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Abstract— In real-world applications, motion and sensor
observations of mobile robots are typically subject to noise
and errors. A common way to deal with this problem is to
represent the states of a robot at different points in time
with probability distributions. Being able to calculate the
expected distributions of the states of the robot even before
the robot starts operation is useful for many robotics problems
including path planning and optimizing the configuration in
which to mount sensors on a mobile robot. When searching
for optimal solutions to these problems, one typically wants
to compute such expected distributions for a large number of
candidate solutions. Therefore, it is highly important to have an
efficient way of calculating the expected distributions. In this
paper, we present a novel approach for efficiently estimating
the expected distributions of the states of a mobile robot
that uses a linear-quadratic regulator controller designed to
guide the robot along pre-calculated trajectories. We exploit
the structure of the stochastic dependencies in the navigation
framework for deriving a recursive procedure to calculate the
expected distributions. Compared to the state of the art, this
procedure reduces the dimensionality of the occurring matrix
multiplications by half. In extensive experiments, we show that
the reduced dimensionality leads to a considerable reduction of
the computation time without loss of information.

I. INTRODUCTION

Mobile robots operating in the real world typically have to
deal with errors in motion execution and sensor observations.
A standard approach to account for these errors is to describe
the evolution of the state of the robot during operation by
a series of probability distributions [12]. When applying
this approach to mobile robot localization, the goal is to
estimate the posterior probability distributions of the state
of the robot, i.e., the distributions that are conditioned on
the already executed controls and observations. In contrast to
that, we are interested in estimating expected distributions of
the state of the robot during operation that depend only on
the information about the robot and its task available before
the robot starts operating, and not on the concrete controls
and observations.

Being able to estimate these expected distributions is useful
in several robotics problems like path planning [3, 11, 14],
optimizing the configuration of sensors on a mobile robot [9],
or landmark placement [2]. In landmark placement, for
example, expected distributions can be used to find positions
for artificial landmarks in the environment of a mobile robot
that minimize the uncertainty about its deviation from its
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desired trajectory. When searching for the optimum, these
kinds of approaches typically need to evaluate a large number
of candidate solutions (landmark sets, candidate paths, sensor
configurations), which makes a short calculation time for the
expected distributions especially important.

In this paper, we present a novel method for efficiently
estimating the expected distributions of the states of a mobile
robot that is controlled by a linear-quadratic regulator (LQR)
controller [5]. Our approach linearizes the model of the whole
navigation cycle, including control, motion, and observation,
and recursively calculates the expected distributions in the
linearized system.

The contribution of this paper is twofold: first, we present
an approach that considerably reduces the runtime of the
computation of expected distributions compared to the state
of the art. Second, the derivation of our approach yields theo-
retical insights into the considered widely-used [2, 3, 10, 14]
linearized system for mobile robot navigation. It builds on
the fact that before the robot starts operating, the posterior
localization estimate µt of the robot can be considered
as a random variable, which is highly correlated to the
state of the robot xt. We show that this correlation has
a structure that allows us to decouple the calculation of
the covariances of µt and xt. With this, our approach can
recursively update the distributions of µt and xt individually,
whereas the state of the art [3] recursively updates their joint
distribution. Therefore, compared to [3], our approach reduces
the dimensionality of the occurring matrix multiplications by
half, which results in a substantial reduction of the runtime of
the computations. In extensive experiments, we show that our
approach significantly outperforms other approaches in terms
of runtime, while still producing exactly the same results.

II. RELATED WORK

There are several ways to estimate expected distributions
for dynamic systems: Possibly the most generally applicable,
but also computationally most demanding method is Monte
Carlo simulation. Roy et al. [11], for example, use Monte
Carlo simulation to estimate the expected entropy of the robot
state in their coastal navigation framework. Another method
is to use the posterior distributions of the most likely run of
the robot as approximations for the expected distributions.
Vitus and Tomlin [13] use this method for sensor placement.
For a given desired robot trajectory, they aim at placing
sensors at a set of locations in the environment that optimizes
the navigation performance of the robot. Mastrogiovanni et
al. [9] also use the posterior distributions to estimate the
pose uncertainty of a robot before operation. They, however,



use these distributions to find the optimal configuration for
mounting a laser scanner on a mobile robot.

