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Abstract—The ability to accurately localize themselves is a
fundamental pre-condition for service robots designed to carry
out navigation and transportation tasks. Because of the high
degree of dynamics in populated and real-world environments,
often artificial landmarks are used to achieve the desired
accuracy in localization. In this paper we consider the problem
of optimally placing landmarks for robots navigating frequently
on similar trajectories. Our method maximizes conditional
mutual information of the states of the robot given the landmark
observations. It uses a greedy algorithm which approximates
the solution of the NP-hard maximization problem. For this
algorithm, we derive a tight constant-factor bound on the
approximation error. We furthermore evaluate the selected
landmark sets in extensive experiments carried out both in
simulation and with a real robot.

I. INTRODUCTION

One of the fundamental problems in mobile robot navi-

gation is localization. Especially in industrial applications,

where a high degree of robustness is required even when

the environments are dynamic, a popular solution to this

problem is the use of active beacons [4], [10] or artificial

landmarks [5], [17].

However, the number of landmarks to be used is usually

restricted, e.g., by the limited computational capabilities of

embedded systems or the costs of active beacons. Therefore,

one is faced with the problem of how to place the landmarks

or beacons efficiently so that the uncertainty of the robot in

its position estimate is minimized. Especially in industrial

environments robots often have to repeatedly execute a fixed

number of trajectories. The locations of the landmarks should

be chosen depending on theses trajectories. In practice, the

landmark positions are often manually selected [4].

In this paper, we consider landmark selection as an op-

timization problem. For one given trajectory (like the one

in Fig. 1), we place a given number n of landmarks so

that the mutual information [3] between all states of the

robot along the trajectory and all landmark observations is

maximized. The goal is to arrive at a landmark configuration

that yields the highest information gain. As shown by Krause

and Guestrin [7], this problem is NP-hard. We introduce

a greedy algorithm which approximates the solution of the

problem. Because of the non-linear system dynamics, this

algorithm employs Monte Carlo simulation to evaluate the

objective function. Using the concept of submodularity [9],

we prove that our algorithm finds near-optimal sets of land-

marks. We evaluate the selected landmark sets in simulation
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Fig. 1. Eight landmarks selected by our algorithm. One execution of the
trajectory for which the landmarks were selected is plotted in blue together
with its 2σ uncertainty. The picture shows the Pioneer P3-DX robot used in
the experiments. It is equipped with a SICK LMS laser range finder (only
used for reference) and a webcam pointing upwards. The markers on the
ceiling correspond to the landmarks shown in the graph.

and on a real robot, executing the trajectory displayed in

Fig. 1. The results of the experiments show that our algorithm

significantly outperforms other approaches.

This paper is organized as follows. After discussing related

work in the following section, we introduce the landmark

selection problem in Section III. We then present our approx-

imation algorithm and show a tight bound on the approxima-

tion error in Section IV. Afterwards, in Section V, we discuss

different models for controlling the robot and describe their

influence on the properties of the approximation. Finally

we present extensive experiments in which we evaluate our

algorithm in simulation as well as with a real robot.

II. RELATED WORK

In the past, a substantial amount of work has been carried

out in the context of landmark selection. The majority of

approaches can be subdivided into two categories, namely

online and offline selection. In the online selection task, the

robot at each time step has to select the subset of visible

features that yields the most information. Usually no artificial

landmarks are introduced in this setting. The second class is

that of offline selection, which we also consider in this paper.

The task is to select the most useful landmarks before the

robot starts operating. Note that the offline selection task



corresponds to the sensor placement task, where sensors are

placed in the environment to observe the (blind) robot to

estimate its position.

One example of an online method is Thrun’s ap-

proach [13]. In the context of a probabilistic localization

framework, it considers the average posterior localization

error, a value that depends on the actual belief of the

robot, and uses neural networks to extract landmarks from

sensor snapshots. Zhang et al. [18] and Strasdat et al. [12]

considered the landmark selection task in the context of the

simultaneous localization and mapping (SLAM) problem.

Whereas Zhang et al. [18] select at every time step observa-

tions which minimize the entropy of the resulting posterior

distribution, Strasdat et al. use reinforcement learning to

determine a landmark selection policy.

