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Abstract

Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a vari-
ety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing
or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior.
A popular approach to overcome this problem and to achieve accurate localization is to use artificial landmarks. In
this paper, we consider the problem of optimally placing such artificial landmarks for mobile robots that repeatedly
have to carry out certain navigation tasks. Our method aims at finding the minimum number of landmarks for which a
bound on the maximum deviation of the robot from its desired trajectory can be guaranteed with high confidence. The
proposed approach incrementally places landmarks utilizing linearized versions of the system dynamics of the robot,
thus allowing for an efficient computation of the deviation guarantee. We evaluate our approach in extensive experi-
ments carried out both in simulation and with real robots. The experiments demonstrate that our method outperforms
other approaches and is suitable for long-term operation of mobile robots.
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1. Introduction

One of the major challenges for mobile service robots
is safe and reliable autonomous navigation. Robots nav-
igating autonomously generally deviate from their de-
sired trajectory due to uncertainty in both motion and
position. Usually, they are equipped with on-board sen-
sors to estimate the deviation and react according to a
feedback control law. According to our experience, for
example in logistics and transportation applications, a
substantial degree of accuracy is required for localiza-
tion, as the navigation tasks of the robot usually include
maneuvers like pick-and-place or docking. Today’s ver-
satile production sites and warehouses often contain ar-
eas that frequently undergo changes and also may con-
tain ambiguous areas. In such environments, the restric-
tion to existing features for orientation can be insuffi-
cient for establishing safe and reliable navigation. Many
practical applications therefore rely on artificial land-
marks placed along the trajectories taken by the robot to
allow for accurate localization [8, 10]. Placing artificial
landmarks is often expensive and at the same time the
computational power of the robot is limited which im-
poses substantial limits on the number of landmarks that

can be placed. Accordingly, it is desired to select the
smallest possible number of landmark positions which
still guarantees the required accuracy in navigation.

In this paper, we present a novel algorithm for land-
mark placement, which computes a landmark config-
uration such that the deviation of the robot from its
desired trajectory stays below a user-defined threshold
dmax with high confidence. To check if the guarantee
holds, we use the specific properties of the robot and its
navigation task in the landmark placement algorithm.
Our method works in two stages. In the first stage, it
uses linearized motion and observation models of the
robot to efficiently place landmarks in an incremental
fashion. This stage aims at placing the smallest number
of landmarks for which the deviation guarantee holds.
In the second stage, the algorithm employs a Monte
Carlo simulation for the computed landmark configu-
ration to validate that the guarantee also holds for the
possibly non-linear models.

Our approach has several characteristics which make
it especially useful for mobile robot navigation. It can
deal with arbitrary trajectories, and the maximum al-
lowed deviation of the robot can be defined individu-
ally for every part of the trajectories. Taking into ac-
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count the properties of the individual robotic system re-
sults in customized landmark sets: while high-precision
robots need only a few landmarks for reaching the de-
viation guarantee, low-cost systems typically require
more landmarks. As our placement algorithm efficiently
evaluates the guarantee using linear models, it can deal
even with large instances of the landmark placement
problem (i.e., long trajectories). Note that our incre-
mental method simultaneously determines the number
and positions of the landmarks needed to meet the de-
sired guarantee.

This paper is organized as follows. After discussing
related work in the following section, we formalize the
problem definition in Section 3. In Section 4, we de-
scribe the prediction of the deviation from the trajec-
tory in linearized systems. Afterwards, in Section 5,
we present our incremental landmark placement algo-
rithm. In Section 6 we give a theoretical evaluation of
our method. Finally, we provide extensive experiments
in which we evaluate the algorithm in simulations and
in real-world applications.

2. Related Work

In the past, the problem of finding an optimal set
of landmark positions has been addressed from several
points of view. Salas and Gordillo [22] consider it in
terms of the art gallery problem. They use simulated an-
nealing to find a landmark set which maximizes the area
in which a robot has a clear line of sight to at least one
landmark. Erickson and LaValle [9] consider the same
problem for colored landmarks. They add the constraint
that from no position in the map two landmarks of the
same color may be visible. They give bounds for the
minimum number of colors needed. Sala et al. [21] ex-
tend this problem to select landmark positions so that at
every position in the map, at least k landmarks are ob-
servable. Rupp and Levi [20] select landmark positions
on the walls of an indoor environment close to a given
set of localization points. They use geometrical insights
to find the landmark locations. Unlike these methods,
which assume a deterministic robot behavior, our ap-
proach explicitly models the noise of the sensors and
actuators of the robot.

Jourdan and Roy [11] consider a fixed set of possi-
ble target positions. They place sensors on the walls
of buildings to minimize the average position error
bound in the sensor network. Likewise, Meyer-Delius
et al. [16] present an approach that is independent of
the trajectory taken by the robot. They increase the lo-
calization accuracy of a system already equipped with a
landmark-independent sensor (e.g., a laser range finder)

by placing additional landmarks in the environment. In
contrast to these methods, our approach takes into ac-
count the full specification of the robot and its naviga-
tion task.

