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Abstract— Data association is an essential problem in simul-
taneous localization and mapping. It is hard to solve correctly,
especially in ambiguous environments. We consider a scenario
where the robot can ease the data association problem by
deploying a limited number of uniquely identifiable artificial
landmarks along its path and use them afterwards as fixed
anchors. Obviously, the choice of the positions where the robot
should drop these markers is crucial as poor choices might
prevent the robot from establishing accurate data associations.
In this paper, we present a novel approach for learning when
to drop the landmarks so as to optimize the data association
performance. We use Monte Carlo reinforcement learning for
computing an optimal policy and apply a statistical convergence
test to decide if the policy is converged and the learning process
can be stopped. Extensive experiments also carried out with a
real robot demonstrate that the data association performance
using landmarks deployed according to our learned policies is
significantly higher compared to other strategies.

I. INTRODUCTION

One of the fundamental problems in mobile robotics is
simultaneous localization and mapping (SLAM). In SLAM,
a robot builds a map of an initially unknown environment
while localizing itself in this very map. One of the key
challenges during SLAM is that of data association, where
the robot has to recognize previously observed places. In
general, data association failures lead to inconsistent maps
that cannot be used for navigation tasks. Whereas highly
effective methods for computing a map given the data
associations have been developed in the past [6], [9], the
development of methods for robust data association is still an
open research problem. In practice, data association quickly
becomes intractable, particularly in ambiguous environments,
as the complexity of the data association problem grows
exponentially with the number of feature observations.

One way of resolving ambiguities in the environment and
supporting data association is to deploy artificial landmarks.
In the past, several approaches to foster potential future
data associations have been developed. They include robots
that can drop radio-frequency identification (RFID) tags or
similar uniquely identifiable landmarks [4], [8], [17]. In all
these approaches, however, there is the problem of deciding
where and when to deploy the landmarks. This problem
becomes even more relevant when the robot can only carry
a limited number of landmarks.
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Fig. 1. Estimated landmark positions (blue circles) and robot path (gray
line) for a simulated robot traveling through a Manhattan-like world with
data associations calculated without the use of deployed markers (left)
and with the uniquely identifiable markers (red triangles) deployed by our
approach (right).

In this paper, we present an approach for learning a
policy for autonomous landmark deployment that aims at
optimizing the data association performance. Our method
is designed to assist the SLAM system without interfering
with the actual navigation tasks carried out by the robot.
Consequently, the robot does not need to perform any detours
for proper landmark deployment. To compute the optimal
policy, we apply actor-critic Monte Carlo reinforcement
learning using the number of incorrectly estimated feature
correspondences as performance measure. For learning, we
employ simulated episodes of robot navigation tasks. In order
to make the resulting policies generalize well to different
environments, our approach relies on general features like
the remaining battery life time, the number of landmarks
left on board, the distance to the closest deployed landmark,
and a feature capturing the abstract local structure of the
environment. To reduce the number of episodes required
for learning, we employ a statistical convergence test. As
a result, the robot can efficiently learn a policy for placing
artificial landmarks so that the data association errors are
greatly reduced. Fig. 1 provides an illustrative example for a
synthetic environment with non-distinguishable landmarks.

This paper is organized as follows. After discussing related
work in the next section, we give a short survey on SLAM
and reinforcement learning in Section III. In Section IV, we
introduce our approach for learning artificial landmark de-
ployment policies. Finally, we provide extensive experiments
that demonstrate the effectiveness of the learned policies both
in simulation and on a real robot.

II. RELATED WORK

In the past, several approaches to tackle the data as-
sociation problem in SLAM have been developed. One
popular method that does not rely on artificial landmarks



is the joint compatibility branch and bound method by
Neira and Tardós [12]. It explicitly considers the correlations
between landmarks by searching an interpretation tree for
the hypothesis that covers the largest number of jointly
compatible pairings. Olson [13] looks for local matches in
the environment and aims to reject those matches that are not
globally consistent using single cluster graph partitioning,
which relies on a pair-wise consistency graph. In contrast
to our approach, methods without the aid of artificial land-
marks have to solely rely on the landmarks present in the
environment. Therefore, with increasing ambiguity in the
environment it becomes more challenging for such methods
to robustly find the correct data associations.

