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Abstract— We present an approach to laser-based people
tracking using a multi-hypothesis tracker that detects and
tracks legs separately with Kalman filters, constant velocity
motion models, and a multi-hypothesis data association strategy.
People are defined as high-level tracks consisting of two legs
that are found with little model knowledge. We extend the
data association so that it explicitly handles track occlusions in
addition to detections and deletions. Additionally, we adapt the
corresponding probabilities in a situation-dependent fashion so
as to reflect the fact that legs frequently occlude each other.
Experimental results carried out with a mobile robot illustrate
that our approach can robustly and efficiently track multipl e
people even in situations of high levels of occlusion.

I. I NTRODUCTION

People tracking is a key technology for robots that oper-
ate in populated environments. Knowledge about presence,
position, and motion state of people will enable robots to
better understand and anticipate their intentions and actions.
Apart from human-robot interaction and cooperation sce-
narios, applications of laser-based people tracking include
also surveillance, crowd control, or pedestrian detectionfor
intelligent cars.

In this paper we consider the problem of people tracking
from data acquired with two-dimensional laser range finders.
In most related work on laser-based people tracking [1],
[2], [3], [4], [5], [6], [7], [8], [9], a person is represented
as a single state that encodes torso position and velocities.
People are extracted from range data as single blobs or
found by merging nearby point clusters that correspond to
legs. However, the appearance of people in laser range data
depends on the mounting height of the sensor: at hip height
a human torso is typically seen as a single local-minimum
blob while at foot height, legs produce separate, fast-moving
smaller blobs. In practice, the mounting height of the sensor
is often constrained by the application or the robot’s form
factor and not only by the researcher to suit the needs of a
tracking algorithm. Safety regulations, for instance, require
laser scanners to be mounted at foot height. Obviously, at this
height, modeling people as single blobs can be problematic
and thus motivates leg tracking as an approach to laser-based
people tracking. Accordingly, the problem of people tracking
has recently been addressed as a leg tracking problem [10],
[11] where people are represented by the states of two legs,
either in a single augmented state [11] or as a high-level
track to which two low-level leg tracks are associated [10].
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Multi-hypothesis tracking (MHT) [12], [13] belongs to the
most general data association techniques as it produces joint
compatible assignments, integrates them over time, and is
able to deal with track creation, confirmation, occlusion, and
deletion. Other multi-target data association techniquessuch
as the nearest neighbor filter, the track splitting filter, orthe
JPDAF are less powerful or sub-optimal in nature [14].

In the context of people tracking with laser range finders,
Taylor et al. [10] employ an MHT to resolve ambiguities
in the problem of fitting a walking person into two leg
measurements. The authors use a geometric occlusion model
to decrease the detection probability if an occlusion is to be
expected. Mucienteset al. [9] cluster people into groups and
utilize an MHT to handle the assignments of measurements
to single tracks and clusters. Given the high-level concept
of groups, additional assignments of measurements to tracks
within groups become possible for which the authors derive
appropriate probabilities.

In this paper we track legs of people and utilize a multiple
hypothesis tracking approach for data association. Opposed
to most related work in the laser-based people tracking
literature, we address the problem of tracking legs that are
measured individually. Based on the resulting leg tracks, we
create person tracks using the multivariate weighted mean
if two tracks are sufficiently close and move in the same
direction for a certain time frame. Once a person track has
been validated over time, we adapt the individual occlusion
probabilities of both associated leg tracks to account for
the fact that legs frequently occlude each other. To this
end, we extend the MHT framework to explicitely take
into account potential occlusions by introducing adaptive
conditional assignment probabilities.

The paper is structured as follows. The next section briefly
describes the Kalman filter-based tracker used for detecting
and tracking legs. Section III reviews the multi-hypothesis
tracking approach, especially the expressions to calculate the
hypothesis probabilities. Section IV introduces the concept
of person tracks and how they are found. This section also
contains the derivation of the probability equations that are
needed to adapt the occlusion probabilities of individual
tracks. Section V describes the experimental results.

II. KF- BASED LEG TRACKER

This section describes the KF-based multi-target tracker
that is used to track legs of people. We briefly go through the
tracking cycle. For the details of Kalman filtering and target
tracking the reader is referred to Bar-Shalom and Li [14].



State prediction. A leg track is represented asx =
(x, y, vx, vy) wherex and y are the track position andvx

andvy the x andy components of the track velocity. With
this state representation new tracks can be properly initialized
with vx = vy = 0. For motion prediction, a constant velocity
model is employed.