An approach that belongs to the class of offline selection

methods is that of Sala et al. [11] which considers the

problem independently of the trajectory and in terms of the

art gallery problem. Their algorithm selects landmarks so that

from every position in the environment, the robot has a clear

line of sight to at least k ≥ 1 landmarks. Likewise, Meyer-

Delius et al. [8] present an approach that is independent of

the trajectory taken by the robot. They increase the localiza-

tion accuracy of a system already equipped with a landmark-

independent sensor (e.g., a laser range finder) by placing

landmarks so as to maximize the average uniqueness of mea-

surements at all poses throughout the map (see Section VI-

A). Jourdan and Roy [6] propose an algorithm for placing

sensors on the boundaries of buildings, which minimizes the

position error bound (PEB), a lower bound on localization

accuracy. The work of Vitus and Tomlin [16] is probably

closest to our approach as it performs trajectory-dependent

sensor (landmark) placement considering the belief of the

robot about its state. They minimize the sum of the traces

of the covariance matrices of all states.

In contrast to previous methods we also derive a tight

bound on the approximation error of our greedy algorithm

following the concept laid out by Krause and Guestrin [7].

Besides other results, they prove submodularity of infor-

mation gain for special sets of discrete random variables

in graphical models. With this property, they can give a

(1− 1/e) approximation guarantee for the greedy algorithm

to find the set of random variables which maximizes infor-

mation gain. In this paper, we expand their concept to the

case of continuous random variables and differential mutual

information.

III. LANDMARK SELECTION AS AN OPTIMIZATION

PROBLEM

As described in the previous section, we consider land-

mark selection as a trajectory-dependent problem. The evolu-

tion of the state Xt at time t ∈ [1, T ] of the robot executing a

given trajectory can be described by a Hidden Markov Model

(HMM). For the task of placing landmarks, the HMM has to

explicitly include all possible landmark positions V = L1:N

and the separate observations Z1:N
t at time t of the different

landmarks. Without the dashed arrows, Fig. 2 shows the

Fig. 2. The dynamic Bayesian network for the localization of a mobile
robot. It characterizes the evolution of controls U , states X , measurements
Z depending on the deterministic landmarks L. The dashed arrows model
the additional dependency for an external controller.

dynamic Bayesian network that describes the HMM. In this

network, Ut is the control command at time t, which for

simplicity is typically considered to be randomly chosen in

the localization task [14].

In order to explicitly calculate probabilities in this HMM,

we need to specify several properties of the robot and the

trajectory. More precisely, we take the motion model and

sensor model of the robot including the maximum range of

the sensor and the control policy and the desired trajectory

as inputs to the optimization procedure. We also consider the

number n of landmarks to be placed as given (e.g., by the

constrained memory of the robot), but one could also use a

threshold as in [8] to determine n.

For every environment and every kind of landmark de-

tecting sensor, there exists a subspace of the environment in

which it is possible to place landmarks. For our landmark

selection approach, we use a discrete representation V =
{L1, . . . , LN} of this subspace. On the power set of this

discrete set, we define an objective function F : P(V) → R.

For every subset A ∈ V , F (A) describes the value of

information gained by placing landmarks in all points in A.

Given a constrained number n of landmarks the robot can

use for localization, our goal is to find

A∗ = argmax
A⊆V;|A|≤n

F (A) . (1)

As objective function F , we consider conditional mutual

information (8.5 in [3]) in the Hidden Markov Model. In

the HMM, placing landmark Lk is equivalent to observing

the random variables Zk
1:T . Note that Zk

t can also take one

special value indicating that Lk is not visible at time t. Using

the notation ZA
1:T := {Zi

1:T | Li ∈ A}, the objective function

has the following form:

F (A) = I(X1:T ;Z
A
1:T | U1:T , L

1:N )

= h(X | U,L1:N )− h(X | ZA, U, L1:N )

= h(X | U)− h(X | ZA, U) . (2)

Note that the positions Lk of the landmarks are deterministic

and globally known for all landmarks in V , so condition-

ing on them does not change the considered probability

distributions. Also, in (2) and in the following, we omit



the indices 1 : T for convenience. Because in general

X , U and Z are sets of random variables which live on

continuous probability spaces, h is the differential entropy.