The majority of approaches for SLAM with the aid of de-
ployable landmarks address graph-like worlds and determin-
istically observable markers. For example, Dudek et al. [4]
localize a robot that travels along the edges of a graph
and that can deploy and identify markers at the vertices.
Bender et al. [2] present approaches for mapping a directed
graph using deterministically observable undirected markers.
Wang et al. [17] prove that the SLAM problem in an
undirected graph can be solved deterministically if the robot
can drop a deterministically observable directional marker. In
contrast to these approaches, we apply a probabilistic model
to deal with noisy motion and measurements.

Batalin and Sukhatme [1] devised a coverage strategy for
a robot with no knowledge about its position. In their case,
the robot can deploy active markers and use them later to
move into the direction suggested by them. In the work by
Kleiner et al. [8], the robot applies a manually designed
heuristic, which takes into account the obstacle density and
the estimated tag density, to deploy RFID markers to aid a
SLAM system. In contrast to such approaches, our method
learns a landmark deployment policy from simulated runs.

The problem of selecting informative environment features
in SLAM is closely related to the problem considered in this
paper. For example, Strasdat et al. [14] use reinforcement
learning to determine a policy for feature selection which
minimizes the distance between the final position of the
robot and its goal. They consider obstacle-free worlds and
therefore do not need to incorporate information about the
spatial structure of the environment into the learning method.
Thrun [16] considers a similar problem in the context of
mobile robot localization and uses the average posterior
localization error for deciding which features to use.

Compared to previous methods, the contribution of the
work presented in this paper is a novel approach to improve
data association performance by applying a policy for au-
tonomous deployment of artificial landmarks, learned using
actor-critic Monte Carlo reinforcement learning.

III. BACKGROUND

A. Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) refers to
the problem of estimating the joint posterior distribution

p(x1:T ,m1:n, c1:T | u1:T , z1:T ) (1)

of the robot’s poses x1:T and the map m, which consists of
n features m1:n, given a set of robot motion commands u1:T
and a set of feature observations z1:T . Furthermore, c1:T
refers to the data associations, i. e., the identities of the map
features perceived in the observations z1:T .

B. Data Association in SLAM

In the context of the simultaneous localization and map-
ping problem, data association refers to the problem of
identifying a map feature mi in one observation zt1 as the
very same feature found in another observation zt2 . Unless
the robot is able to recognize previously visited places,
its position uncertainty increases without bound due to the
accumulating odometry error. Integrating out the unknown
data associations c1:T in Eq. (1) leads to

p(x1:T ,m1:n | u1:T , z1:T )

=
∑
c1

∑
c2

. . .
∑
cT

p(x1:T ,m1:n, c1:T | u1:T , z1:T ) . (2)

Consequently, the number of possible data associations
grows exponentially with the number of observations.

Most approaches to data association are based on the
innovation and its covariance, i. e., the difference between
the actual observation zi and the predicted observation ẑi
under a given data association c(zi). If the innovation is a
Gaussian, the squared Mahalanobis distance D2

M (zi, ẑi) is
distributed according to the χ2

d distribution, where d is the
dimensionality of the innovation. One of the most popular
approaches to data association is the nearest neighbor filter. It
computes a set of compatible candidate features and accepts
only features whose innovation is within a certain region of
the χ2 distribution. It then chooses the candidate feature that
best matches the observation.

There are more sophisticated data association techniques
than the nearest neighbor filter [12], [13], which can handle
significantly more challenging environments. However, even
these approaches cannot guarantee to avoid false positives,
particularly in the presence of perceptual ambiguities.

C. Graph-Based Approaches to Solve SLAM

Graph-based approaches to solve the SLAM problem
model the poses of the robot and the positions of observed
landmarks as nodes in a graph. The edges of such a graph
correspond to spatial constraints between the individual
nodes. These constraints arise from odometry measurements
and from landmark observations. Graph-based SLAM ap-
proaches are typically divided into a front end and a back
end. The front end interprets the sensor data to extract spatial
constraints. To do so, the data association problem has to
be addressed. Using the solution of the data association
problem, the back end finds the configuration of the nodes
that best matches the extracted spatial constraints by applying
an optimization technique [6], [7], [9]. In the back end, a
key precondition of the successful computation of the map
is getting the correct data associations from the front end.

In our experiments, we apply a graph-based SLAM ap-
proach using a nearest neighbor filter for data association in



the front end and the optimization from [9] in the back end.
Note that our approach is not restricted to this framework
but can be applied in any SLAM system.