To our knowledge, van den Berg et al. [3] were the first
to introduce a recursive calculation scheme for expected
distributions in dynamic systems. They call the expected
distributions a priori distributions, and used them for collision-
free path planning. Later, they applied their approach to needle
steering for surgical robots [4]. Since then, their calculation
scheme has been applied to different kinds of applications:
Vitus and Tomlin [14] used it for chance constrained optimal
control, Patil et al. [10] applied it to motion planning in
deformable environments, and Beinhofer et al. [2] employed
it for landmark placement.

The method presented in this paper calculates expected dis-
tributions considerably faster than the one by van den Berg et
al. and could therefore benefit all of the above approaches.

III. THE ROBOTIC SYSTEM

We consider the problem of estimating the expected distri-
butions of the states xt of a mobile robot traveling along a pre-
defined trajectory T . Hereby, the trajectory T = (x?

0:T , u?
1:T )

is a time-discrete sequence specifying the desired robot
state x?

t and control command u?
t at each time step t. The

actual robot state xt changes over time according to the
stochastic motion model

xt = f(xt−1,ut,vt) , (1)

where ut is the actual control command executed at time t
and vt ∼ N (0, Qt) is the motion noise, which we assume
to be Gaussian distributed. Due to the stochastic nature of
the motion model, the actual robot states xt differ from the
desired states x?

t . To reduce this difference, the robot needs
to execute control commands ut that differ from the desired
control commands u?

t . We assume that the robot uses an
LQR controller [5] to select the control commands. At each
time step t, the LQR controller executes the control ut that
minimizes the expected quadratic error term

E
[ T∑

`=t

((x` − x?
` )TC(x` − x?

` ) + (u` − u?
` )TD(u` − u?

` ))
]
,

(2)
where C and D are positive definite weight matrices.

For localization, the robot has a map of its environment and
a sensor that takes noisy observations zt of the surroundings
of the robot according to a sensor model

zt = h(xt,wt) , (3)

where wt ∼ N (0, Rt) is the sensor noise.

A. Expected Distributions

To estimate the states of a mobile robot during oper-
ation, one typically applies some kind of filtering frame-
work [12] to estimate the posterior probability distributions
p(xt | u1:t, z1:t) of the states of the robot, which are condi-
tioned on the already executed controls and observations. In
contrast to that, we are interested in estimating the expected
distributions of the state xt of the robot even before it starts

operating. Before operation, the concrete controls u1:t and
observations z1:t are not yet known. Therefore, the expected
distributions p(xt) depend only on the trajectory T , the
motion model f , and the sensor model h. Using the law of
total probability, we can relate the expected distributions p(xt)
to the posterior distributions: p(xt) =∫ ∫

p(xt | u1:t, z1:t) p(u1:t, z1:t) du1:t dz1:t . (4)

In general, p(xt) cannot be estimated in closed form, so
one solution that is often applied is to approximate the high-
dimensional integral defined in (4) via Monte Carlo simulation.
Monte Carlo simulation can deal with arbitrary robot models,
but is computationally demanding.

In contrast to that, we efficiently estimate p(xt) by lineariz-
ing the whole navigation system, consisting of observation,
localization, control, and motion, resulting in a Gaussian
expected distribution that can be calculated efficiently via
standard matrix manipulations.

B. The Linearized System

For linearizing the motion model (1) and the sensor
model (3), it is convenient to consider the deviations of the
states, controls, and observations, from their desired values
instead of the absolute values themselves. Therefore, we
define

∆xt := xt − x?
t , ∆ut := ut − u?

t , ∆zt := zt − h(x?
t ,0).

For the linearization procedure, we follow the approach by
van den Berg et al. [3] and use first-order Taylor expansions
around the desired trajectory (x?

0:T , u?
1:T ), leading to the

approximate identities

∆xt ≈ At∆xt−1 +Bt∆ut + Vt vt , (5)
∆zt ≈ Ht∆xt +Wt wt . (6)

with the Jacobians

At =
∂f

∂x
(x?

t−1,u
?
t ,0), Bt =

∂f

∂u
(x?

t−1,u
?
t ,0),

Vt =
∂f

∂v
(x?

t−1,u
?
t ,0), (7)

Ht =
∂h

∂x
(x?

t ,0), Wt =
∂h

∂w
(x?

t ,0) .

