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Abstract— Precise navigation is a key capability of au-
tonomous mobile robots and required for many tasks including
transportation or docking. To guarantee a robust and accu-
rate localization and navigation performance, many practical
approaches rely on observations of artificial landmarks. This
raises the question of where to place the landmarks along the
desired trajectory of the robot. In this paper, we present a
novel approach to landmark selection, which aims at selecting
the minimal set of landmarks that bounds the uncertainty about
the deviation of the robot from its desired trajectory. At the
same time the selected landmark sets are robust against the
fact that a certain number of landmarks can be obscured from
view during operation. Our algorithm is highly efficient due
to a linearization of the whole navigation cycle and employs
submodular optimization, for which strong formal bounds on
the approximation quality are known. In extensive experiments,
also carried out with a real robot, we demonstrate that our
approach outperforms several other methods and that it enables
robust autonomous robot navigation in practice.

I. INTRODUCTION

For autonomous mobile robots, being able to make distinc-
tive observations of the environment is essential to ensure a
reliable navigation performance. Due to possible ambiguities
and dynamic changes, the features which are present in the
environment are often insufficient for the desired accuracy
in navigation. Therefore, especially in industry and logis-
tics, many practical approaches rely on the use of artificial
landmarks to achieve a robust navigation performance [8],
[20]. Depending on their type, the landmarks or their place-
ment can be expensive. Additionally, the computing power
required during navigation increases with the size of the
landmark set. On the other hand, landmarks can wear out
over time or be obstructed by dynamic objects. Therefore,
an ideal landmark placement minimizes their number, while
nevertheless allowing for a certain redundancy.

In this paper, we consider the problem of selecting a
set of landmarks that is suitable for robust navigation of
mobile robots that repeatedly execute the same trajectory.
Our approach to landmark selection builds on Bayesian A-
optimal design [15], bounding the trace of the covariance
of the robot’s deviation throughout the whole trajectory.
Thereby, our method effectively bounds the uncertainty about
the deviation of the robot from its desired trajectory for
all dimensions of the state space. Our approach aims at
minimizing the number of landmarks needed, while still
satisfying the bound on the trace even if any k of the
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Fig. 1. The KARIS robot in the experimental environment. The two laser
scanners on opposite corners of the robot provide a 360◦ field of view. The
three stripes of reflective tape on the walls can be detected in the laser scans
and are part of the robust landmark set selected by our approach.

selected landmarks are not observable. By choosing k, the
user can trade off the number of landmarks needed against
the robustness to missing landmarks.

Our approach has several characteristics that make it
especially useful in practice: The robustness against missing
landmarks allows the application of smooth fallback pro-
cedures: If the robot does not observe a placed landmark
for some time, it can send a signal to the maintenance
personnel and can still travel safely back to its parking
position, leaving the workspace unobstructed for others. For
landmark placement, we take into account the desired trajec-
tory of the robot as well as its motion model and its sensor
model, making the selected landmarks especially useful for
the considered navigation task and the specific robot. As
we linearize the model of the entire navigation cycle, our
approach is highly efficient and therefore can be utilized even
in large scale scenarios. We represent the space of possible
landmark locations by a discrete set. Therefore, in contrast
to many continuous optimization procedures, our approach
does not rely on continuity assumptions for the space of
possible landmark locations and is easily adjustable to new
scenarios. To achieve the desired robustness in the landmark
placement, our approach uses a conservative approximation
of the landmark visibility that does only depend on the
desired bound specified by the user. Also, we formulate
our objective function in a way that allows us to utilize
techniques from submodular function optimization, which
come with formal approximation guarantees.