D. Actor-Critic Monte Carlo Reinforcement Learning
In reinforcement learning [15], an agent interacts with its

environment to learn how to behave so as to maximize a
numerical reward. Formally, a reinforcement learning prob-
lem is given by a set of states S, a set of actions A that
the agent may perform at discrete time steps t, transition
probabilities that describe how the states change in response
to the agent’s actions, and a reward function r : S ×A → R
that determines the numerical reward that the agent receives
for executing action a ∈ A in state s ∈ S. A policy is a
probability distribution π(s, a) = p(a | s) of choosing action
a given the agent is in state s. For each episode e, which
is a sequence (s0, a0, . . . , sT , aT ) of states and actions, the
return Rt for executing action at is given by the sum of the
rewards gathered after the execution of at:

Rt =

T∑
t′=t+1

r(st′ , at′) . (3)

The goal of reinforcement learning is to find the policy
π?(s, a) that maximizes the expected return

Qπ(s, a) = Eπ[Rt | st = s, at = a] (4)

for all s ∈ S and a ∈ A.
Monte Carlo reinforcement learning methods do not re-

quire prior knowledge of the environment’s dynamics, i. e.,
the probability distributions of the transitions, to compute the
optimal policy. Instead, these methods estimate Qπ(s, a) us-
ing the return averaged over a number of sample episodes e.
First-visit-only Monte Carlo learning takes into account only
the first occurrence of each state-action pair (s, a) in each
episode e, leading to the estimator

Q̂π(s, a) =
1

nF

∑
e∈F(s,a)

Refirst(s, a) , (5)

where F(s, a) = {e | (s, a) ∈ e}, nF = |F(s, a)|, and
Refirst(s, a) is the return at the first occurrence of (s, a)
in episode e. In Monte Carlo reinforcement learning, the
estimator Q̂π converges to Qπ if all state-action pairs occur
with non-zero probability when following the policy π. A
common way to satisfy this condition is to use a so-called
softmax policy of the form

π(s, a) = p(a | s) = exp(Q̂π(s, a)/τ)∑
a′∈A exp(Q̂π(s, a′)/τ)

, (6)

where τ is the so-called temperature.
In actor-critic reinforcement learning, the actor follows a

policy, while the critic attempts to estimate the Q-function
under this policy. As soon as the critic has observed enough
episodes to learn the Q-function, the critic becomes the actor
and a new critic is initialized. Actor-critic learning thus does
not change the policy while learning the Q-function. As a
result, the estimate of the Q-function is not distorted by
values induced by a policy that has already been altered.

IV. OUR APPROACH TO DEPLOYING ARTIFICIAL
LANDMARKS TO FOSTER DATA ASSOCIATION

To facilitate the data association during SLAM, we con-
sider a robotic system that can autonomously deploy a
limited number k of uniquely identifiable landmarks. Given
these additional landmarks, the SLAM posterior turns into

p(x1:T ,m1:n, c1:T , l1:k | u1:T , z1:T , zl1:T , cl1:T ) , (7)

where l1:k are the positions of the artificial landmarks, and
cl1:T are the known identities of these landmarks perceived
in the observations zl1:T . The observations zl1:T of the de-
ployed artificial landmarks and, in particular, the correspon-
dences cl1:T refine the SLAM posterior, potentially making
the data association problem more tractable by resolving
ambiguities in the environment.

The benefit of the artificial landmarks for data association
obviously depends on where and when the robot deploys
them. We aim at distributing the artificial landmarks such
that the risk of wrong data associations for the environment
features is minimized. Note that our method is designed to
assist the SLAM system of the robot without interfering
with the actual navigation task carried out by the robot. Our
approach deploys the artificial landmarks along the trajectory
of the robot and does not impose detours to deploy artificial
landmarks at appropriate positions. Our approach applies
Monte Carlo reinforcement learning to compute a policy that
allows the robot to deploy the artificial landmarks such that
the performance of data association is optimized.