In this linearized system, the Gaussian posterior distribution
p(∆xt | ∆u1:t,∆z1:t) ∼ N (∆µt,Σt) of the deviation from
the trajectory can be computed recursively using a Kalman
Filter [1]. The Kalman Filter propagates a given initial
Gaussian distribution p(∆x0) ∼ N (∆µ0,Σ0) according to
the update scheme

∆µt = At∆µt−1 +Bt∆ut (8)

Σt = AtΣt−1A
T
t + VtQtV

T
t (9)

Kt = ΣtH
T
t (HtΣtH

T
t +WtRtW

T
t )−1 (10)

∆µt = ∆µt +Kt(∆zt −Ht∆µt) (11)

Σt = (I −KtHt)Σt . (12)

Note that the covariance Σt and the Kalman gain Kt

depend, via the Jacobians, on x?
0:t and u?

1:t but not on the



actual values of u1:t and z1:t. Therefore they can be calculated
before the robot starts operation.

Applied on the mean ∆µt−1 in the Kalman Filter, the
LQR controller selects motion commands ut according to

∆ut = Lt∆µt−1 , (13)

where Lt is the feedback matrix that minimizes the quadratic
error defined in (2). Lt depends only on the Jacobians in (7)
and the weight matrices C and D and therefore can be
calculated before the robot starts operating. See [5] for a
derivation of the explicit calculation formula for Lt.

Summing up, we express the whole navigation cycle,
which consists of executing a motion command, making
an observation, localizing, and selecting the next motion
command depending on the localization, by linear functions.

IV. EXPECTED DISTRIBUTIONS IN THE
LINEARIZED SYSTEM

In this section, we present our novel method for efficiently
calculating expected distributions via recursion for the above-
described linearized robotic system. The proofs of all theo-
rems in this section can be found in the appendix.

A. The Efficient Calculation Scheme

For the derivation of our efficient calculation scheme, the
mean ∆µt of the posterior distribution plays a key role.
Before the robot starts operating, i.e., before making any
observations and selecting any motion commands, ∆µt can
be considered as a random variable, which deterministically
depends on u1:t and z1:t.

Lemma 1. Assuming that ∆x0 is zero-mean Gaussian
distributed, the expected distributions of ∆xt and of ∆µt

are Gaussians with zero mean for all time steps t, i.e.,

∀t ∈ [0, T ] : p(∆xt) ∼ N (0, St) , p(∆µt) ∼ N (0,Mt) .

Up until here, we loosely followed the approach by
van den Berg et al. [3]. However, in the following, we apply
techniques different from theirs to derive a more efficient way
for computing the covariances St of the expected distributions.
The main building block for this is the following theorem.

Theorem 1. The covariance St of the expected distribution
of ∆xt is the sum of the posterior covariance Σt of ∆xt

and the covariance Mt of the expected distribution of the
mean ∆µt in the Kalman Filter:

∀t ∈ [0, T ] : St = Σt +Mt . (14)

This also has strong implications on the cross-covariance
of ∆xt and ∆µt:

Corollary 1. Cov(∆xt,∆µt) = Cov(∆µt) (= Mt).

For being able to use Theorem 1 to calculate St, we
need to be able to calculate both Σt and Mt before the
robot starts operating. How to calculate Σt in the linearized
system is already clear from Equations (9, 10, 12). Note that
this calculation only uses values that are available before
the robot starts operating. In the following, we derive an

Algorithm 1 Recursive Calculation of S0:T

Input: S0(= Σ0), M0 = 0
Output: S0:T

1: for t = 1 to T do
2: M t ← (At +BtLt−1)Mt−1(AT

t + LT
t−1B

T
t )

3: Σt ← AtΣt−1A
T
t + VtQtV

T
t

4: Kt ← ΣtH
T
t (HtΣtH

T
t +WtRtW

T
t )−1

5: Mt ←M t +KtHtΣt

6: Σt ← (I −KtHt)Σt

7: St ← Σt +Mt

8: end for
9: return S0:T

efficient recursive update formula for the covariance Mt

of ∆µt. To do so, we first consider the covariance of the
difference between ∆xt and the mean ∆µt of the posterior
distribution p(∆xt | ∆u1:t,∆z1:t−1) before the integration
of observation ∆zt.

Lemma 2.

