M2DP [19],

Intensity Scan Context (ISC) [21], Scan Context [35], and

LiDAR-Iris [36], as well as with the learning-based approaches

LCDNet [5], OverlapNet [25], Deep Closest Point (DCP) [6],

and SGPR [11], which uses panoptic information also during

inference. For DCP, we combine the feature extraction module

of PADLoC with a full transformer-based matching module

based on the authors’ code release. For the other methods,

we directly use the official code published by the respective

authors. To compute the results on OverlapNet and SGPR, we

download the model weights provided on the project website

that are trained on KITTI. Since SGPR requires panoptic labels

during inference time, we use predictions by RangeNet++ [40]

combined with point clustering to obtain instances.

When evaluating PADLoC, we generate a descriptor Di for

every scan i in a sequence and compute its similarity with that

of all frames prior to the 50 previous scans. If a scan j with the

closest descriptor to that of scan i has a similarity higher than

a threshold τ , then the pair (i, j) is considered to form a loop

closure. If the distance between the two ground truth poses

is within 4m/10m/20m for the KITTI/Ford/Freiburg dataset,

then it is considered a true positive. Otherwise, it is considered

a false positive. Conversely, if the pose distance is within

4m/10m/20m, but the similarity between the descriptors is

below the threshold τ , then we regard it as a false negative.

By changing the value of τ , we obtain precision-recall pairs

that are then used to compute the average precision (AP).

In Table I, we report the AP, the maximum F1 score,

and the extended precision (EP) [37] of PADLoC and the

aforementioned baseline methods. Notably, PADLoC achieves

the highest AP and Max-F1 score across the entire board

for the evaluation sequences of KITTI and the highest AP

and EP on Ford. On our in-house Freiburg dataset, PADLoC

yields the highest Max-F1 score as well as the second best

AP and EP compared to the other learning-based approaches.

Although the proposed transformer-based registration head

and the panoptic losses do not directly influence the loop

closure detection module, by sharing the same feature extractor

between the two branches and jointly training the two tasks,

PADLoC learns a better feature representation improving the

loop closure detection performance compared to LCDNet,

which achieved the second best AP on both KITTI and Ford.

Qualitative results of these methods on the KITTI dataset are

visualized in Fig. 6. Compared to OverlapNet, both LCDNet

and PADLoC correctly detect a higher number of loop clo-

sures, whereas PADLoC is able to further reduce the number of

false positives. While the learning-based methods LCDNet and

PADLoC outperform all handcrafted methods when evaluated

on the same domain as used for training, this gap vanishes on

Ford and Freiburg. Here, these methods perform on par with

the best handcrafted approach Scan Context.

C. Point Cloud Registration

To evaluate the point cloud registration performance, we

compare PADLoC with the same handcrafted and learning-

based methods described in Sec. IV-B, except for M2DP and

SGPR that do not perform point cloud registration. Since

the handcrafted methods only estimate the yaw between two

point clouds instead of the full 6-DoF transformation, we

additionally compare with the Iterative Closest Point algo-

rithm (ICP) [9], using both point-to-point and point-to-plane
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Ground truth path True positives False positives False negatives

(a) SGPR [11] (b) OverlapNet [25] (c) LCDNet [5] (d) PADLoC (ours)

Fig. 6. Qualitative loop closure detection results on KITTI sequence 08 of the learning-based methods. The ground truth path corresponds to true negatives.
While LCDNet reduces both false positives and false negatives compared to OverlapNet, the proposed PADLoC further decreases false positives.

TABLE II
ABLATION STUDY ON CONFIDENCE WEIGHTS

Method AP ↑ rerr [°] ↓ terr [m] ↓

Uniform 0.73 4.63 3.76
Column sum 0.76 6.34 3.62
Shannon 0.50 21.86 3.99
Hill (r=2) 0.89 2.45 2.00
Hill (r=4) 0.84 2.47 2.12
Berger-Parker 0.81 2.35 1.43

Average precision (AP) of loop closure detection as well
as the mean error of point cloud registration, evaluated on
KITTI sequence 08 for different weightings used in SVD.

distances. Following the standard experimental setup [5], for

LCDNet, DCP, and PADLoC, we perform point cloud regis-

tration with RANSAC using the extracted features before the

respective matching layers.