A. Measuring the Performance of Data Association

To measure the performance of data association, we count
the number of incorrectly estimated map feature correspon-
dences. Let c?t be the true data association that indicates
that observation zt stems from environment feature m?

i . In
contrast to that, ct is the correspondence of observation zt
to a map feature mj as estimated by the data association
method. For every environment feature m?

i , we count the
number N(m?

i ) of map features mj that the data association
method associated at least once with m?

i . More formally, we
define

N(m?
i ) = |{mj ∈ m1:n | ∃t : c?t = m?

i ∧ ct = mj}| . (8)

If the feature correspondences are correctly estimated, we
have N(m?

i ) = 1. Accordingly, the total number of incor-
rectly estimated feature correspondences is given by

E(c?1:T , c1:T ) =
∑
m?i

(N(m?
i )− 1) . (9)

Our approach aims at placing the artificial landmarks such
that the number of incorrectly estimated feature correspon-
dences E is minimized.

B. Reinforcement Learning for Improving Data Association

Extensive experiments (see Sec. V) revealed that heuristics
for deciding when to deploy landmarks perform badly or
need to be hand-tuned for specific scenarios. Therefore, we
apply actor-critic Monte Carlo reinforcement learning as



described in Sec. III-D to estimate a landmark deployment
policy. We compute a policy that allows the robot to deploy
a set of artificial landmarks at the locations that minimize
the risk of wrong data associations in terms of the error E
defined in Eq. (9). In each simulated episode, the robot
performs a randomly sampled navigation task. The robot
thereby applies graph-based SLAM and deploys its artificial
landmarks according to the currently estimated policy. In
each of the episodes, the robot receives the rewards

rt =

{
0 if t < T ,

−E(c?1:T , c1:T ) if t = T .
(10)

C. Action and State Representation

At every time step t, the robot decides whether to drop one
of the artificial landmarks in the current state s according to
a policy π(s, a). Hence, the action space A of the reinforce-
ment learning problem is given by A = {drop, keep}.

To learn policies that generalize well to different environ-
ments, we describe the state of the robot and the environment
in terms of general state features. We use the remaining
battery life time in percent, the number of artificial landmarks
left on board, and the distance to the artificial landmark that
has been deployed closest to the robot. In addition to that,
we make use of a feature that captures the abstract spatial
structure of the environment based on a classification of
the current position of the robot in terms of the categories
room, doorway, corridor, and junction. There exist several
robust techniques to compute this spatial feature for robots
equipped with laser scanners [5], [11] or vision systems [10].
To efficiently represent Q̂π , we divide the state-action pairs
into bins.

D. Statistical Convergence Test

As mentioned above, in actor-critic reinforcement learn-
ing, the critic becomes the actor after having observed
enough episodes to learn the Q-function under the policy π
followed by the current actor. To test whether the critic is
already confident of the estimated Q-function, our approach
applies a statistical convergence test after each episode.

Since the policy π observed by one critic is not changed in
between the episodes, the estimated Q-function is computed
using independent and identically distributed samples from
the same policy. Therefore, given the definition in Eq. (5) of
the estimator Q̂π(s, a), its variance can be estimated as

S2 =

∑
e

(
Refirst(s, a)− Q̂π(s, a)

)2
nF − 1

. (11)

With confidence 1− α, the value Qπ(s, a) that we estimate
lies in the intervalQ̂π(s, a)−√ S2

nF
tnF−1,α2 , Q̂

π(s, a) +

√
S2

nF
tnF−1,α2

 ,
where tnF−1,α2 is the (1 − α

2 )-quantile of the Student’s
t-distribution with nF−1 degrees of freedom. Once the con-
fidence interval of the critic’s estimate indicates convergence
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Fig. 2. The environment used for the experiments with the real robot and
for cross-validation. Upper left: Deployed landmarks (red triangles) of one
sample execution of our policy in the cross-validation experiment. Upper
right: One of the runs of the real robot. Depicted are the estimated path
(gray lines), the estimated positions of the environment features (blue dots),
and the estimated positions of the deployed landmarks (red triangles). Lower
right: Estimation for the same run without integrating the observations of
the deployed landmarks. The environment is labeled with the spatial features
used for learning: corridors (yellow), doorways (orange) and rooms (blue).
The picture shows the Pioneer P3-DX robot used in the experiments.

for all observed state-action pairs (s, a), the critic becomes
actor, and a new critic is initialized.

V. EXPERIMENTAL EVALUATION

We evaluated the performance of our approach both in
simulation and on a real robot. In the experiments, we
considered a robot that is equipped with a device for de-
ploying five artificial landmarks, a noisy odometer, and a
noisy landmark detection sensor. In the learning phase, we
initialized the robot in each episode at a random pose and let
it perform randomly sampled navigation tasks until its battery
was empty. During operation, the robot applied a graph-based
approach to SLAM using the framework proposed in [9] and
a nearest neighbor filter to compute the data associations.