Cov(∆xt −∆µt) = Cov(∆xt | ∆u1:t,∆z1:t−1) = Σt.

With this, we can derive an efficient recursive update
formula for the covariance Mt of ∆µt:

Lemma 3.

M0 = 0 , (15)

M t = (At +BtLt−1)Mt−1(AT
t + LT

t−1B
T
t ) , (16)

Mt = M t +KtHtΣt , (17)

where Mt = Cov(∆µt) and M t = Cov(∆µt).

Summing up, we know from Lemma 1 that the expected
distribution of ∆xt is N (0, St), and therefore that the
expected distribution of xt is N (x?

t , St). Hence, the mean of
the distribution is already known from the desired trajectory,
and we only need to calculate the covariance St. We
calculate St using the fact that St = Σt +Mt, as shown in
Theorem 1. We know the recursive calculation schemes for Σt

and for Mt from the equations in Section III-B and from
Lemma 3, respectively. Both only depend on terms that can be
computed before the robot starts operating. Algorithm 1 states
the complete recursive calculation method for the covariances
of the expected distributions.

B. Comparison to the State of the Art

To our knowledge, the first approach for calculating
expected distributions in dynamic systems recursively was
derived by van den Berg et al. [3]. In the same linear system
that we described above, they consider the expected joint
distribution of ∆xt and ∆µt, which is a Gaussian

p
(
[∆xt ∆µt]

T
)
∼ N

(
[0 0]T , Jt

)
, (18)

with

Jt =

[
St Cov(xt,µt)

Cov(xt,µt)
T Mt

]
. (19)



They do not decouple the calculation of St and Mt as we do
through Theorem 1, but they derive the following recursive
update scheme for the joint covariance Jt:

J0 =

[
Σ0 0
0 0

]
, (20)

Jt = FtJt−1F
T
t +Gt

[
Qt 0
0 Rt

]
GT

t , (21)

with

Ft =

[
At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

]
, (22)

Gt =

[
Vt 0

KtHtVt KtWt

]
. (23)

They then can extract St as the upper left block of Jt.
As can be seen from the equations, their approach re-
quires multiplications of matrices of dimension (2 dim(xt)×
2 dim(xt)), while our approach multiplies only matrices of
dimension (dim(xt)×dim(xt)). Besides this, their approach
needs exactly the same calculations as ours, because they
also need to calculate Σt−1 in order to compute Kt. So all
other computations being equal, the final recursive calculation
of St in our approach is 23 times faster than the one by
van den Berg et al. (if the standard matrix multiplication
algorithm for n× n-matrices with runtime n3 is applied). In
the next section, we present a detailed comparison of the
runtimes in practice.

V. EXPERIMENTAL EVALUATION

We evaluated our approach in extensive experiments with
a differential drive robot motion model and a sensor model
for measurements consisting of the distance and the relative
angle between the robot and a set of uniquely identifiable
landmarks. In the experiments, we describe the state xt of
the robot by its pose [xt, yt, θt] in the 2d-plane. We use
a discretization of 10 Hz for the time steps, resulting in
trajectories with approximately 20 time steps per meter. We
measured all runtimes using a single-threaded implementation
on an Intel R© CoreTM i7 2.8GHz with 12GB RAM.

A. Runtime Comparison to the State of the Art

In the first set of experiments, we compare the runtimes
of our approach, the approach by van den Berg et al. [3]
(described in Section IV-B), and a Monte Carlo simulation.

To produce results that are independent of a specific
scenario, we considered 120 trajectories with lengths between
25 m and 300 m, each connecting a different set of randomly
sampled goal points in a 15 m × 15 m large environment.
Furthermore, for each trajectory we individually sampled a
map consisting of 20 landmarks. Figure 1 shows four of these
trajectories together with the sampled landmark positions.

A detailed comparison of the runtimes of our approach and
of the approach by van den Berg et al. can be seen in Figure 2.
The figure shows the runtimes needed for the complete
calculation of the covariances of the expected distributions,
which includes the calculation of Σt and of the Jacobians
defined in (7). Additionally, in darker colors, it shows the
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Fig. 1. Randomly sampled trajectories and 99% confidence ellipses of the
calculated expected distributions. The depicted trajectories have lengths of
25m, 50m, 100m, and 200m, respectively (clockwise from upper left).
The sampled landmark positions are shown as red triangles.

fractions of the runtimes that were actually spent on the
matrix multiplications that our approach speeds up, i.e., the
calculation of St via Mt as in Algorithm 1 and via Jt as
in (21), respectively. As can be seen from the figure, our
approach significantly speeds up the matrix multiplication
part, and thereby reduces the overall runtime approximately
by half. The values of the calculated covariances resulting
from the two approaches differed by at most 3.64 · 10−12,
which is within the range of machine precision.