II. RELATED WORK

In the context of robot navigation, there exist several
approaches to landmark selection for a robot with on-
board sensors and to the similar problem of sensor location



selection for tracking a blind robot. For example, Sala et
al. [16] cover an environment with landmarks so that at every
position, at least n ≥ 1 landmarks are observable. Erickson
and LaValle [9] derive bounds on the maximum number of
deterministically observable color-coded landmarks needed
to cover a polygonal region. For a fixed set of possible robot
positions, Jourdan and Roy [12] place sensors on the walls
of buildings to minimize the average position error bound.
Lerner et al. [14] select a landmark set that minimizes the
weighted trace of the covariance resulting from one single
observation of the landmarks. In contrast to these methods,
our approach considers the full specification of the robot and
its navigation task for landmark selection.

Similar to our approach, Vitus and Tomlin [18] place
landmarks along a given trajectory. They use the a-posteriori
covariance of the most likely run of the robot to approximate
the a-priori covariance. Van den Berg et al. [5] consider
a similar linearized system as we do, and choose one out
of a set of randomly sampled sensor locations for a single
sensor without observability constraints. In our previous
work [3], we placed landmarks to minimize the entropy of
the joint distribution of all robot states, which is a sub-
modular optimization problem. In that approach, we applied
Monte-Carlo simulations for landmark placement, which is
computationally more demanding than the linearization we
apply in this paper. In a second previous approach [2],
we considered an efficient linearized system with a less
strict observability constraint than the one presented in this
paper. Therefore, that approach is not robust against missing
landmarks and is highly non-submodular. Also, both our
previous approaches do not consider the case of missing
landmarks. See Sec. VI-B for a comparison to these methods.

To our knowledge, there exists no other approach in the
landmark selection literature that takes into account the
specification of the navigation task and ensures robustness
against missing landmarks.

Also on the topic of submodular function optimization,
there exists a large body of literature [7], [11], [13], [17],
ranging from applications like Gaussian Process model fitting
for ship hull inspection [11] to selecting beneficial grasping
poses for robotic manipulators [17].

III. BACKGROUND AND PROBLEM STATEMENT

We consider the problem of landmark placement for
a mobile robot that repeatedly and autonomously travels
along the same trajectory T . Hereby, the trajectory T =(
(x?

1,u
?
1), . . . , (x?

T ,u
?
T )
)

is a time-discrete sequence speci-
fying the desired robot state x?

t and control command u?
t at

each time step t.
For localization, the robot has a map of the positions and

the unique identities of the landmarks A = {L1, . . . , Ln}
in the area surrounding the trajectory and is equipped with
a sensor to observe them. The robot takes noisy observa-
tions zAt of the landmarks inside its actual field of view ac-
cording to a sensor model zAt = h(xt, obs(xt,A),nt). Here,
obs(xt,A) specifies the subset of the landmarks in A which

are observable from the state xt and nt ∼ N (0, Nt) is the
sensor noise, which we assume to be Gaussian distributed.

After taking an observation and updating its state estimate
in a localization algorithm, the robot executes a control com-
mand ut, propagating its state xt according to a noisy motion
model xt+1 = f(xt,ut,mt+1), where mt+1 ∼ N (0,Mt+1)
is the motion noise. The control commands are selected by
a linear-quadratic regulator (LQR) feedback controller [6].
At each time step t, the LQR controller selects the control
command ut that minimizes the expected quadratic error
term

E
[ T∑

`=t

(
∆xT

` C∆x` + ∆uT
` D∆u`

) ]
, (1)

where ∆x` = x` − x?
` , ∆u` = u` − u?

` , and C and D are
positive definite weight matrices.

In this closed-loop system for autonomous navigation, we
consider a discrete set of possible landmark locations V , and
aim to select the subset A ⊆ V of landmarks for placement
that are most beneficial for the navigation task. We measure
the quality of a landmark selection A by considering the a-
priori probability distribution of the deviation xt−x?

t of the
robot from its desired trajectory

p(xt−x?
t | obs(x1:t,A)) =∫ ∫

p(xt − x?
t | u1:t−1, z1:t, obs(x1:t,A))

· p(u1:t−1, z1:t | obs(x1:t,A)) du1:t−1 dz1:t . (2)

Note that this distribution is independent of the actual values
of the controls u1:t−1 and observations z1:t that are not
yet known at the moment of landmark placement. The a-
priori distribution depends, however, on the number and the
positions of the landmarks obs(x1:t,A) that are observable
during operation on the trajectory.