A. Experiments with a Real Robot

To evaluate the performance of our approach in practice,
we applied a policy learned by our approach on the robot
depicted in Fig. 2 executing randomly sampled paths in the
environment shown on the right hand side of the figure. The
learning phase was done in simulation, as it required 2,800
episodes to converge, which took 37.48 minutes in our multi-
threaded implementation on an Intel R© CoreTM i7 2.8GHz.

The robot is equipped with a SICK RFI641 RFID reader
with a circular field of view with radius 0.9 m mounted at
the front and a custom made device for dropping RFID tags
mounted in the back. Additionally, the robot is equipped
with a SICK S300 laser range finder with a field of view
of 270◦, which we used for computing the spatial features.
To do so, we applied a straightforward heuristic: it considers
local minima in the scans for extracting door posts and long



TABLE I
EVALUATION OF REAL-WORLD EXPERIMENTS

Error E Translational Error Rotational Error
Our approach 19.30 0.88m 0.09 rad
Never 23.10 3.68m 0.24 rad

parallel lines for finding corridor walls. Note that applying a
more sophisticated classification technique [5], [11], would
possibly even further improve our results. As environment
features, we placed 70 RFID tags at randomly selected
positions. The uniquely identifiable IDs of these tags, which
the robot’s SLAM system did not use, make it possible to
precisely evaluate the data association error E introduced
in Sec. IV-A. Furthermore, we evaluated the accuracy of
the resulting pose estimates according to the framework
described in Burgard et al. [3], using laser-based Monte
Carlo localization to obtain reference positions.

Table I shows the results averaged over ten runs of the
robot. It compares the performance of the estimation of
the SLAM graph considering the deployed markers (Our
approach) against considering only the environment fea-
tures (Never). As can be seen in the table, the moderate
reduction of the error E results in a large improvement of
the pose estimation errors. The results of this experiment
show that our approach is applicable in practice and that
for the very noisy distance readings of the RFID sensor,
the landmarks deployed by our approach especially help
reducing the pose estimation errors.

B. Data Association Using the Learned Policies

In the first set of simulation experiments, we evaluated the
data association performance of the policies learned by our
approach. In this and the following experiments, we simu-
lated the robot’s landmark detection sensor with a circular
field of view with radius 2 m and applied a deterministic
spatial feature detection. We compared our learned policies
to four naive approaches, namely Equidistant, which deploys
the artificial landmarks equidistantly in time, Random, which
deploys the markers at random time steps, Always, which
deploys landmarks at every time step until all markers are
deployed, and Never, which never deploys any landmarks,
and to a heuristic in the sense of Kleiner et al. [8], named
Density. This heuristic computes the obstacle density to the
left and to the right of the robot from a simulated laser scan
by applying kernel density estimation. Likewise, it computes
the density of the already deployed landmarks. Based on
these densities, it decides whether to drop a landmark. We
used scenario-specific hand tuned parameters to optimize the
performance of this heuristic.

We evaluated every approach in 100 randomly sampled
simulated runs in a 6 × 6-row Manhattan-like environment
with 96 environment features, for which a sample run can
be seen in Fig. 1. In this environment, the simulated robot is
able to discern the spatial features “corridor” and “junction”.
Fig. 3 shows the errors for the evaluated approaches. We
additionally performed two-sided t-tests, which showed that

Error E
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Fig. 3. The incorrectly estimated feature correspondences E and the trans-
lational and rotational pose estimation errors (in m and rad, respectively),
averaged over 100 sample runs in a Manhattan-like environment.

TABLE II
CROSS-VALIDATION OF THE ERROR E IN FIVE ENVIRONMENTS

Intel A Intel B FR079 A FR079 B FR106 Average
Our approach 4.30 0.45 2.62 2.39 5.29 3.01
Density 4.95 0.53 3.03 2.74 7.99 3.85
Always 6.18 1.36 5.75 4.87 10.30 5.69
Equidistant 7.09 1.80 7.12 5.84 10.59 6.49
Random 6.65 4.93 7.68 7.34 13.07 7.93
Never 14.32 10.24 15.58 14.64 26.67 16.29

our approach significantly outperforms all other approaches
in all errors on a 95% confidence level.