Measurement prediction. As thex- andy-coordinates of a
track are directly observable, the2 × 4 measurement matrix
H is formed by the2× 2 identity matrix inx andy and the
2 × 2 zero matrix invx andvy.

Observation. The observation step consists in detecting
people in range data. The problem can be seen as a classifi-
cation problem that consists in finding those laser beams that
correspond to people and to discard other beams. Typically,
hand designed classifiers have been employed for this task
with a manual selection of features and thresholds. In a recent
work we used AdaBoost, a supervised learning technique,
to learn a classifier for groups of adjacent beams that
correspond to people [15]. AdaBoost takes a labeled training
set and a (possibly large) vocabulary of features that may
or may not be appropriate for the given classification task.
The method then creates a classifier by selecting the most
informative features and finding the best thresholds (based
on the training set). The AdaBoost classifier proved to be
superior to a manually designed classifier. It shall therefore
be used also in this work.

The observation step delivers the set of observations (or
measurements)zk = {z1

k, z2
k, . . . , zMk

k } at time indexk. Mk

denotes the current number of measurements.
Data association. For data association we employ a mod-

ified MHT approach described in the sections hereafter.
Estimation. Given that both, the state and measurement

prediction models are linear, a (non-extended) Kalman filter
as the optimal estimator under the Gaussian assumption can
be employed.

III. M ULTI HYPOTHESISTRACKER

In this section we review the MHT as described in the two
papers by Reid [12] and Coxet al. [13]. In the original paper
by Reid [12] measurements can be interpreted as matches
with existing tracks, new tracks, or false alarms. Tracks are
interpreted asdetected (when they match with a measure-
ment) ornot detected. Deletion of tracks is not handled by the
MHT but by a heuristics based on sequences of consecutive
non-detections. Coxet al. [13] extend this framework with
the interpretation of tracks asdeleted. Thereby, the MHT
handles the entire life-cycle of tracks from creation and
confirmation (by matching) to deletion and occlusion (which
is non-detection and non-deletion).

In order to adapt the occlusion probabilities of individual
leg tracks later in this paper, it is necessary to reconsider
the derivation of the hypothesis probabilities in the MHT,
especially the assignment set probabilities.

Let Ωk
j be thej-th hypothesis at timek and Ωk−1

p(j) the
parent hypothesis from whichΩk

j was derived. Let further
Ψj(k) denote a set of assignments that, based on the parent

x1 x2 xnt xfa

z1 0 0 1 0
z2 1 0 0 0

zdel 0 1 0 0

TABLE I

EXAMPLE OF AN ASSIGNMENT.

hypothesisΩk−1
p(j) and the current measurementzk, gives rise

to Ωk
j .

The assignment setΨj(k) associates each measurement
either to an existing track, a false alarm, or a new track
and marks a track asdetected or deleted. Assignment sets
are best visualized in matrix form such as the example in
Table I that shows a set of assignments of tracksx1,x2 with
measurementsz1 and z2. An assignment is denoted by a
non-zero entry in the matrix. The example shows a situation
in which trackx1 is assigned to measurementz2, track x2

is scheduled for deletion, and measurementz1 is interpreted
as a new track.

There are as many possible assignment setsΨj(k) as
we can distribute 1’s and 0’s over such matrices under the
constraints of unique measurement-to-track associationsand
that the only zero-valued rows and columns can belong to the
eventsdeletion, new track, and false alarm. An assignment
set has a probability that is determined by the probabilities
of these events and the probability of a specific distribution
of 1’s and 0’s.

Given an assignment set probability and the probability of
the parent hypothesisΩk−1

p(j) , we can calculate the probability
of each child hypothesis that has been created asΨj(k). This
calculation is done recursively [12]:

p(Ωk
j |zk) = p(Ψj(k), Ωk−1

p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k), Ωk−1

p(j) )p(Ψj(k)|Ωk−1
p(j) ) ·

p(Ωk−1
p(j) ). (1)

The rightmost term on the right-hand side is the recursive
term, that is, the probability of its parent. Factorη is a
normalizer. The leftmost term on the right-hand side after
the normalizerη is the measurement likelihood. We assume
that a measurementzi

k associated to a trackxj has a Gaussian
pdf centered around the measurement predictionẑ

j
k with in-

novation covariance matrixSi,j
k , N (zi

k) := N (zi
k ; ẑj

k,Si,j
k ).