The objective function in (2) describes how the entropy of

the joint probability distribution of all the states of the robot

on the trajectory is reduced by the selected set of landmarks

(resp. their observations). As the entropy can be viewed as

a measure of uncertainty for the underlying distribution, this

objective function is an intuitive choice to us.

IV. APPROXIMATION ALGORITHM

As a result of Theorem 4 in this section, the problem

defined in (1) is NP-hard. Since there exists no deterministic

polynomial time algorithm to determine the exact maximum

F (A∗), we have to be content with an approximation al-

gorithm. Selecting the landmark subset which maximizes

conditional mutual information is equivalent to finding

A∗ = argmin
A⊆V;|A|≤n

h(X | ZA, U) . (3)

This follows directly from the definition of the objective

function in (2). Algorithm 1 approximates A∗ greedily using

this equivalence. The complexity of the algorithm is in

Algorithm 1 Greedy approximation algorithm

Input: V , n
Output: A
A := ∅

for i := 1 to n do

for all L ∈ V do

h := h(X | ZA∪{L}, U)
end for

L∗ := argmin{h | L ∈ V}
A = A ∪ {L∗}

end for

return A

O(n·|V|), which makes it applicable even for large values of

|V|. Note that this algorithm could be easily extended to the

case of maximizing mutual information over several possibly

weighted trajectories.

A. Submodularity of conditional mutual information

To get a constant factor approximation guarantee for Al-

gorithm 1, we use the same concept as Krause and Guestrin

in [7], namely that of submodularity.

Nemhauser et al. [9] show a factor (1− 1/e) approxima-

tion guarantee for greedy algorithms for objective functions

which satisfy the following three properties:

• F (∅) = 0
• submodularity, i.e., ∀A ⊆ B ⊆ V, L /∈ B :

F (A ∪ {L})− F (A) ≥ F (B ∪ {L})− F (B)
• monotonicity, i.e., ∀A ⊆ B ⊆ V : F (A) ≤ F (B).

We chose conditional mutual information as objective func-

tion specifically to have these properties. In the landmark

selection application, submodularity is an intuitive property.

It means that the increase in information about the state of

the robot resulting from adding a new landmark is lower

when more landmarks have already been placed.

All proofs in this section follow the concepts laid out by

Krause and Guestrin [7]. As can be seen in (2), F (∅) = 0
holds obviously.

Theorem 1: F (A) = I(X;ZA | U) is submodular.

Proof: In the Hidden Markov Model described above,

it holds that for every A, ZA is a set of random variables

which are independent conditioned on X . This Markov

property follows directly from the rules of d-separation [2]

(see Fig. 2). Using this and the definition of conditional

entropy [3], we get for every A:

I(X;ZA | U) = h(X | U)− h(X | ZA, U)

= h(X | U)− h(ZA | X,U)− h(X,U) + h(ZA, U)

= h(X | U)− h(X,U) + h(ZA, U)

−
∑

L′∈A

h(Z{L′} | X,U) . (4)

In (4), h(X | U) − h(X,U) does not depend on A and
∑

L∈A h(Z{L} | X,U) adds the same value to both sides

of the submodularity inequation. So to prove submodularity

of I(X;ZA | U), it suffices to prove submodularity of

h(ZA, U). We do this by considering the definition of

submodularity. ∀A ⊆ B ⊆ V, L /∈ B :

h(ZA∪{L}, U)− h(ZA, U) =

h(Z{L} | ZA, U) ≥ h(Z{L} | ZB, U)

= h(ZB∪{L}, U)− h(ZB, U) .

The inequation holds because of the “conditioning reduces

entropy”-principle [3], which states that h(A | B) ≤ h(A)
for all A, B.

Theorem 2: F (A) = I(X;ZA | U) is monotonically

increasing in A.