Like our approach, Vitus and Tomlin [25] consider
the full problem specification to place sensors in the en-
vironment. They approximate the a priori covariances
with the a posteriori covariances of the most likely run
of the robot. Similar to our approach, van den Berg et
al. [4] evaluate sensor positions using the exact a pri-
ori distributions in a linearized system. As they focus
mainly on path planning, they restrict themselves to ran-
domly sampled positions of a single sensor. Our previ-
ous work [2] selects landmarks maximizing the mutual
information between the sensor readings and the states
of the robot. It solely applies Monte Carlo simulations
to estimate the a priori distributions, which makes it
computationally more demanding.

While all of the approaches above place artificial
landmarks or sensors before the operation of the robot,
the following approaches decide whether to utilize ob-
served landmarks during operation. In contrast to our
method, their decisions are based on a posteriori dis-
tributions, i.e., the information already gathered by the
robot. Thrun [24] selects the subset of the observed
landmarks for localization which minimizes the average
posterior localization error. Lerner et al. [15] use semi-
definite programming to select landmarks that minimize
the trace of the pose covariance of a moving camera.
Strasdat et al. [23] and Zhang et al. [26] both consider
landmark selection in the context of the simultaneous
localization and mapping (SLAM) problem. Strasdat et
al. use reinforcement learning to create a landmark se-
lection policy whereas Zhang et al. minimize the en-
tropy of the a posteriori distributions.

In contrast to the above-mentioned approaches, our
method optimizes the positions of the landmarks so that
the robot stays within a user-defined region around the
trajectory with high a priori probability.

3. Problem Definition

We consider the problem of placing landmarks for lo-
calization and control of a mobile robot. We assume the
time to be discretized into steps of equal duration. At
each time step t the state of the robot is defined by a
vector xt ∈ X, which changes over time according to
the stochastic motion model

xt = f (xt−1,ut−1,mt) (1)

where ut ∈ U is the control command at time t.
Thereby, the motion is disturbed by Gaussian noise
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mt ∼ N(0,Mt). For self-localization, we assume that
the robot is equipped with a sensor taking measurements
of a set of landmarks A = {`1, ..., `n} according to the
measurement function

zt = h(xt,nt,A) (2)

where the sensor signal is disturbed by Gaussian noise
nt ∼ N(0,Nt). The covariances Mt and Nt model the
uncertainty in the motion and the measurements, respec-
tively.

We define a navigation task as a trajec-
tory that the robot should follow. A trajectory
T = (x?0 ,u

?
0 ), . . . , (x?T ,u

?
T ) can be considered as a

series of states and desired controls the robot should
execute to reach these states. In this navigation task,
we assume that the trajectory will be executed using
a linear-quadratic regulator (LQR) [5] feedback con-
troller. At each time step t the LQR controller selects
the control command ut which minimizes the quadratic
cost function

E
[ T∑

k=t

((xk−x?k )T C(xk−x?k )+(uk−u?k )T D(uk−u?k ))
]
, (3)

where C and D are positive-definite weight matrices.
The localization uncertainty and, as a result, also the

deviation from the desired trajectory strongly depend on
the specific configuration of landmarksA = {`1, . . . , `n}

which are observed during operation. Our approach se-
lects landmarks `i ∈ L from a continuous space of pos-
sible landmark locations. We evaluate the quality of a
landmark configuration based on the deviation of the
(real) state xt from the desired state x?t at each time step
t (ignoring the control part u?0:T of the trajectory). In
particular, we consider the Euclidean distance between
the part of the state xpos

t describing the position of the
robot and x?pos

t . We focus on limiting the deviation

dpos(xt, x?t ) = ‖xpos
t − x?pos

t ‖2 (4)

of the robot from its trajectory at all time steps t ∈ [0,T ].
Note that limiting dpos implicitly limits the other rele-
vant parts of the state, too. A large error in rotation,
for example, would result in increasing deviations of
the positions in consecutive time steps, and is therefore
restricted. Our approach aims at finding the landmark
configurationA with the fewest elements for which the
deviation guarantee

∀t ∈ [0,T ] : p
(
dpos(xt, x?t ) ≤ dmax(x?t ) | A

)
≥ pmin

(5)
holds. This guarantee ensures that the probability of
deviating at most dmax from the desired trajectory is at

least pmin. Note that dmax can be either a globally con-
stant value or depend on the position or time.

4. Predicting the Deviation from the Trajectory

To validate the guarantee (5) for a certain
landmark configuration A, we need to compute
p
(
dpos(xt, x?t ) ≤ dmax(x?t ) | A

)
. For this, we consider

the a priori probability distribution

p(xt − x?t | A) =

∫ ∫
p(xt − x?t | u0:t−1, z1:t,A)

· p(u0:t−1, z1:t | A) du0:t−1 dz1:t , (6)

which averages over the observations z1:t and controls
u0:t−1 that are not yet available during landmark place-
ment.

For general non-linear systems, the a posteriori distri-
butions p(xt−x?t | u1:t−1, z1:t,A) can be used to estimate
the a priori distributions (6) via Monte Carlo simula-
tion by sampling observations and controls and averag-
ing over numerous runs [2]. However, this is compu-
tationally expensive for large instances of the landmark
placement problem.