We further assume the pdf of a measurement belonging to
a new track or false alarm being uniform in the observation
volumeV (the field of view of the sensor) with probability
V −1. Thus

p(zk|Ψj(k), Ωk−1
p(j) ) =

Mk
∏

i=1

N (zi
k)δiV 1−δi

= V −(Nfal+Nnew)
Mk
∏

i=1

N (zi
k)δi (2)

with Nfal andNnew the number of measurements labeled as
false alarms and new tracks respectively.δi is an indicator
variable being 1 if and only if measurementi has been
associated to a track, 0 otherwise.



The central term on the right-hand side of Equation (1) is
the probability of an assignment set,p(Ψj(k)|Ωk−1

p(j) ), which
is composed of three terms:

1) The probability of thenumber of tracksNdet , Nfal ,
Nnew with a certain label. In Reid’s case, with tracks
being either labeleddetected or not detected, the num-
ber of detected tracksNdet given the total number of
tracks in the parent hypothesis,N , follows a binomial
distribution

p(Ndet |Ω
k−1
p(j) ) =

(

N

Ndet

)

pNdet

det (1 − pdet)
(N−Ndet)

(3)
Assuming that thenumber of false alarm and thenum-
ber of new tracks both follow a Poisson distribution
with expected number of eventsλfalV andλnewV in
the observation volumeV respectively, we obtain

p(Ndet , Nfal , Nnew |Ω
k−1
p(j) ) =

(

N
Ndet

)

pNdet

det (1 − pdet)
(N−Ndet)

·µ(Nnew ; λnewV ) · µ(Nfal ; λfalV ) (4)

whereµ(n; λV ) is the Poisson distribution forn events
when the average rate of events isλV .

2) The probability of a specific assignment of measure-
ments so thatMk = Ndet + Nfal + Nnew holds.
The probability is determined as 1 over the number
of combinations which is
(

Mk

Ndet

) (

Mk − Ndet

Nfal

)(

Mk − Ndet − Nfal

Nnew

)

(5)

where the last term equals 1.
3) The probability of a specific assignment of tracks given

that a track can either bedetected or not detected. The
probability is determined as 1 over the number of these
assignments

N !

(N − Ndet)!

(

N − Ndet

Ndet

)

. (6)

The first term follows from the combinatorial fact,
that a track can be chosen only once and the track-
to-measurement order matters.

It is noteworthy (and one of the key contributions of
Reid [12]) that in the product of these three probabilities
many terms cancel out, and substituted into the Equation (1),
the final probabilityp(Ωk

j |zk) becomes a simple and easy to
calculate expression independent of the observation volume
V .

IV. PERSONTRACKING AND OCCLUSION ADAPTATION

The tracking system presented in the previous sections
maintainsN tracks that correspond to human legs. Only on
the level of theseN tracks, we reason on the existence of
people by the use of the following model knowledge:

1) People have always two legs
2) Legs are close to each other
3) Legs move in a similar direction

4) Legs have a higher probability of occluding each other
than being occluded by other people’s legs or objects

In contrast to previous work [10], [11] we do not describe
people by a more complex model that also encodes the
dynamics of a walking person. People have a large variety
of leg motion patterns (such as random steps on the spot
while they are waiting) that are not adequately captured by
walking models typically found in the literature [10].

To create a person track, we implement the above-
mentioned model as follows:

1) A person track is defined as a high-level track to which
two legs tracks are associated. The state of a person is
estimated from the state of the two legs tracks using
the multivariate weighted mean.

2) Two tracksxi,xi that satisfy a nearness condition
given a thresholdθd which in our case is set to 0.75
meter form a person candidate.

3) A person candidate is validated if the two tracks max-
imize the scalar product of their orientations summed
over the track historiesS =

∑

t < θt
i , θt

j > with
θi = atan2(v2

y,i, v
2
x,i) being the orientation of trackxi.

In practice, we calculateS only in a sliding window
over the lastL steps and validate a person track
that satisfiesS > θa where θa is an experimentally
determined threshold.

4) The adaptation of the occlusion probability is described
in detail in the following subsection.

Person tracks are deleted if either the MHT deletes one or
both of its leg tracks or if condition 2) does not hold anymore
for L consecutive steps.