Proof: Using the “conditioning reduces entropy”-

principle [3] and the conditional independence property in

the HMM, it holds that ∀A ⊆ V, L /∈ A :

F (A∪{L})− F (A)

(2)
= h(X | ZA, U)− h(X | ZA∪{L}, U)

(4)
= h(ZA∪{L}, U)− h(ZA, U)− h(Z{L} | X,U)

= h(Z{L} | ZA, U)− h(Z{L} | X,U) (5)

≥ h(Z{L} | X,ZA, U)− h(Z{L} | X,U)

= h(Z{L} | X)− h(Z{L} | X) = 0 . (6)

Theorems 1 and 2 provide the properties that are required

in Nemhauser et al. [9] for the following bound:

Theorem 3: For the result Agreedy of Algorithm 1, the

following approximation guarantee holds:

F (Agreedy) ≥ (1− 1/e) max
A⊆V;|A|≤n

F (A) . (7)

For the objective function considered in this paper, this

Nemhauser bound is a tight bound:



Theorem 4: The optimization problem defined in (1) is

not approximable in polynomial time within a constant factor

better than (1− 1/e), unless P = NP.

Proof: The proof of Theorem 9 in [7] also covers this

case.

Theorem 4 states that no other polynomial time algorithm

can have a better worst case approximation guarantee than

the greedy algorithm.

B. Calculation of Entropy of the Full Posterior in the Bayes

Filter

Throughout this paper, we consider the problem of esti-

mating the pose of a robot relative to a given set of landmarks

A using a Bayes filter. The key idea of the Bayes filter

approach is to maintain a probability density p(xt | z1:t, u1:t)
(called belief) of the random variable Xt describing the pose

of the robot at time t given all landmark observations z1:t and

control inputs u1:t up to time t. This probability is calculated

recursively using the Bayesian filtering scheme

p(xt | z1:t, u1:t) = ηt p(zt | xt)

·

∫

p(xt | ut, xt−1) p(xt−1 | z1:t−1, u1:t−1) dxt−1 . (8)

Here, ηt is a normalizer that ensures that p(xt | z1:t, u1:t)
integrates up to 1 over all xt. The term p(xt | ut, xt−1) is the

motion model and p(zt | xt) the sensor model, respectively.

In the greedy approximation Algorithm 1, we need to

evaluate conditional differential entropies of the form h(X |
ZA, U). Because these terms contain the highly correlated

random variables ZA
1:T and U1:T , their evaluation includes

solving a (T · (dim(ZA
t ) + dim(Ut)))-dimensional integral

over a term for which in general no antiderivative exists.

Therefore, we apply Monte Carlo simulation and obtain

an approximation ĥ of the entropy h(X | ZA, U) as the

average over N simulated runs of the robot. In each run

of the simulation, instead of using the probability density

p(x1:T | zA1:T , u1:T ) to calculate the entropy of the run, we

use the factorization (see (11.9) in [14])

p(x1:T | zA1:T , u1:T ) =
T
∏

t=1

ηt p(z
A
t | xt) p(xt | xt−1, ut) .

(9)

In each single run, this factorization can be efficiently

evaluated via recursion.

The Monte Carlo approximation ĥ of h of course in-

creases the approximation error in Algorithm 1. However,

the approximation guarantee (Theorem 3) can be extended

to account for this error.

Theorem 5: Suppose that ĥ approximates h with an abso-

lute error of at most ǫ/n with probability at least 1− δ
n|V| .

Then using ĥ, Algorithm 1 returns a set Âgreedy, for which

F (Âgreedy) ≥ (1− 1/e) max
A⊆V;|A|≤n

F (A) − ǫ (10)

with probability at least 1− δ.

Proof: Follows directly from the proof of Theorem 11

in [7].

In the Monte Carlo simulation, the absolute error ǫ/n and the

confidence 1− δ
n|V| can be easily estimated via the standard

deviation of the estimator for h. Hence, by increasing the

number N of simulated runs, ǫ and δ in (10) can be moved

arbitrarily close to zero. Note that the Hoeffding argument

used by Krause and Guestrin to derive an upper bound for

the error depending on the value of N cannot be extended

to our case, because the random variables we consider are

generally unbounded.

V. CONTROL MODEL

In Section III we assumed the control commands u1:T to

be randomly chosen. However, in practice the robot often

gets control commands by a human operator or operates au-

tonomously, i.e., selects control commands depending on its

current belief of the state. The control behaviors considered

in this paper can be classified into the following modes:

• Random control, where the control commands do not

depend on any other random variable (see Fig. 2 without

dashed arrows).

• External control, where the control commands only

depend on the last state of the robot, which is assumed

to be known by the controller (see Fig. 2).