Both our approach and the one by van den Berg et al. are
orders of magnitude faster than Monte Carlo simulation. For
example, estimating the expected distributions for the sampled
trajectories with length 100 m took 36.5 sec on average
with Monte Carlo simulation. For the same trajectories, our
approach spent 0.0117 sec and van den Berg’s approach
spent 0.0249 sec on average. The runtime of the Monte Carlo
simulation depends strongly on the number of simulated
episodes used. In our comparison, we used 1, 000 episodes,
while in practical applications, typically more episodes are
needed to achieve the desired accuracy, e.g., Dellaert et al. [6]
use 5, 000 samples for estimating the states of a mobile robot.

B. Application to Landmark Placement

In a second experiment, we applied our approach to the
problem of landmark placement. Given the specifications of
a mobile robot and a desired trajectory, the goal of landmark
placement is to place a minimum number of landmarks
around a pre-planned trajectory to guarantee a certain bound
on the expected navigation performance during operation.
Concretely, we consider the landmark placement approach of
Beinhofer et al. [2], which aims at bounding the deviation
of the robot from the desired trajectory with high confidence.



runtimes for t=25,...,300 for our approach and van den Berg
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Fig. 3. Landmark positions (red triangles) resulting from a placement
procedure that guarantees that the deviation of the robot from the desired
trajectory (blue dots) stays below 0.5m with 99% confidence (blue ellipses).

To calculate the confidence levels, the iterative landmark
placement method needs to repeatedly compute expected
distributions for different landmark configurations (for details,
see [2]). As our experiments showed, most of the runtime in
this application is actually spent in the calculation of expected
distributions. Therefore, calculating the expected distributions
with our approach instead of the approach of van den Berg et
al. considerably speeds up the whole landmark placement
procedure.

Figure 3 shows the placed landmarks for the depicted
figure-eight trajectory. The complete landmark placement
procedure took 121 sec with our approach and 218 sec with
the approach of van den Berg et al.

VI. CONCLUSIONS

In this paper, we presented a novel recursive calculation
scheme for estimating the expected probability distributions
of the states of a mobile robot even before it starts operation.
Our approach decouples the calculation of the covariances of
the states of the robot and of its localization estimates, which
reduces the runtime of the method. In extensive experiments,
we showed that our approach significantly outperforms other
approaches and that in an application to landmark placement,

it considerably speeds up the whole procedure.

APPENDIX

Proof of Lemma 1. We first prove that the means of ∆xt

and ∆µt are zero. Plugging the equation for the LQR control
selection (13) into the linearized motion model (5) leads to

∆xt = At∆xt−1 +BtLt∆µt−1 + Vt vt . (24)

As vt ∼ N (0, Qt), and the expectation is a linear operator,
it follows that

E[∆xt] = At E[∆xt−1] +BtLt E[∆µt−1] . (25)

To derive a similar formula for the expectation of ∆µt, we
plug Equation (8) into Equation (11), which yields

∆µt =At∆µt−1 +Bt∆ut

+Kt(∆zt −HtAt∆µt−1 +Bt∆ut) . (26)

Plugging in Equations (13) and (6) results in

∆µt =(At +BtLt −KtHtAt −KtBtLt)∆µt−1

+KtHt∆xt +KtWt wt . (27)

Again using the linearity of the expectation operator and
using the fact that wt ∼ N (0, Rt), we get

E[∆µt] =(At +BtLt −KtHtAt −KtBtLt)E[∆µt−1]

+KtHt E[∆xt] . (28)

Because of the assumption that E[∆x0] = 0, also ∆µ0 = 0,
and therefore also E[∆µ0] = 0. An induction with this as
the base case and Equations (25) and (28) as inductive step
yields that E[∆xt] = 0 and E[∆µt] = 0.