4.1. A-Priori State Estimation in Linearized, Gaussian
Systems

In the main part of our landmark placement algo-
rithm, we locally linearize the system around the de-
sired trajectory and approximate all distributions by
Gaussians. This allows for an analytical evaluation of
the guarantee (5), making it substantially more efficient
than Monte Carlo simulations. Linearizing the motion
model (1) and the sensor model (2) around the desired
trajectory (x?0:T , u?0:T ) by first-order Taylor expansion
leads to

xt = f (x?t−1,u
?
t−1, 0) + At(xt−1 − x?t−1) (7)

+ Bt(ut−1 − u?t−1) + Vt mt ,

zt = h(x?t , 0,A) + Ht(xt − x?t ) + Wt nt , (8)

with the Jacobians

At =
∂ f
∂x

(x?t−1,u
?
t−1, 0), Bt =

∂ f
∂u

(x?t−1,u
?
t−1, 0),

Vt =
∂ f
∂m

(x?t−1,u
?
t−1, 0),

Ht =
∂h
∂x

(x?t , 0,A), Wt =
∂h
∂n

(x?t , 0,A) . (9)

In this linearized system, the Gaussian a posteriori dis-
tribution p(xt − x?t | u1:t−1, z1:t,A) ∼ N(µt − x?t , Pt)
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of the deviation from the trajectory can be computed
recursively using a Kalman filter [1]. The Kalman
filter propagates a given initial Gaussian distribution
p(x0 − x?0 | A) ∼ N(µ0 − x?0 , P0) according to the ac-
tual control commands in the motion update

µ̄t − x?t = At(µt−1 − x?t−1) + Bt(ut−1 − u?t−1)

P̄t = AtPt−1AT
t + Vt MtVT

t . (10)

and according to the measurements in the observation
update

Kt = P̄tHT
t (HtP̄tHT

t + WtNtWT
t )−1 (11)

µt − x?t = µ̄t − x?t + Kt(zt − h(x?t , 0,A) − Ht(µ̄t − x?t ))
Pt = (I − KtHt)P̄t . (12)

Note that the covariance Pt and the Kalman gain Kt de-
pend, via the Jacobians, on x?0:t and u?0:t−1 but not on
the actual values of u0:t−1 and z1:t (see (10), (11), (12)).
Therefore they can be calculated before the robot starts
operation (a priori).

The minimization of the expected deviation from the
desired trajectory (3) in the LQR controller can also be
solved a priori, linearly relating the control command ut

to the estimated state µt via a feedback matrix Lt:

ut − u?t = Lt(µt − x?t ) . (13)

Lt depends on the a priori known Jacobians (9) and the
weight matrices (3) and is derived explicitly in [5].

As described above, we express the whole navigation
algorithm, which consists of executing a motion com-
mand, making an observation, localizing, and selecting
the next motion command depending on the localiza-
tion, by linear functions. For this linear navigation sys-
tem, van den Berg et al. [3] have proven that the a priori
joint distribution of xt and µt is a Gaussian[
xt − x?t
µt − x?t

]
∼ N

([
0
0

]
,Rt =

[
S t Cov(xt,µt)

Cov(xt,µt)
T Ut

])
,

and that its covariance Rt can be computed recursively
by

R0 =

[
P0 0
0 0

]
, Rt = FtRt−1FT

t + Gt

[
Mt 0
0 Nt

]
GT

t ,

with

Ft =

[
At BtLt−1

KtHtAt At + BtLt−1 − KtHtAt

]
, (14)

Gt =

[
Vt 0

KtHtVt KtWt

]
. (15)

Rt only depends on a priori known variables, namely
the Jacobians (9), the Kalman gain (11), and the feed-
back matrix (13). These variables can be computed a
priori since we linearize the models around the (a priori
known) desired states x?0:T and not around the (a priori
unknown) estimates µ0:T , as it is done for example in
the extended Kalman filter [1].

4.2. Evaluation of the Deviation Guarantee
In the linearized system we can efficiently check

whether the deviation guarantee (5) holds. Let S pos
t be

the part of the a priori covariance S t of p(xt − x?t | A)
corresponding to the position of the robot. The length
at(A) of the major semi-axis of the pmin-confidence el-
lipsoid of S pos

t can be calculated using

at(A) = cmin
√
λt , (16)

where λt is the largest eigenvalue of S pos
t and cmin is a

scaling factor corresponding to pmin via the regularized
Gamma function as described in [3]. If at(A) ≤ dmax,
then the pmin-ellipsoid of S pos

t is inside a circle with ra-
dius dmax and guarantee (5) holds for the linearized sys-
tem. Note that this test is a conservative approximation
and is exact if the pmin-ellipsoid is a sphere.