A. Adaptation of occlusion probability

According to Reid [12], who only considers the label
detected, the number of tracks with this label,Ndet , follows
a binomial distribution. In the more general case, in which
we have an arbitrary number of labels, the number of tracks
with a given label follows amultinomial distribution.

Besidesdetection (according to Reid [12]) anddeletion
(introduced by Cox and Hingorani [13]) we introduce the
label occlusion. Thus, the pdf of the labeling of the tracks
into detected, occluded, anddeleted is

p(Ndet , Nocc, Ndel |Ω
k−1
p(j) ) =

N !

Ndet !Nocc!Ndel !
pNdet

det pNocc
occ pNdel

del (7)

with pdet + pocc + pdel = 1 andN = Ndet + Nocc + Ndel .
Equation (7) is the generalization of Equation (3) and allows
to specifically adjust the label probabilities. Occlusionsare
no longer implied by non-detection and non-deletion but are
made explicit as a label with their own specific probability.

However, adjusting individual probabilities raises the ques-
tion whether probabilities of assignments and hypotheses re-
main properly normalized across branches in the hypothesis
tree. We will now verify that the consistency in this sense is
maintained.

In our case, there are leg tracks that are associated to val-
idated person tracks and leg tracks that are either associated



to non-validated person tracks or to no person track at all.
We will denote the former asapproved (by the superscript
A) and the latter asfree (by the superscriptF ). With NA

andNF as the number of approved and the number of free
tracks respectively,N = NA + NF and likewise

NF = NF
det + NF

occ + NF
del (8)

NA = NA
det + NA

occ + NA
del . (9)

The evidenceapproved and free conditions the probabilities
in Equation (7) such that the right-hand side must be rewrit-
ten as the product of two multinomial distributions, each
with three conditional probabilitiespdet|F , pdel|F , pocc|F and
pdet|A, pdel|A, pocc|A for which pdet|F +pdel|F +pocc|F = 1
and pdet|A + pdel|A + pocc|A = 1 must hold. The product
of multinomial distributions is explained by the fact that a
track can only be either approved or free.

As a consequence, the three product terms that compose
the assignment set probability,p(Ψj(k)|Ωk−1

p(j) ), are altered
as follows. The first term, the probability of thenumber of
tracks with a certain label becomes

p(NF
det , N

F
occ, N

F
del , N

A
det , N

A
occ, N

A
del , Nnew , Nfal |Ω

k−1
p(j) )

= NF !
NF

det
!NF

occ!N
F

del
!
· p

NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F ·

NA!
NA

det
!NA

occ!N
A

del
!
· p

NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

µ(Nfal ; λfalV ) · µ(Nnew ; λnewV ) (10)

The second term, the probability of a specific combination
of these numbers, is calculated as 1 over the number of these
combinations, which is

(

Mk

NF
det

) (

Mk − NF
det

NA
det

) (

Mk − NF
det − NA

det

Nnew

)

·

(

Mk − NF
det − NA

det − Nnew

Nfal

)

=
Mk!

NF
det !N

A
det !Nnew !Nfal !

(11)

sinceMk = NF
det + NA

det + Nnew + Nfal .
Similarly, for the third term, the probability of the number

of track-to-measurement associations determined as 1 over
the number of these associations, is 1 over

NF !

(NF − NF
det)!

(

NF − NF
det

NF
occ

) (

NF − NF
det − NF

occ

NF
del

)

·

NA!

(NA − NA
det)!

(

NA − NA
det

NA
occ

) (

NA − NA
det − NA

occ

NA
del

)

=
NF !NA!

NF
occ!N

F
del!N

A
occ!N

A
del !

(12)

When combining these results, many terms cancel out like in
Reid’s approach [12]. Accordingly, we obtain the assignment
set probability as

p(Ψj(k)|Ωk−1
p(j) ) =

η′ · p
NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F · p
NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

λNnew
new · λ

Nfal

fal · V Nnew+Nfal (13)

whereη′ is a constant normalization factor.
Substituting Equation (13) and the measurement likelihood

from Equation (2) into Equation (1) yields the final expres-
sion for the probability of a child hypothesis

p(Ωk
j |zk) = η′′

Mk
∏

i=1

N (zi
k)δi ·

p
NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F · p
NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

λNnew
new · λ

Nfal

fal · p(Ωk−1
p (j)). (14)

Here η′′ = η · η′ is a constant normalization factor which
ensures that the probabilities of the hypothesesΩk

j sum up
to 1. It can be shown thatη′′ only depends onMk. This
means that within the same generation of hypotheses – for
which Mk is identical – proper normalization across all
branches in the tree, that is across all hypothesis probabilities,
is guaranteed.