• Autonomous control, where the control commands de-

pend on the estimated state of the robot.

In the following we show the effect of the non-random

control modes to our landmark selection method.

A. External Controls

The external control mode is modeled by the Bayes net in

Fig. 2. Theorem 1 still holds for this Bayes net, because the

Markov property for ZA conditioned on X is still applicable.

Therefore, also the tight Nemhauser-bound (i.e., Theorems 3

and 4) holds. Because of the additional dependency (dashed

arrows) in the Bayes net, p(xt−1 | z1:t−1, u1:t) = η p(ut |
xt−1) p(xt−1 | z1:t−1, u1:t−1). Therefore, the factorization

of the full posterior in (9) has to be extended to

p(x1:T | zA1:T , u1:T )

=

T
∏

t=1

η′t p(z
A
t | xt) p(xt | xt−1, ut) p(ut | xt−1) , (11)

where p(ut | xt−1) models the policy of the controller.

We assume p(ut | xt−1) to be known and normally

distributed, so that the entropy calculation can be easily

extended to the external control mode.

B. Autonomous Controls

In the case of fully autonomous operation of the

robot, each control ut depends on the belief of the state

p(xt−1 | z1:t−1, u1:t−1), i.e., all previous control commands

u1:t−1 and observations zA1:t−1. Extended by these depen-

dencies the Bayes net no longer fulfills the Markov property

for ZA and therefore the conditional mutual information is

not submodular in the autonomous mode which was a pre-

condition for the Nemhauser approximation guarantee.
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Fig. 3. The landmarks selected by our greedy algorithm and optimal land-
mark selections for autonomous and external controls. A sample trajectory
for external controls using the greedily selected landmarks is plotted in light
blue together with its 2σ uncertainty.

Concretely, the probability that landmarks further along

the trajectory become visible to the robot depends on how

well the robot is localized, i.e., which landmarks it has

observed before. So, adding a landmark to a small set of

selected landmarks can result in a lower increase of condi-

tional mutual information than adding the same landmark to a

superset of the selected landmarks for which the probability

of reaching this last landmark is higher. Such a landmark

configuration obviously breaks the submodularity property.

However, in the simulation experiments (see Section VI-

A) the results of the greedy algorithm are still close to the

optimal results even for autonomous controls.

VI. EXPERIMENTAL RESULTS

To evaluate our approximation algorithm, we performed

extensive experiments both in simulation and with a real

robot. In the experiments, we consider a sensor which

observes range and bearing to unique landmarks and has a

limited field of view. The field of view is considered circular

with radius 2 m in simulation, while for the real robot the

rectangular field of view of its camera is used. As implemen-

tation of the Bayes filter, we use a Square-Root Unscented

Kalman filter (SR-UKF) [15], which approximates the real

probability distributions with k-dimensional normal distribu-

tions N (µ,Σ). This allows for a straightforward calculation

of the differential entropy as h(N ) = log
√

(2πe)k|Σ|.

A. Simulation Experiments

Two different kinds of simulation experiments were per-

formed, each with N = 10, 000 runs:

In the first experiment, we compare the solution produced

by Algorithm 1 to the optimal solution. We selected n = 5
out of |V| = 15 landmarks for a trajectory forming a pointed

figure eight. This is the maximum problem size for which we

were able to determine the optimal solution via brute force.

Fig. 3 shows the landmark set Agreedy selected by the greedy

approach and the optimal landmark set A∗ = argmaxF (A)
both for autonomous and external controls. In both control

modes, the greedy strategies place two of the five landmarks

on different positions than the brute force strategies. Two
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Fig. 4. The mutual information values for the four landmark sets from
Fig. 3 and 95% confidence intervals of the Monte Carlo simulation.
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Fig. 5. Four instances in which our algorithm selected five landmarks
assuming autonomous controls. The selected landmarks are shown as big
orange dots, the sets V as small orange dots, and one execution of the
desired trajectories in blue. First row: two of the ten sampled tasks. Second
row: a sweeping task and a fetch-and-return task.

landmarks are placed on the same positions in all four cases.

The mutual information values F (A) of the four landmark

sets are shown in Fig. 4. In this scenario, the approximation

quality of the greedy algorithm is 99.1% of the optimal value

for autonomous controls and 100.3% for external controls.