4.3. Visibility of Landmarks
When considering robots with a limited sensor range

or occlusions due to objects inside the field of view, the
non-linearity of the sensor model at these borders in-
duces a large discrepancy between the real model and
its linearization. To avoid this, we estimate for every
landmark if the robot will observe it at time t, follow-
ing the approach of Vitus and Tomlin [25]. We consider
a landmark as visible at time t only if it is pmin-visible,
i.e., it is visible from every pose inside the pmin-ellipsoid
of S t around x?t . If a landmark configuration satisfies
the guarantee (5) when only pmin-visible landmarks are
observed, it also satisfies it when using all visible land-
marks.

If the environment of the robot is a planar free space
and the robot has a circular field of view, we can check
analytically if a landmark is pmin-visible. For other
types of scenarios, we apply an approximative check
utilizing a sigma-point method.

4.3.1. Visibility in Free Space
For the two-dimensional case (i.e., xpos

t = [x, y]T )
without occlusions or other restrictions, and for a robot
with a circular field of view with radius r, there exists
a closed-form solution to checking if a given landmark
` is pmin-visible. Because of the circular field of view,
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the orientation of the robot does not matter for check-
ing the visibility of landmarks. Therefore, for the de-
viation guarantee to hold it suffices to check the pmin-
visibility using the pmin-ellipse of S pos

t instead of the
pmin-ellipsoid of S t. Consider the pmin-ellipse of S pos

t
centered at the origin of the coordinate system. We ap-
ply a principal axis transformation on the ellipse so that
afterwards its semi-axes lie on the axes of the coordinate
system. Applying this transformation on S pos

t yields a
diagonal matrix S pos

t
′

= diag(λ1, λ2) with the diagonal
elements identical to the eigenvalues of the matrix. Any
point x′ = [x′1, x′2]T on the transformed ellipse E can
then be described as x′ = cmin diag(

√
λ1,
√
λ2) x for a

point x = [x1, x2]T on the unit circle C and the scal-
ing factor cmin from (16). To check if landmark ` is
pmin-visible given an a priori estimate (x?t , S t), we ap-
ply the same principal axis transformation also on the
relative position (` − x?t ) of the landmark, resulting in
`′ = [`′1, `

′
2] = cmin diag(

√
λ1,
√
λ2) (` − x?t ). Checking

if ` is pmin-visible means checking if

max
x′∈E
‖x′ − `′‖2 ≤ r

⇔max
x∈C
‖cmin diag

( √
λ1,

√
λ2

)
x − `′‖2 ≤ r

⇔ max
x1∈[−1,1], sgn∈{−1,1}

( (
cmin

√
λ1x1 − `

′
1

)2

+

(
cmin

√
λ2 sgn

√
1 − x2

1 − `
′
2

)2
− r2

)
≤ 0 .

Applying a distinction of cases for sgn, we set the
derivative with respect to x1 of the function inside the
max-operator to 0 and reorder the resulting equation.
This yields a quartic term, which can be solved analyti-
cally in an efficient way.

4.3.2. Visibility in Structured Environments
For general sensor models and environments in which

structures like walls restrict the field of view of the sen-
sor (like in the framework proposed in [19]), the ana-
lytical solution to finding the pmin-visible landmarks is
not applicable. In these cases, we approximate the so-
lution by selecting a set S of (2 dim(x?t ) + 1) poses on
the pmin-ellipsoid of S t similar to the set of sigma-points
used in the unscented Kalman filter [12]. S consists of
the center of the pmin-ellipsoid and the 2 dim(x?t ) poses
in which the semi-axes leave the ellipsoid. Knowing the
setup of the environment, we can check for a given land-
mark ` and a given pose s ∈ S if the sensor of the robot
would be able to observe ` when positioned at s. If this
check evaluates to true for all s ∈ S, we consider ` as
pmin-visible.

5. Incremental Landmark Placement Algorithm

Our landmark placement approach aims at minimiz-
ing the number of landmarks that have to be placed for
the deviation guarantee to hold. Since the dimension-
ality of the search space grows with the length of the
trajectory, in general, globally searching for the optimal
landmark configuration is computationally intractable.
However, using an incremental placement algorithm,
we can efficiently find an approximate solution to the
landmark placement problem.

5.1. Landmark Placement for the Linearized System

In a first stage, our algorithm employs the linearized
system to incrementally place landmarks. Considering
linearized Gaussian models is beneficial because the a
priori distributions can be efficiently calculated analyt-
ically as described in Section 4.1. The objective of
our approach is to minimize the number of landmarks
needed for the deviation guarantee to hold on the whole
trajectory (x?0:T ,u

?
0:T ). We approximate this minimum

by maximizing the number of time steps for which ev-
ery additional landmark guarantees (5). Let

tmax(A) = max{t | as(A) ≤ dmax ∀s ≤ t} (17)

be the maximum time step for which the landmark setA
guarantees (5) in the linearized system for the first part
of the trajectory (x?0:tmax

,u?0:tmax
). tmax(A) obviously de-

pends on x?0:T and u?0:T , but for readability, we drop this
dependency in the formula. In every iteration our al-
gorithm adds the landmark `new which maximizes tmax
to the already selected set of landmarks A. In some
cases, one additional landmark is not enough to increase
tmax. This can happen for example if dmax(x?tmax+1) is
chosen considerably smaller than dmax(x?tmax

). In these
cases, the algorithm selects the landmark which mini-
mizes atmax (A) instead. Reducing atmax (A) increases the
likelihood that in the next step a landmark can be found
which increases tmax again (see (17)). Algorithm 1 de-
scribes the incremental landmark placement for the lin-
earized system. Note that in the algorithm, the argmax
and the argmin operator can be implemented in several
ways depending on the structure of the space L. See
Section 7.1 for details on our implementation.