As a measure of registration accuracy, we compute the

rotation error rerr in degrees and the translation error terr in

meters of all positive pairs. We then average the errors over the

entire sequence and present the results in Table I. We observe

that PADLoC yields the smallest rotation error compared to

all the handcrafted and learning-based methods on each of the

evaluation sequences in the datasets. Additionally, it yields the

smallest translation error on both the KITTI and Ford datasets,

as well as the second lowest translation error on our in-house

Freiburg dataset. LCDNet achieves the second best perfor-

mance in most evaluations while achieving the lowest transla-

tion error on the Freiburg dataset. This result shows that while

the feature extraction architecture and the training scheme

play an important role, leveraging the cross-modal attention

matrices from the transformer architecture and the panoptic

information during training further improves the point cloud

registration performance. While LiDAR-Iris achieves the low-

est rotation error across all the handcrafted methods, it only es-

timates the yaw angle instead of the full 6-DoF transformation.

D. Ablation Studies

In this section, we present ablation studies to analyze the

major design choices of PADLoC. As the RANSAC-based

point cloud registration described in Sec. IV-C is applied only

during inference and does not impact the training stage, the

experiments in this section do not exploit RANSAC.

Confidence Weighting: We investigate the effect of different

weighting schemes on the performance of both loop closure

detection and point cloud registration tasks. In Table II, we

present the average precision (AP) as well as the registration

errors rerr and terr for the six weighting methods. In par-

ticular, uniform weights corresponding to unweighted SVD,

TABLE III
INFLUENCE OF THE LOSS FUNCTIONS

LGeo LPan LRev AP ↑ rerr [°] ↓ terr [m] ↓

✓ 0.70 3.09 1.62
✓ ✓ 0.78 3.36 1.71
✓ ✓ ✓ 0.81 2.35 1.43

Average precision (AP) of loop closure detection and the
mean error of point cloud registration, evaluated on KITTI
sequence 08 for the different loss functions.

column sum representing the method used in LCDNet [5],

where weights are the sums along the columns of the matching

matrix, and the diversity metrics from Sec. III-A, i.e., the Shan-

non Entropy, the order-r Hill number with r ∈ {2, 4}, and the

Berger-Parker index. We observe that both the Hill numbers

and the Berger-Parker index outperform the other confidence

weighting methods. Due to the substantially smaller translation

error of the Berger-Parker index, improving the registration by

more than 0.5m, we use this method in our final design.

Effect of Losses: To demonstrate the efficacy of our proposed

panoptic loss LPan and the impact of formulating all losses

in a bidirectional manner (LRev ), we consecutively add them

to the original geometric loss LGeo . We present the results for

both the loop closure detection and point cloud registration

tasks in Table III. We observe that adding the proposed

panoptic losses increases the average loop closure detection

precision by further constraining which points can be matched

together based on their semantic and instance labels. Further-

more, by including the second matching and registration head,

along with its corresponding reverse losses as illustrated in

the bottom row, the added bidirectional consistency constraint

yields the highest AP and the smallest registration errors.

E. Efficiency Analysis

We evaluate the memory footprint and inference time of our

method on an NVIDIA RTX 3090 GPU. PADLoC requires

3.4GB. Compared to the full transformer-based matching

module of DCP that requires 10.3GB, the memory footprint

of PADLoC is only one-third, showing its lower complexity.

On average, PADLoC needs 10ms for pre-processing a sin-

gle point cloud. The shared feature extraction step consumes

167ms. Computing the global descriptor used for loop closure

detection takes 0.1ms per point cloud. Finally, one forward

pass of the registration and matching module to compute the

transform between two point clouds takes 14ms.

V. CONCLUSION

In this paper, we proposed the novel PADLoC architecture

for LiDAR-based joint loop closure detection and point cloud
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registration. PADLoC is composed of a common feature ex-

tractor, a global descriptor as well as a transformer-based regis-

tration and matching module. Unlike previous approaches, we

feed different inputs as value, query, and key to the transformer

encoder exploiting its internal structure. We further introduced

a new loss function that leverages ground truth panoptic anno-

tations by penalizing matching points from different semantic

classes as well as across multiple objects and validated its

positive impact. Through extensive experimental evaluations,

we demonstrated the efficacy of PADLoC compared to both

handcrafted and learning-based methods. Future work will

focus on exploiting panoptic information in an online manner

and applying the matching approach of PADLoC to point cloud

registration tasks in other domains.
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