In this work, we consider Bayesian A-optimal design [15],
i.e., we aim to select landmarks so that the trace of the
estimated covariance matrix ŜAt of p(xt − x?

t | obs(x1:t,A))
stays below a user-defined threshold for every time step t ∈
[1, T ]. Thereby, we effectively bound the uncertainty about
the deviation of the robot from its desired trajectory for all
dimensions of the state space.

To guarantee safe operation even if up to k landmarks are
missing, we aim at finding

A? = argmin
A⊆V

|A| (3)

subject to

max
B⊆A,|B|≤k

tr
(
Ŝ
A\B
t

)
≤ εt ∀t ∈ [1, T ] . (4)

This is the smallest set of landmarks A? that ensures a
bounded trace of the estimator of the a-priori covariance.
In particular, we ensure that the trace of the estimator ŜA\Bt

of the a-priori covariance stays below εt for all t ∈ [1, T ],
even if any subset B ⊆ A? with |B| ≤ k is not observable
during operation. Here, εt is a user-defined bound that can
be set for each part of the trajectory individually. This allows



the user to specify lower εt values for critical parts of the
trajectory in which a path execution with higher accuracy is
required.

To efficiently place landmarks in this framework, two
important issues have to be addressed: handling the combina-
torial structure of the problem stated in Eqs. (3) and (4) and
estimating the a-priori covariance ŜAt . Our efficient solution
to the combinatorial optimization problem is presented in
the next section. In general, ŜAt cannot be estimated in
closed form, so one solution that is often applied is to
approximate the high-dimensional integral defined in Eq. (2)
via Monte-Carlo simulation. Monte-Carlo simulation can
deal, for example, with non-linearities due to discontinuities
in the observability obs(xt,A) of landmarks depending on
the actual state of the robot, but it is computationally
demanding. In contrast to that, using the conservative approx-
imation ôbs(t,A) of the landmark observability defined in
the next section, we can estimate ŜAt efficiently by applying
the linearization proposed by van den Berg et al. [4].
Their approach linearizes the model of the whole navigation
system, consisting of observation, localization, control, and
motion, resulting in a Gaussian a-priori distribution

p̂
(
xt − x?

t | ôbs(1 : t,A)
)
∼ N (0, ŜAt ) (5)

that can be calculated efficiently via standard matrix ma-
nipulations. This method has been applied successfully in
practice [2], [5]. For completeness, it is described in detail
in the appendix.

IV. EFFICIENT AND ROBUST LANDMARK SELECTION

We now describe our approach towards landmark place-
ment. We first propose how to address the challenge of un-
certain landmark observability. We then reformulate Eq. (4)
such that it becomes amenable to efficient optimization.

A. Observability Constraints

For most types of landmark detection sensors (e.g., cam-
eras, RFID readers, and laser range finders), the ability to
observe a landmark L changes with the state xt of the
robot due to a limited sensor range or obstacles concealing
the landmark. However, in our approach it is necessary to
evaluate the quality of L at a stage at which the only
knowledge about xt is the condition on its covariance defined
in Eq. (4), which the final landmark set shall guarantee.

Therefore, we define the approximate observabil-
ity ôbs(t,A) in a conservative way: We consider a landmark
as observable at time t only if it is observable with a
probability of at least (1 − δ) according to every a-priori
distribution for which the bound in Eq. (4) holds. Fig. 2
shows an example of ôbs(t,A) for a two dimensional robot
state xt = [xt, yt]. Note that in the experiments, we consider
a three dimensional robot state [xt, yt, θt].