5.2. Monte Carlo Validation

In a second stage, we check the computed landmark
configuration A for the deviation guarantee via Monte
Carlo simulation using the real (possibly non-linear,
non-Gaussian) models [7]. This is necessary to account
for approximation errors due to the linearization and
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Algorithm 1 Landmark Placement for the Linearized
System
Input: Navigation task, space of landmark locations L
Output: Landmark configurationA
A ← ∅
τ← 0
while τ < T do
`new ← argmax

`∈L
tmax(A∪ {`})

τnew ← tmax(A∪ {`new})
if τnew = τ then
`new ← argmin

`∈L
atmax (A∪ {`})

end if
A ← A∪ {`new}

τ← τnew
end while
return A

the Gaussian assumption. The Monte Carlo simulation
samples robot states x0:T , controls u0:T , and observa-
tions z1:T of the landmarks in A and counts the num-
ber of time steps t in which dpos(xt, x?t ) ≤ dmax(x?t ),
as required in guarantee (5). Averaging over numerous
runs yields an estimate pMC of pmin for which the devi-
ation guarantee in the real system holds. If pMC < pmin,
one can use arbitrary heuristics to place additional land-
marks. For example, one could run our algorithm for
increased values of pmin or decreased values of dmax.

5.3. Continuous Operation on Round Trips
For round-trip tasks, for which x?0 = x?T , Algorithm 1

can be used for finding a landmark set that guarantees
the error bound for multiple successive executions of
the task. This can be achieved by designing the part of
the initial a priori covariance S pos

0 corresponding to the
position of the robot so that the pmin-ellipsoid of S pos

T
at the final time step is inside the pmin-ellipsoid of S pos

0 .
If this property holds, then, when reaching the goal, the
robot is inside the pmin-ellipsoid of S pos

0 with probability
greater than or equal to pmin. Therefore when starting
a next run of the same navigation task, the deviation
guarantee is still satisfied.

6. Relation between the Deviation Guarantee and
the Localization Uncertainty

In mobile robotics, often the trace of the a posteriori
covariance tr(Pt) is used as a measure for the localiza-
tion uncertainty [25, 15]. In this section, we show that
by enforcing the deviation guarantee, our approach also
guarantees a bound on tr(Pt).

As shown by Kalman [13], the a posteriori covariance
Pt calculated by the Kalman filter is also the covariance
of its estimation error, i.e., Pt = Cov(xt −µt | A). Using
this together with the basic property of Kalman filtering
that µt is the minimum mean square error estimator for
xt, we get the following relation between the traces of
the matrices:

Lemma. tr(S t) ≥ tr(Pt).

Proof. The Kalman filter is constructed so that in the
linearized system, its mean µt is the minimum mean
square error estimator for xt (see Kalman [13]). There-
fore it holds that for all estimators x̂t of xt

tr(Cov(xt − x̂t | A)) ≥ tr(Cov(xt − µt | A)) = tr(Pt) .

As S t = Cov(xt − x?t | A) and x?t is a valid estimator, it
follows that

tr(S t) = tr(Cov(xt − x?t | A)) ≥ tr(Pt) .

This means that if the state xt consists only of the po-
sition of the robot, i.e., S t = S pos

t , then our algorithm,
which restricts the a priori distribution of xt, also re-
stricts the localization uncertainty tr(Pt):

dim(xt) d2
max ≥ c2

min tr(S pos
t ) = c2

min tr(S t) ≥ c2
min tr(Pt) ,

where the first inequality results from (16), and cmin is
the scaling factor defined in Section 4.2.

7. Experimental Results

We evaluated our landmark placement algorithm and
compared it to other landmark placement approaches in
extensive experiments both in simulation and with real
robots.

7.1. Experimental Setup
In our experiments we considered wheeled robots

navigating on a plane. As the most common drive types
used in industry are (non-holonomic) differential drive
robots and holonomic robots equipped with Mecanum
wheels, we carried out our experiments with robots of
these types. For self-localization we considered three
different types of sensors detecting uniquely identifiable
landmarks: a range-only sensor, measuring only the dis-
tance to the landmarks, a bearing-only sensor, measur-
ing only the relative angle between the robot and the
landmarks, and a range-and-bearing sensor, measuring
both. Hence, in the following experiments all motion
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models and all sensor models have non-linear compo-
nents.

We evaluated two different kinds of landmark place-
ment depending on the environment the robot operates
in. In the free-space setting without any obstacles in
the environment of the robot, we considered the com-
plete two-dimensional plane the robot was navigating
on as space Lfree of possible landmark locations. We
also evaluated our approach in structured environments
which were defined by walls. Here, we allowed land-
mark placement only on the surfaces of predefined walls
resulting in a one-dimensional space Lwalls of possible
landmark locations.