The percentage higher than 100% is due to the standard

deviation in the Monte Carlo simulation. So even for the case

of autonomous controls, for which we did not derive a bound

on the approximation error, the greedy algorithm performs

well in the experiment. The absolute values in Fig. 4 are of

course much lower for the external control case, as h(X | U)
already is much lower due to the additional integration of

p(ut | xt−1) into the posterior distribution.

In the second simulation experiments, we evaluated our

approach independently of a specific trajectory and a set

of possible landmark positions V . In order to achieve this

abstraction, we randomly sampled ten trajectories and ten

associated sets V , each containing 100 landmarks, in a

10 m x 10 m environment. For each trajectory, we evaluated

the selections for five and ten landmarks, so together we got

20 landmark selection tasks. Fig. 5 displays the five first

landmarks our algorithm selected for two of the ten sampled

tasks and the selections for two handcrafted sweeping and



TABLE I

EVALUATION ON SAMPLED TRAJECTORIES

mut. inf. hfinal d[m] dfinal[m]
our approach 1121.11 -4.32 0.191 0.126

uniqueness 791.11 -2.64 0.285 0.254

random 697.09 -1.70 0.348 0.409

no landmarks 0.00 2.59 1.084 1.807

TABLE II

QUALITY IN SIMULATION AND REALITY

mut. inf. hfinal d[m] dgoal[m]
simulation 2278.09 -4.62 0.061 0.073

reality 2570.94 -5.33 0.068 0.040

fetch-and-return tasks. In the sampled tasks, we evaluated

our approach of greedily placing landmarks to maximize

mutual information against randomly placing landmarks, no

landmarks, and the uniqueness maximization algorithm [8].

The latter approach maximizes the average uniqueness over

all possible states x ∈ X of the robot. It defines the

uniqueness of a pose x given a map m as U(x,m) =
(∫

x̃∈X
p(z[x,m] | x̃,m)dx̃

)−1
, where z[x,m] is the maximum

likelihood observation at pose x given the map m. To

evaluate the landmark selections, we consider four different

measures of quality: the mutual information I(X;ZA | U),
the entropy at the final state hfinal := h(XT | ZA

1:T , U1:T ),
and the average and final distances d and dfinal, respectively,

between the true pose and the mean of the belief. Table I

summarizes the evaluation results for autonomous controls.

Our approach based on mutual information maximization

yields the best results for all four criteria. In paired sample

t-tests, the differences between the results of our approach

and the results of all other approaches were statistically

significant at a 5% level. In fact, the highest p-value was

0.21%. For external controls, the differences in the criteria

of quality are similar to the ones shown in Table I. They are

also all statistically significant at a 5% level.

B. Experiments with a Real Robot

To further validate the simulation results, we evaluated the

four criteria of quality also on a real Pioneer P3-DX robot.

The robot and the executed trajectory are shown in Fig. 1.

We used a standard webcam pointing towards the ceiling

as a sensor for detecting unique ARToolkit markers [1].

The considered set V of possible landmark locations is

disconnected by areas where lamps and supporting beams

do not allow landmark placement (see Fig. 1). To evaluate

the criteria d and dfinal, we obtained reference positions from

laser-based Monte Carlo localization [14].

The eight landmarks depicted in Fig. 1 were selected by

our algorithm. Using these landmarks, the real robot executed

ten autonomous runs. Table II shows the criteria of quality

for this scenario evaluated in simulation together with the

average values of the ten real runs. Despite of the imperfect

reference positions and remaining systematic errors the qual-

ity values in the real world experiments corresponded to the

ones obtained in simulation.

VII. CONCLUSIONS

In this paper, we presented a trajectory dependent land-

mark selection method for mobile robot navigation. We

formulated landmark selection as the optimization problem

of maximizing conditional mutual information of the states

of the robot given the observations of the landmarks. This

problem belongs to a class of problems which are known

to be NP-hard. Using the concept of submodularity, we

derived a tight constant-factor bound on the error of our poly-

nomial time approximation algorithm. In contrast to other

approaches, our algorithm is not restricted to linear systems

and does not make specific assumptions on the structure of

the set of possible landmark locations. Extensive experiments

demonstrate that it outperforms other approaches.
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