We calculate ôbs(t,A) using the following insights: As
stated in Eq. (5), all estimated a-priori distributions are
Gaussians. The (1 − δ)-confidence region of a Gaussian is
an ellipsoid whose principal axes have the lengths c

√
λt,i.

Here, λt,i are the eigenvalues of the covariance ŜAt and
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Fig. 2. Desired robot state x?
t and landmark L. All (1 − δ) confidence

regions of estimated covariances satisfying the bound in Eq. (4) (one
example shown in light blue) are inside the circular region with radius c

√
εt

(dark blue). According to ôbs(t, L), L is visible at time t if it is inside the
sensor range of every pose in the dark blue circle and the shaded area is
free of obstacles that would block the robot’s line of sight to the landmark.

c = c(δ, dim(xt)) is a constant that depends only on the
probability δ and the dimensionality of the state space. If
the bound in Eq. (4) holds, it holds that tr(ŜAt ) ≤ εt
and therefore λt,i ≤ εt for all eigenvalues λt,i of Ŝt.
Consequently, at time t, at least (1 − δ) of the probability
mass of every Gaussian that satisfies Eq. (4) lies inside the
sphere K with radius c

√
εt and center x?

t . If a landmark L
is observable from within every state inside K, we define it
to be in ôbs(t,A), resulting in

ôbs(t,A) = {L | L ∈ obs(xt,A) ∀xt ∈ K} . (6)

Having defined ôbs(t,A), we can evaluate ŜAt . Therefore,
we can also evaluate the bound in Eq. (4) for a given set A
by iterating over all subsets of A with |A|−k elements. Note
that in the definition of ôbs(t,A) we assume that the bound
in (4) holds for A. Hence, if the bound holds, then also the
approximation of the observability, which was applied in the
evaluation of the bound, is conservative.

B. Objective Function

Being able of evaluate Eq. (4) for a given landmark
set A makes it possible to run a brute force search on
the power set P(V) of all possible landmark positions to
find the optimal landmark set satisfying Eq. (4). However,
as P(V) grows exponentially with the number of possible
landmark locations |V|, we apply an efficient approximation
instead. We now show, building on techniques of Krause et
al. [13], how the overall problem defined in Eqs. (3) and (4)
can be reformulated in a way that admits highly efficient
approximation algorithms.

As a first step, we define the reduction of the trace of
the a-priori covariance induced by the observations of the
landmarks in A as

Ft(A) = tr(Ŝ∅
t )− tr(ŜAt ) (7)

for every time step t. We truncate this function at the target
value tr(Ŝ∅

t )− εt, leading to the function

Ft(εt,A) = min
(
Ft(A), tr(Ŝ∅

t )− εt
)
. (8)



Note that this function achieves its maximum value if and
only if the target condition tr(ŜAt ) ≤ εt is satisfied. We
take into account the robustness against up to k missing
landmarks in the objective function by considering the av-
erage over Ft(εt,A \ B) for all possible subsets of missing
landmarks B:

Ft(k, εt,A) =
1∑k

i=0

(|A|
i

) ∑
B⊆A,|B|≤k

Ft(εt,A \ B) . (9)

Similar to the function in Eq. (8), this function achieves its
maximum value tr(Ŝ∅

t )−εt if and only if the target condition
under k-robustness tr(ŜA\Bt ) ≤ εt is satisfied for all B. We
finally consider multiple time steps or a whole trajectory by
using the same averaging procedure, leading to

F (k, ε1:T ,A) =
1

T

T∑
t=1

Ft(k, εt,A) . (10)

Due to its construction, this function takes on its maximum

c =
1

T

T∑
t=1

tr(Ŝ∅
t )− εt (11)

if and only if the condition defined in Eq. (4) is satisfied.
With this, we can re-formulate the problem definition stated
in Eqs. (3) and (4) in terms of F as

A? = argmin
A⊆V

|A| s.t. F (k, ε1:T ,A) = c . (12)

C. Landmark Selection Algorithm

As problems of the type defined in Eq. (12) are typically
NP-hard (see Sec. V for details), we apply a greedy itera-
tive landmark selection algorithm that finds an approximate
solution to (12). The procedure is stated in Algorithm 1.