We implemented the argmax and argmin operators
used in Algorithm 1 in a two-stage procedure which is
robust to local optima. In the first step, we discretized
the relevant part of L that is observable from the tra-
jectory and evaluated each of these points. Around the
optimum on the discrete point set, we then did a fine
search with Powell’s method [18] in the second step.

7.2. Placement in Free Space

In the first set of experiments, we considered environ-
ments without obstacles and allowed landmark places in
the complete two-dimensional planeLfree. For these ex-
periments, we utilized the analytical method for check-
ing landmark visibility in the placement algorithm as
described in Section 4.3.1. For all types of sensors, we
assumed a circular field of view around the robot with
radius 2 m. We evaluated our algorithm on five navi-
gation tasks T1-T5 (see Fig. 1 and 2) for a differential
drive robot. We simulated every task for all three sensor
models, resulting in 15 experiments. Fig. 1 shows the
landmarks our algorithm computed for the three sensor
models in the first task T1, together with a priori and a
posteriori distributions.

Fig. 2 depicts the landmark configurations and a pri-
ori distributions for the other four tasks T2-T5 for a
range-only sensor. For all trajectories, we set pmin =

99% and dmax = 0.5 m. For the pick-and-place task
T5, we changed dmax to 0.2 m in the pick-up and in de-
posit zones (gray rectangles). Because of the high accu-
racy necessary to fulfill this task, we simulated a more
precise robotic system than for the other tasks, i.e., we
scaled down the noise values of the motion model and
the sensor model of the robot.

7.2.1. Influence of the Sensor Model
As can be seen in Fig. 1, the number of landmarks

our algorithm computes and their configuration strongly
depend on the chosen sensor model. For the range-only

sensor, the landmarks tend to be further away from the
trajectory than for the other two sensor models. The
numbers of landmarks needed are stated in the first row
of Table 1. Also the results of the Monte Carlo simu-
lations in our algorithm varied strongly for the different
sensor models. In every Monte Carlo simulation, we
performed 1,000 simulated runs of the robot and calcu-
lated the proportion of time steps in which the deviation
of the robot from its trajectory exceeded dmax. This pro-
portion yields an estimate pMC of pmin for the non-linear
models. For all trajectories and all sensor models, the
values of pMC for the landmark sets our approach com-
puted are stated in the fifth row of Table 1.

For the range-only sensor, pMC is considerably above
the intended value of 99% in all tasks. For the range-
and-bearing sensor, pMC is slightly below 99% in the
pick-and-place task and for the bearing-only sensor,
pMC is below 99% in three of the five tasks. These
results indicate that the non-linear components of the
range measurements are less critical for landmark place-
ment than those of the bearing measurements.

7.2.2. Comparison to other Landmark Placement
Strategies

For comparison, we evaluated three other methods for
placing landmarks in a way that the deviation guarantee
is satisfied. Each method starts with a minimum number
of landmarks and successively increases the number (or
density) of landmarks until it finds a set for which the
guarantee in the linearized system holds.

• On trajectory places landmarks equidistant on the
desired trajectory.

• On grid places a landmark in the center of each cell
of a regular grid. Starting with one cell covering
the whole environment, the cell size is decreased at
every iteration until the deviation guarantee holds.
For efficiency, landmark positions which are out-
side the field of view of all states x?0:T on the de-
sired trajectory are not used.

• Random successively places landmarks at ran-
domly chosen positions observable from the de-
sired trajectory.

The number of selected landmarks and the values of
pMC for all landmark placement strategies are stated in
Table 1. Dashes in the table indicate that no valid land-
mark configuration could be found. For all experiments,
our approach placed fewer landmarks than the other ap-
proaches. The on trajectory method is the best method
after ours for the range-and-bearing sensor, measured
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Figure 1: The landmark configurations (red triangles) our algorithm computed for the figure-eight trajectory T1 for three different sensor models:
range-only (left), bearing-only (middle) and range-and-bearing (right). The blue points and ellipses in the upper row correspond to the means and
the 99% covariance ellipses of the a priori distributions, and in the lower row to the a posteriori distributions of simulated sample runs. The true
positions of the robot in the sample runs are depicted as black lines.