C. Generalization to New Environments

We performed a five-fold cross validation in simulation to
evaluate how well the policies computed by our approach
generalize to environments that the robot has not seen pre-
viously. To do so, we considered five environments: FR079
A and FR079 B, depicted in Fig. 2, Intel A and Intel B,
which capture parts of the well-known Intel Research Lab
map, and FR 106, an office building at Freiburg Campus. In
the simulation, we placed environment features at randomly
sampled locations in the maps. In each fold of the cross val-
idation, we learned a policy in four of the five environments
and then evaluated its performance on the excluded one.

The resulting E values are given in the first row of Ta-
ble II. In the other rows of the table, the E values for the
heuristics described in Sec. V-B are stated for comparison.
As can be seen in the table, the policies learned by our ap-
proach yield the lowest error values on average and for every
single environment. This suggests that the policies computed
by our approach generalize well to new environments.

D. Adaptation to the Sensor Range

In this section, we evaluate how the policies computed
by our learning approach adapt to the range of the land-
mark detector. We learned landmark deployment policies for
three simulated robots with the sensor ranges 2 m, 1 m, and
0.5 m in the FR106 environment also used in the previous
experiments. Fig. 4 presents intensity plots of the resulting
policies. As can be seen in the figure, the robot with
sensor range 0.5 m strongly prefers deploying landmarks in
doorways, because landmarks deployed in narrow passages
are more likely to be observed later on, even with the small
sensor range. The figure also shows that with increasing
sensor range, the decision to deploy a landmark is stronger
influenced by the distance to the nearest landmark and less
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Fig. 4. The policies learned by our approach when using sensor ranges
of 2 m (left), 1 m (middle), and 0.5 m (right), where red corresponds to
p(drop | s) = 1 and white corresponds to p(drop | s) = 0. The ordinate is
the distance to the nearest deployed landmark and the abscissa is the spatial
feature. The values are averaged over the battery level and the number of
remaining landmarks. The probability in the lower right corner cell is not
converged due to the seldom occurrences of this situation.
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Fig. 5. Estimated landmark positions and robot path for the Victoria Park
data set with data associations calculated without deployed landmarks (left),
by taking into account the simulated observations of the landmarks deployed
by our approach (middle), and for the ground truth data associations (right).

by the spatial feature. The results suggest that the policies
computed by our learning approach adapt well to the range
of the robot’s sensor.

E. Large Scale Outdoor Environment

In this simulation experiment, we apply our approach on
the well-known Victoria Park data set, covering an outdoor
area of more than 200×200m and including the observations
of tree trunks. In this scenario, no spatial features are
available, so our policy uses only the other three dimensions
of the state space for selecting when to deploy a landmark.
Note that due to the nature of the data, the policy was learned
and evaluated on the same run, adding simulated observations
of the deployed landmarks to the data set. Fig. 5 shows
the estimated path of the robot with and without integrating
the simulated observations of the deployed landmarks, as
well as for applying the publicly available ground truth
data associations (as used in [9]) for this data set. In
this scenario, the vanilla nearest neighbor filter performs
especially bad when not considering the deployed landmarks.
Using a more sophisticated data association approach would
certainly increase the performance here. In this scenario,
our approach was able to reduce the number of incorrectly
estimated feature correspondences E to 10, while Equidistant
deployment resulted in a value of 20, Always in a value of 26,
Random in a value of 78, and Never in a value of 130. The
Density heuristic was not applicable, as no obstacle density
can be calculated in this scenario. The results suggest that
our approach works well even in large scale environments
without spatial features.

VI. CONCLUSIONS

In this paper, we presented an approach based on actor-
critic Monte Carlo reinforcement learning to learn a policy
that allows a mobile robot to effectively deploy uniquely
identifiable artificial landmarks so as to minimize data as-
sociation errors in SLAM. Our approach uses features that
support transferring the learned policies to previously not
observed environments. Extensive experiments, both in sim-
ulation and on a real robot, demonstrate that our deployment
approach results in significantly more accurate pose estimates
than those obtained with different heuristics. In future work,
we plan to utilize the spatial features defined in this paper
not only for the deployment policy but also directly for data
association. This could be quite helpful as observations made
at positions with the same spatial feature are more likely to
correspond to the same landmark than observations made at
locations with different spatial features.
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