Algorithm 1 Iterative approximation algorithm
Input: V , k, ε1:T
Output: A
A = ∅
while F (k, ε1:T ,A) < c do
L? = argmaxL∈V F (k, ε1:T ,A ∪ {L})
A = A ∪ {L?}

end while
return A

The computation of the argmax operator in the algorithm
evaluates each landmark L individually, which makes it well-
suited for parallel computing.

Note that due to the usage of ôbs in the evaluation
of F , which is a conservative approximation of the observ-
ability only if F (k, ε1:T ,A) = c, stopping the algorithm
before F (k, ε1:T ,A) reaches c leads to landmark sets that
can perform arbitrarily badly. However, for the final output
set A, the observability, and therefore also the condition in
Eq. (4), is approximated conservatively.

D. Practical Considerations

Our algorithm can be used to guarantee a collision-free
path execution with high confidence. For that, we use the
same insights as for the approximation of the observability.
We choose the bound εt on the trace such that the nearest
static obstacle is at least c

√
εt away from the desired state x?

t

for every t. To avoid collisions with moving obstacles
without breaking the bound on the trace, the robot needs
to stop if its path is blocked and wait until the moving
obstacle left the corridor with width c

√
εt around the desired

trajectory.
If the robot has to repeatedly execute the same round-

trip task, our method can be adjusted to guarantee bounded
traces even for a continuous long-term operation of the robot.
By setting εT to at most the minimum eigenvalue of Ŝ1,
our algorithm produces a landmark set A that guarantees
that ŜT is governed by Ŝ1, which enables a continuous safe
operation.

V. APPROXIMATION BOUND

In this section, we provide a theoretical motivation for
our approximation algorithm, which rests on the concept of
submodularity, a natural diminishing returns property. For
landmark sets, submodularity states that adding a landmark
to an already large set of landmarks C results in a smaller
increase in the objective function than adding the same
landmark to a subset of C. Concretely, a function F is called
submodular if for all A ⊆ C ⊆ V and all landmarks L ∈ V\C

F (C ∪ {L})− F (C) ≤ F (A ∪ {L})− F (A) . (13)

For submodular functions, problems of the type defined in
Eq. (12) are called submodular set cover problems, and
are NP-hard in general [19]. However, for these problems,
Wolsey [19] showed that for greedy solutions Agreedy, such
as those produced by Algorithm 1, it holds that

|Agreedy| ≤ |A?|
(

1 + log max
L∈V

F ({L})
)
, (14)

and under natural complexity-theoretic assumptions, no ef-
ficient algorithm can provide better solutions. Hence, such
greedy solutions Agreedy are near-optimal for submodular set
cover problems.

Therefore, the key question is whether (or under which
conditions) our objective function F (k, ε1:T ,A) for land-
mark placement is monotonic and submodular. First, note
that the function Ft(A) (Eq. (7)), from which our objective
function is constructed, can be rearranged to be the sum
of the variance reductions in the diagonal elements of the
covariance. Das and Kempe [7] show that variance reduction,
such as the summands of Ft(A), under certain technical
conditions on the covariance matrices is usually monotonic
and submodular. In this case, F (k, ε1:T ,A) is monotonic
and submodular as well, since these properties are preserved
under nonnegative linear combinations and truncation [10],
[13]. These observations theoretically justify our efficient
approximation Algorithm 1. Similar techniques have been
successfully used in other domains [11], [13], [17].
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Fig. 3. A sweeping (left) and a surveillance task (right) with the 99% a-
priori confidence ellipses (blue) when observing all landmarks (red triangles)
in the sets that our algorithm selected for at most k = 0 (top), 1 (middle), or
2 (bottom) missing landmarks. The k-subsets of selected landmarks whose
absence resulted in the highest simulated maximum trace are shown in pink.
The red dots indicate the sets of possible landmark locations V .