Table 1: Numbers of selected landmarks and results of Monte Carlo simulations
Range-only sensor Bearing-only sensor Range-and-bearing sensor

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
Number of landmarks

Our approach 14 12 11 18 10 11 9 7 16 7 9 8 6 13 5
On trajectory − − 25 − 58 41 − 12 − 23 12 9 10 17 7

On grid 48 32 38 56 23 26 19 17 30 18 20 20 17 25 16
Random 108 63 62 138 62 75 66 51 88 31 38 29 38 37 15

pMC

Our approach 0.999 0.998 0.999 0.999 0.999 0.979 0.978 0.991 0.994 0.826 0.999 0.997 0.998 0.994 0.986
On trajectory − − 0.996 − 0.962 0.353 − 0.955 − 0.773 0.996 0.999 0.983 0.999 0.980

On grid 0.999 0.999 0.999 0.999 0.998 0.997 0.981 0.995 0.999 0.931 0.996 0.999 0.995 0.999 0.999
Random 0.999 0.999 0.999 0.999 0.998 0.996 0.996 0.999 0.999 0.999 0.999 0.999 0.996 0.999 0.999
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Figure 2: The landmark configurations (red triangles) our algorithm computed for four sample trajectories T2-T5 using a range-only sensor. T2 is
a square, T3 a curved shape, T4 a sweeping trajectory, and T5 a pick-and-place task. The blue points and ellipses correspond to the means and the
99% covariance ellipses of the a priori distributions. In T5, the pick-up zone and the deposit zone are marked as gray rectangles.
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Figure 3: The miniature e-puck robot and its experimental environ-
ment. Mounted on top of the robot is a wireless webcam detecting the
uniquely identifiable visual markers attached to the ceiling. The ref-
erence positions of the robot are obtained by the four-camera motion
capture system.

by the number of landmarks placed. However, for the
other two sensor models, the on trajectory method was
not always able to find a landmark configuration which
satisfied the guarantee in the linearized system. For this
method, especially the non-linearities in the bearing-
only sensor model resulted in low values for pMC.

7.2.3. Experiments with a Miniature Robot
To further validate the simulation experiments for

the scenarios in free space, we evaluated one of the
landmark sets our algorithm generated also on the real
e-puck robot [17] depicted in Fig. 3. As a range-and-
bearing sensor, we utilized a webcam pointing upwards
detecting uniquely identifiable ARToolkit markers [6]
attached to the ceiling. We considered the navigation
task T1 scaled down to suit the miniature size of our
robot (diameter 75 mm) and the lower ceiling. Scaling
the task by the factor 0.08 yields dmax = 0.04 m. To
evaluate the deviation dpos(xt, x?t ) of the e-puck robot
from its desired trajectory, we obtained the reference
positions xt from a MotionAnalysis motion capture sys-
tem with four digital Raptor-E cameras. During 20 au-
tonomous runs, dpos(xt, x?t ) was below dmax in 99.7% of
the time steps.

7.3. Placement in Structured Environments

In the second set of experiments, we considered
structured environments with walls and other obstacles
at known positions. To represent the walls and obsta-
cles, we used sets of lines, so-called line maps. In these
experiments, we evaluated our algorithm for both spaces
of possible landmark positions, the surfaces of the walls
and obstaclesLwalls and the planeLfree. In the landmark
placement algorithm, we used the sigma-point approach

Table 2: Comparison of Placement Spaces
Lwalls Lfree

T6
Length of Trajectory 218.5 m
Runtime 4 h 6 min 39 h 54 min
Number of Landmarks 48 37

T7
Length of Trajectory 100.8 m
Runtime 13 min 5 h 50 min
Number of Landmarks 21 16

described in Section 4.3.2 to check for landmark visibil-
ity. This approach allows us to take into account occlu-
sions from walls when checking for landmark visibility,
and it also allows us to consider non-circular fields of
view of the robot. We simulated two navigation tasks in
structured environments: T6 and T7 (see Fig. 4).

The line maps in both tasks were manually extracted
from the grid maps shown in light gray in the figures.
The map in the task T6 corresponds to the Willow
Garage building (grid map recorded by Brian Gerkey)
and the map in T7 corresponds to building 079 on the
Freiburg University campus. For these tasks we sim-
ulated a differential drive robot equipped with a range-
and-bearing sensor having a maximum range of 5 m and
a half-circular field of view in front of the robot. Just as
in the experiments in free space, we set pmin = 99% and
dmax = 0.5 m.

7.3.1. Comparison between Placement on Walls and
Placement in Free Space

We compared the runtime and the number of placed
landmarks of our algorithm for the landmark placement
in Lwalls to that of the placement in Lfree on tasks T6
and T7. For the landmark placement in Lfree, we used
an insight gained from empirical evaluations to speed up
the computation. In the experiments, Algorithm 1 typi-
cally selected landmark positions `new inside the field of
view of the current state of the robot x?τ . Therefore, we
restricted the search space for the optimizations to this
area. For all evaluated tasks in our experiments, Algo-
rithm 1 with the full search space did not select fewer
landmarks than our implementation with the restricted
search spaces. In structured environments, a similar re-
striction of Lwalls was not applicable, as in our experi-
ments the field of view of x?τ often did not contain the
best landmark position `new. In fact, at some time steps
it did not contain any possible landmark positions at all.
Hence, we restricted the search space in the optimiza-
tions to all walls that are observable from the trajectory
up to τ.