B. Branching and Pruning Strategies

For an efficient implementation of an MHT, pruning
strategies that limit the exponential explosion of hypotheses
are mandatory. As proposed by Cox and Hingorani [13] we
make use of the following strategies:

• k-Best Branching. Instead of creating all children, we
generate only thek best children for each parent hy-
pothesis. This can be done in polynomial time with an
algorithm proposed by Murty [16].

• Ratio Pruning. A lower limit on the ratio of the current
and the best hypothesis is defined. Unlikely hypotheses
being below this threshold are deleted.

• N-scan-back. The N-scan-back algorithm considers an
ancestor hypothesis at timek − N and looks ahead in
time to all its children at the current timek (the leaf
nodes). It evaluates the probabilities of all leaf nodes
to find and keep the best branch at timek − N and to
discard all others.

V. EXPERIMENTS AND RESULTS

The approach described above has been implemented
and evaluated on a an ActiveMedia Powerbot mobile robot
equipped with a Sick LMS laser scanner mounted at a height
of 11 cm above ground. The angular resolution of the range
scans was0.5◦. Throughout all experiments we used the
values listed in Table II for the conditional probabilities
introduced in the previous section. Our adaptive method uses
the probabilities with the superscriptF for free tracks and the
probabilities with the superscriptA for approved tracks. We
compare our method also to the non-adaptive case for which
we use the probabilities with the superscriptF as default
values unless otherwise noted.

A. Person walking on an 8-shaped trajectory

In the first experiment a person follows a 8-shaped tra-
jectory in a corridor of about 2.5 meters width in normal
walking speed. As can be seen from Figure 1, our system
was able to reliably track the person despite the fact that it



pdet|F pocc|F pdel|F pdet|A pocc|A pdel|A λnew λfal

0.3 0.63 0.07 0.2 0.79 0.01 0.001 0.003

TABLE II

PARAMETERS USED THROUGHOUT THE EXPERIMENTS.

only used a constant velocity motion model to track the sharp
turns carried out by the person. The same leg tracks last over
the entire duration of the experiment. This is illustrated by
the diagram in right image of Figure 1 that shows a constant
number of four tracks. Two of the four tracks are due to
false alarms extracted in the clutter. Without adaptation of
the occlusion probability, there is track loss at nearly every
U-turn giving rise to many newly created tracks.
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Fig. 1. Trajectories and total numbers of created tracks forexperiment 1.

B. Person turning constantly while moving forward

In the second experiment a person is moving on a straight
line turning 180◦ around the stationary leg at each step
(see Figure 2). This unusual walking pattern produces heavy
occlusions of the moving leg by the stationary one. The
adaptive approach was able to track the person accurately
during the experiment. The total number of tracks in Figure 2
(right) is constant (three), one of them being a false alarm.
The mutual leg occlusion is poorly handled by the non-
adaptive approach as the increasing number of new tracks
in the diagram illustrates.
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Fig. 2. Trajectories and total numbers of created tracks forexperiment 2.

C. People walking randomly in a narrow corridor

It remains to be demonstrated that the superior perfor-
mance of the adaptive approach found so far is not just due
to better tuned probability parameters for approved tracks.
This is demonstrated in the third experiment where up to
four people simultaneously move through the field of view
of the sensor. The subjects perform typical motion patterns
at normal walking speed, they avoid each other, turn on the

Person 1

Person 2

Person 3

Person 4

Fig. 3. Trajectories of four people tracks during experiment 3.

spot, cross paths, stop once in a while, and frequently enter
and leave the field of view. This leads up to four validated
people tracks simultaneously (eight leg tracks), not included
false alarms due to, e.g., corners falsely detected as legs.

Figure 3 shows a portion of the experiment with four
simultaneously tracked people. The chance of additional
mutual occlusions from people is substantial in this narrow
environment. Figure 4 depicts the total number of created
tracks. Due to long lasting occlusions produced by other
people, the system sometimes deletes tracks although the
person is still there, and creates new tracks when the person
becomes visible again. However, Figure 4 shows that com-
pared to the non-adaptive case, we are able to track people
more robustly over an extended period of time as the number
of tracks is substantially closer to ground truth. The ground
truth information was obtained by manual inspection.