VI. EXPERIMENTAL RESULTS

We evaluated our approach in extensive experiments both
with a simulated differential drive robot and with a real
holonomic drive robot. For these robots, the state xt of the
robot can be described by its pose [xt, yt, θt] in the 2d-
plane. We assume that the robot is equipped with a landmark
detection sensor with a circular field of view and 5 m sensor
range. In the different experiments, the sensor can observe
either landmarks placed on the walls or landmarks placed on
the ceiling of the environment, resulting in different sets V
of possible landmark locations. In all experiments, we set
the allowed maximum trace εt to 0.05 for all t and the
probability δ in the observability constraint to 1%.

A. Evaluation of Robustness

In the first set of simulation experiments, we evaluated the
robustness of our landmark sets against missing landmarks.
To this end, we considered the two trajectories shown in
Fig. 3, corresponding to a sweeping pattern in an obstacle-
free environment and a surveillance task in an environment
with obstacles. For the sweeping trajectory, our approach se-
lected 10, 15, and 19 landmarks assuming at most zero, one,
and two missing landmarks, respectively. For the surveillance
task, our approach selected 12, 20, and 27 landmarks. To
evaluate the effects of the linear approximation applied
in the landmark selection method, we conducted Monte-
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Fig. 4. Means and 95% error bars resulting from simulations on ten
randomly sampled trajectories. For k = 1, the results for the simulations in
which the one most crucial landmark was missing are shown. The horizontal
red line indicates εt = 0.05. The maximum deviation is stated in m.

Carlo simulations using the real, non-linear models. In the
simulations, we estimated the a-priori traces trMC(St) using
the empirical distributions gained from the deviations xt−x?

t

observed in 1000 simulated executions of the trajectory in
each scenario. For all six landmark configurations and all
possible combinations of k missing landmarks, the Monte-
Carlo simulations resulted in traces that were below the
bound εt = 0.05 for all time steps t. The maximum 0.0439 of
the traces in simulation occurred in the surveillance scenario
for k = 0.

B. Comparison to Other Approaches

In the second set of simulation experiments, we compared
the landmark sets selected by our approach to the ones
selected by our previous approaches [2], [3], and by two
straightforward heuristics. The Deviation method [2] aims
at minimizing the translational deviation of the robot from
its trajectory in a linearized system. Entropy [3] minimizes
the entropy of the joint distribution of x1:T using Monte-
Carlo simulations instead of linearized models. The Grid
and Random heuristics place a given number of landmarks
in the area observable by the robot, Grid in a regular grid
pattern and Random at randomly sampled locations. For
comparison, we adjusted all methods to select the same num-
bers of landmarks. To get scenario-independent results, we
considered ten randomly chosen trajectories, each connecting
six randomly sampled goal points in an area of 15 m×15 m.
On these trajectories, our approach selected landmark sets of
average sizes 5.7 and 9.3 for k = 0 and k = 1, respectively.
We used Monte-Carlo simulations to evaluate the maximum
trace per trajectory, the 99% quantile of the maximum trans-
lational deviation per trajectory, and the information gain of
the joint distribution of x1:T . The results can be seen in
Fig. 4. The Entropy approach results in the best information
gain values, but yields suboptimal traces and deviations. This
is probably due to the fact that minimizing the entropy can
lead to flat but elongated covariance ellipses, which have high
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Fig. 5. Pick-and-place trajectory and landmark sets selected by our
approach for a constant εt of 0.05 for k = 0 (left) and k = 1 (right),
and for k = 0 and εt = 0.03 for the time steps in which the robot is inside
the pick-up and deposit zones (gray areas) and 0.05 outside (middle). The
trajectory goes from the start to goal 1, then to goal 2, and back to the start.