For both placement methods, in Lwalls and in Lfree,
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Figure 4: The landmark configurations our algorithm computed when placing landmarks on the walls of buildings (red triangles) and in free space
(orange circles). The blue points and ellipses correspond to the means and the 99% covariance ellipses of the a priori distributions computed using
the landmarks placed on the walls. The line maps of the buildings are depicted in dark gray, and the grid maps from which the line maps were
extracted are shown in light gray.
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Figure 5: The landmark configuration (red triangles) our algorithm
placed on the walls of the experimental environment of the holonomic
robot. The blue arrows and ellipses correspond to the means and the
99% covariance ellipses of the a priori distributions. The line map of
the experimental environment is shown in dark gray. The black cross
marks the spot on which the robot is standing in Fig. 6.

we executed our algorithm single-threaded on an
Intel R© CoreTM i7 2.8GHz with 12GB RAM. For T6 and
T7, the lengths of the trajectories, the numbers of se-
lected landmarks and the runtime of Algorithm 1 are
listed in Table 2. As can be seen in the table, landmark
placement on the plane Lfree managed to fulfill guaran-
tee (5) with fewer landmarks than landmark placement
on the walls Lwalls. Hence, the landmark positions on
the walls appear to be suboptimal. On the other hand,
the runtime of the landmark placement in Lfree is con-
siderably longer than the runtime of the landmark place-
ment in Lwalls. This is due to the fact that the search
space Lfree is considerably larger than Lwalls. However,
selecting the space of landmark positions cannot be de-
cided by considering these numbers but has to be de-
cided depending on the physical properties of the uti-
lized sensor and the landmarks.

7.3.2. Long Term Experiments with a Holonomic Robot
We evaluated the continuous operation property de-

scribed in Section 5.3 in a long-term experiment with a

Figure 6: The holonomic KARIS robot operating in its experimental
environment. It is equipped with two laser range finders mounted
oppositely on the base for a 360◦ field of view. They detect reflective
markers which are attached to the walls and are used as landmarks for
localization. The reference positions of the robot are obtained by the
motion capture system.

real holonomic robot. The environment and the round-
trip trajectory of this navigation task are shown in Fig. 5.

As robotic system, we used the KARIS robot [14]
which is depicted in Fig. 6. This robot is designed as a
logistics robot for industrial application in storage facil-
ities and production sites. It is equipped with Mecanum
wheels, which allow for holonomic motion. Two SICK
S300 laser range finders are mounted on opposite sides
of the robot. They return range measurements and in-
tensity values in a 360◦ field of view with a resolution
of 0.5◦. Based on the intensity values, the robot can
detect landmarks made of reflective tape mounted on
walls. Experiments showed that these reflective markers
are reliably observable by the robot only if the angle be-
tween the landmark orientation and the robot position
is at least 22◦. For landmark placement, we therefore
used a sensor model with that observability constraint
and with a circular field of view.

The number and positions of the landmarks selected
by our algorithm highly depend on the covariance matri-
ces Mt and Nt of the noise in the motion model and the
sensor model, respectively. Therefore, before placing
the landmarks, we did a calibration run with the robot,
in which the pose of the robot was determined precisely
by a MotionAnalysis motion capture system with nine
digital Raptor-E cameras. We estimated the noise ma-
trices as the maximum likelihood values with respect to
the reference positions and the odometry or landmark
measurements, respectively.

Taking into account the calibrated noise values, Algo-
rithm 1 placed 11 landmarks that can be seen in Fig. 5.
Using the observations of these landmarks for localiza-
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Deviation counts in the 3 hour karis experiment
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Figure 7: The histogram of the deviation of the KARIS robot from
its desired trajectory during operation on a round trip for about three
hours.

tion, the KARIS robot performed a continuous round
trip on the defined trajectory for about 3 hours, corre-
sponding to one battery charge. During this time, the
robot completed the navigation task 62 times. The devi-
ation of the robot from its desired trajectory was mon-
itored at a 10 Hz rate by the MotionAnalysis motion
capture system. The captured deviation values of the
robot never exceeded dmax = 0.5 m for all 102,300 time
steps. Fig. 7 shows the deviations from the trajectory in
a histogram plot. As can be seen in the plot, the devia-
tion of the robot from its desired trajectory was typically
around 0.05 m. The largest deviation value measured
was 0.337 m.

These experiments demonstrate that our approach is
suitable for efficient placement of landmarks in unstruc-
tured or structured environments. The selected land-
mark configurations were proven to allow for a reliable
navigation in extensive simulation and real world exper-
iments with various robot platforms and sensing tech-
nologies.

8. Conclusions

In this paper, we have presented a landmark place-
ment method that with high confidence guarantees a
bound on the maximum deviation of the robot from its
planned trajectory. In the landmark placement phase,
our approach approximates the real motion and sen-
sor models by their linearizations to efficiently evaluate
the guarantee. In the subsequent validation stage, we
apply a Monte Carlo simulation using the real system
dynamics to check if the selected landmark set satis-
fies the deviation guarantee also for the possibly non-
linear models. In contrast to other approaches, our al-
gorithm is customizable to specific robotic systems and

navigation tasks and inherently chooses the appropri-
ate number of landmarks needed. In extensive exper-
iments, we demonstrated that our method outperforms
other approaches. Furthermore, our algorithm was suc-
cessfully applied to create landmark configurations for
several simulated and real-world navigation tasks in
which common robot platforms navigated reliably in
long-term experiments.
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