If we use the parameter setting for approved tracks as
default (and without adaptation), we observe in Figure 5
(left) that the number of simultaneous tracks nearly never
decreases, that is, tracks are deleted with a very low
probability. When tracks are not deleted, their uncertainty
grows boundless producing a high level of ambiguity, and
ergo, a high number of matching candidates that pass the
Mahalanobis test. This causes an explosion of branches in
the hypothesis tree as illustrated in Figure 5 (right). The
diagram shows the number of hypotheses between steps 900
and 1000, the time when all four people were in the field of
view. In the adaptive case, the peak numbers of hypotheses
are seriously more moderate compared to the non-adaptive
approach where the parameters for approved tracks are taken
as default.

The average cycle time in this experiment with four people
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Fig. 4. Total number of created tracks for the adaptive method, the non-
adaptive method, and the ground-truth.



 0

 2

 4

 6

 8

 10

 12

 14

 0  200  400  600  800  1000  1200  1400

nu
m

be
r 

of
 s

im
ul

ta
ne

ou
s 

tr
ac

ks

iteration

non-adaptive, high occ. prob.
adaptive

ground-truth

 0

 300

 600

 900

 1200

 1500

 1800

 900  920  940  960  980  1000

nu
m

be
r 

of
 h

yp
ot

he
se

s

iteration

non-adaptive, high occ. prob.
adaptive

Fig. 5. Number of tracks for the adaptive method, the non-adaptive method
with parameters for approved tracks as default versus the ground truth (left)
and number of simultaneous hypotheses for our adaptive caseand the non-
adaptive method with parameters for approved tracks as default (right).

Fig. 6. Trajectories of robot and people in experiment 4. Person 1 is
constantly tracked, person 2 receives a new identifier when reentering the
sensor’s field of view.

was 44.5 ms on an Athlon 4400+ and with a scan-back depth
of eight (see section IV-B). A significant acceleration (from
initially 220 ms) was due to the introduction of separate
trees for tracks and hypotheses as proposed by Cox and
Hingorani [13] that avoids processing duplicate tracks.

D. Tracking from a moving robot

In the forth experiment the robot moves with an average
translational velocity of 0.33 m/s (max. 0.5 m/s) while track-
ing two people (Figure 6). The two subjects move at normal
walking speeds, stop once in a while with person 2 leaving
and re-entering the robot’s field of view. Consecutive scans
are aligned using odometry information. With a moving
sensor, detection of moving leg blobs is more difficult as
also the background becomes dynamic. Especially in clutter
the AdaBoost classifier therefore generates a higher number
of false alarms. Because people tracks are initialized only
from leg tracks that satisfy our person model, the robot
is able to robustly track the two people with only one
incorrect people track that appears for two iterations. The
non-adaptive approach creates additionally eleven incorrect
leg tracks resulting in a total of four incorrect people tracks.

VI. CONCLUSIONS

In this paper, we addressed the problem of people tracking
as a leg tracking problem utilizing an MHT for data associa-
tion. We extended the original MHT to incorporate adaptive
occlusion probabilities and present a mathematical derivation
for this approach. The approach has been implemented and
tested on a real robot with data acquired by a SICK laser
range sensor. The experimental results demonstrate that our
approach is able to robustly track multiple people based on
observations of their legs even when enduring occlusions
occur. We also carried out experiments that demonstrate that
our adaptive approach outperforms a non-adaptive MHT with

fixed occlusion probability settings, since it overly delays
track deletion and thus produces a high level of ambiguity
coupled with an explosion of the number of hypotheses. Our
current system is able to perform each update fast enough
for online processing on a state-of-the-art desktop computer
even when the robot is tracking four people.

The occlusion model and the approach to extract people
tracks have performed well in all our experiments. Still,
they can both be replaced by more sophisticated models,
independent of the theoretical results presented in this paper.
Future work will aim at occlusion models for groups of
people and a more rigorous technique to create people tracks
from leg tracks.
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[15] K. O. Arras,Óscar Martı́nez Mozos, and W. Burgard, “Using boosted
features for the detection of people in 2d range data,” inProc. of the
IEEE Int. Conference on Robotics and Automation, Rome, Italy, 2007.

[16] K. G. Murty, “An algorithm for ranking all the assignments in order
of increasing cost,”Operations Research, vol. 16, pp. 682–687, 1968.