trace and deviation values. Paired sample t-tests showed that
our approach results in significantly smaller maximum traces
and 99% quantiles of the maximum translational deviations
than Entropy, Grid, and Random on a 5% level for k = 0
as well as k = 1. For zero missing landmarks, the Deviation
method produces maximum traces and deviations similar to
our approach, but seems to behave unreliably in the case of
a missing landmark. For k = 1, when the most influential
landmark is hidden, it results in maximum traces and devia-
tions that are significantly higher than the ones produced by
our approach and even the Entropy approach on a 5% level.
This is probably due to the fact that the placement algorithm
employed in the Deviation approach aims at maximizing
the distance between two consecutive landmarks, which is
especially unfavorable in the case of missing landmarks,
while our approach uses more sophisticated techniques from
submodular function optimization to explicitly take missing
landmarks into account.

Running multi-threaded on an Intel R© CoreTM i7 2.8GHz,
the runtime of the Entropy approach for computing a single
landmark set was 8:10 h on average, while due to the
linearization in landmark placement, single-threaded imple-
mentations of our approach and Deviation took 28:27 min
and 27:22 min, respectively.

C. Landmark Selection for Changing Bounds

To demonstrate the ability of our approach to select
landmarks for values of εt which vary along the trajectory,
we applied our approach on the pick-and-place trajectory
shown in Fig. 5. As can be seen in the figure, a higher
demand for accuracy in the pick-up and deposit zones and
the robustness against a missing landmark in this case lead
to the same number of landmarks, but to different locations.

D. Long Term Evaluation on a Real Robot

Finally, we evaluated the landmark sets selected by our
approach also on the real robot shown in Fig. 1. The
robot is equipped with Mecanum wheels for omnidirectional
motion and with two SICK S300 laser scanners mounted
on opposite corners of the robot, providing a 360◦ field
of view. The lasers can detect reflective markers, whose
unique landmark IDs we calculated using a nearest neighbor
heuristic. In a training run, we calibrated the motion noise
and sensor noise of this specific robot, and used the calibrated
parameters in the linearized models for landmark placement.
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Fig. 6. Landmark sets (red triangles), desired robot path (blue) and actual
robot paths (red) for k = 0 (left), and k = 1 (right). For k = 0, also
the linearized 99% a-priori confidence regions are shown (light blue). For
k = 1, each landmark was hidden during 10 runs of the robot. The landmark
whose absence resulted in the largest deviations is marked in pink. The
trajectory goes from the start to goal 1, back to the start, then to goal 2 and
again back to the start.

The trajectory and the landmarks that our approach selected
to ensure continuous long term operation (see Sec. IV-D)
are shown in Fig. 6. To evaluate the selected landmark sets,
the robot continuously executed the trajectory several times.
Observing only the landmarks selected for k = 0, the robot
autonomously executed 20 runs of the trajectory, continu-
ously operating for one hour. The a-priori traces calculated
from the deviations measured by a Motion Analysis motion
capture system with ten digital Raptor-E cameras stayed
considerably below 0.05, with a maximum of 0.0087 occur-
ring close to goal 1. The measured maximum translational
deviation of the robot from the desired trajectory was 0.36 m.
For k = 1, the robot executed 50 runs of the trajectory during
2.5 hours of continuous operation. As illustrated in the video
attachment, during operation each landmark was hidden from
the robot during ten runs. The a-priori traces calculated
from the whole dataset and also the ones calculated from
each block of ten runs in which one landmark was hidden
stayed below 0.05. The maximum value, 0.0444, occurred
close to the lower left corner of the trajectory when the
landmark marked in Fig. 6 was hidden. During the whole
experiment, the measured maximum translational deviation
from the desired trajectory was 0.45 m.

VII. CONCLUSIONS

In this paper, we presented a novel method to trajectory-
dependent landmark placement, which is robust against miss-
ing landmarks. It keeps the trace of the a-priori covariances
of all robot states below a user-defined threshold, effectively
bounding the uncertainty in all dimensions of the state space.
The linearized objective function in our method takes into
account the full specification of the navigation task and can
be evaluated efficiently. We showed how our problem can
be reformulated in a way that enables the use of submod-
ular optimization techniques, which enjoy strong theoretical
guarantees. Extensive experiments, also with a real robot,
demonstrate that the robustness against missing landmarks
resulting from our approach is guaranteed in practice, even in



continuous long term operation. The experiments also show
that our approach outperforms several other approaches to
landmark selection.

APPENDIX

The Linearized System for A-Priori Covariance Estimation

In our landmark selection algorithm, we apply the efficient
method for the estimation of the a-priori covariance ŜAt
introduced by van den Berg et al. [4], which is restated here
for completeness. This method assumes that the observabil-
ity of landmarks ôbs(t,A) is independent of the concrete
state xt of the robot. It uses first-order Taylor approximations
to linearize the sensor model h(xt, ôbs(t,A),nt) and the
motion model f(xt,ut,mt) around the desired state x?

t and
the desired control u?

t . The resulting linearized functions are

xt ≈ f(x?
t−1,u

?
t−1,0) +At(xt−1 − x?

t−1) (15)
+Bt(ut−1 − u?

t−1) + Vt mt ,

zt ≈ h(x?
t , ôbs(t,A),0) +Ht(xt − x?

t ) +Wt nt , (16)

with the Jacobians

At =
∂f

∂x
(x?

t−1,u
?
t−1,0), Bt =

∂f

∂u
(x?

t−1,u
?
t−1,0),

Vt =
∂f

∂m
(x?

t−1,u
?
t−1,0), (17)

Ht =
∂h

∂x
(x?

t , ôbs(t,A),0), Wt =
∂h

∂n
(x?

t , ôbs(t,A),0) .

In this linearized system, the Kalman filter (KF) is the
minimum mean-square error estimator [1] for the a-posteriori
distribution p(xt−x?

t | u1:t−1, z1:t, ôbs(1 : t,A)), estimating
it as a Gaussian N (µt−x?

t , P̂
A
t ). In contrast to the extended

Kalman filter (EKF) [1], we linearize around the a-priori
known desired states instead of the means in the filter.
Therefore, the Kalman gains Kt in the KF can be computed
a-priori, without knowledge of the values of u1:t−1 and z1:t.

Applied on the mean µt in the Kalman filter, the LQR
controller selects control commands ut according to

ut − u?
t = Lt(µt − x?

t ) , (18)

where Lt is the feedback matrix that minimizes the quadratic
error defined in Eq. (1). With the Jacobians defined in
Eq. (17), also the feedback matrices Lt can be calculated
a-priori via the recursive formula ET = C,

Lt = −(BT
t+1Et+1Bt+1 +D)−1BT

t+1Et+1At+1 , (19)

Et = C +AT
t+1Et+1At+1 +AT

t+1Et+1Bt+1Lt .

As can be seen in Eq. (18), the LQR controller linearly
connects the Kalman filter estimate µt with the true robot
state xt via the selected control ut. This fact allowed
van den Berg et al. [4] to prove that in the linear navigation
system defined above, the joint a-priori distribution of the
deviations of xt and µt from x?

t is a Gaussian[
xt − x?

t

µt − x?
t

]
∼ N (

[
0
0

]
, R̂At =

[
ŜAt Cov(xt, µt)

Cov(xt, µt)
T ÛAt

]
),

whose covariance R̂At can be computed recursively by

R̂A1 =

[
P̂A1 0
0 0

]
, R̂At = FtR̂

A
t−1F

T
t +Gt

[
Mt 0
0 Nt

]
GT

t ,

with

Ft =

[
At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

]
, (20)

Gt =

[
Vt 0

KtHtVt KtWt

]
. (21)

This recursive scheme can be computed independently of the
actual values ut and zt. It efficiently estimates the a-priori
covariance ŜAt of the deviation as the upper left block of R̂At .
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