A second induction with ∆x0 ∼ N (0, S0) and ∆µ0 = 0
as base case and with (24) and (27) as inductive step finally
shows that the expected distributions are Gaussians.

Proof of Theorem 1. From Lemma 1, we know that
E[∆xt] = 0. Therefore, the covariance of p(∆xt) is

St = Cov(∆xt) =

∫
∆xt∆xT

t p(∆xt) d∆xt . (29)

Applying the law of total probability [12] on p(∆xt) yields

St =

∫
∆xt∆xT

t

∫
p(∆xt | ∆u1:t,∆z1:t)

· p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) d∆xt . (30)

Fubini’s theorem [7] allows us to reorder the integrals:

St =

∫ ∫
∆xt∆xT

t p(∆xt | ∆u1:t,∆z1:t) d∆xt

· p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) . (31)

In the following, we use the shorthand notations

dPx := p(∆xt | ∆u1:t,∆z1:t) d∆xt , (32)
dPu,z := p(∆u1:t,∆z1:t) d(∆u1:t,∆z1:t) . (33)



Next, we add a zero to Equation (31):

St =

∫ ∫ (
(∆xt −∆µt)(∆xt −∆µt)

T + ∆xt∆µT
t

+ ∆µt∆xT
t −∆µt∆µT

t

)
dPx dPu,z . (34)

By definition of the covariance it holds that
Σt =

∫
(∆xt −∆µt)(∆xt −∆µt)

T dPx, and therefore

St =

∫ (
Σt +

∫
∆xt∆µT

t dPx +

∫
∆µt∆xT

t dPx

−
∫

∆µt∆µT
t dPx

)
dPu,z . (35)

As ∆µt is the expected value of the posterior distribution
of ∆xt, it is by definition ∆µt =

∫
∆xt dPx, which is

independent of ∆xt given the values of ∆u1:t and ∆z1:t.
Applying this definition on (35) and using the independence
property to reorder the integrals yields

St =

∫ (
Σt +

∫
∆xt dPx

∫
∆xT

t dPx

)
dPu,z . (36)

Again using the definition of ∆µt and the fact that the
transpose is a linear transformation, which therefore can be
moved out of the integral, yields

St =

∫
Σt + ∆µt∆µT

t dPu,z . (37)

In the linearized system that we consider, Σt is independent of
the values of ∆u1:t and ∆z1:t (see Equations (9), (10), (12)).
Therefore, we get

St =Σt +

∫
∆µt∆µT

t dPu,z . (38)

As the random variable ∆µt is a deterministic function of
the random variables ∆u1:t and ∆z1:t, and as its expectation
is 0, this results in

St = Σt +Mt (39)

Proof of Corollary 1. Follows from the proof of Theorem 1
by considering the transformations applied to ∆xt∆µT

t in
Equation (34).

Proof of Lemma 2. The result follows directly from the
construction of the Kalman Filter as described by Kalman [8].
The second equation holds by definition of Σt. For linear
systems like the one defined in Section III-B, Kalman has
proven that the filter mean ∆µt is the minimum mean square
error estimator for ∆xt and that the posterior covariance Σt

equals the covariance of the estimation error ∆xt −∆µt of
this estimator.

Proof of Lemma 3. The initial belief in the Kalman Filter
for calculating the posterior covariance is deterministically
given, therefore Equation (15) holds true. Plugging the LQR

control policy from Equation (13) into the recursive update
scheme for ∆µt stated in Equation (8) yields

∆µt = (At +BtLt−1) ∆µt−1 . (40)

As the covariance is a bilinear form [7], this proves Equa-
tion (16). To prove Equation (17), we start by plugging
Equation (6) into Equation (11), resulting in

∆µt = ∆µt +KtHt(∆xt −∆µt) +KtWtwt, (41)

where wt ∼ N (0, Rt). Again with the bilinearity of the
covariance, this yields that

Mt =M t +KtHtCov(∆xt −∆µt)H
T
t K

T
t

+KtWtRtW
T
t K

T
t . (42)

Applying Lemma 2 results in

Mt =M t +KtHtΣtH
T
t K

T
t +KtWtRtW

T
t K

T
t (43)

=M t +Kt(HtΣtH
T
t +WtRtW

T
t )KT

t . (44)

Next, we replace KT
t according to its definition from Equa-

tion (10), leading to

Mt =M t +Kt(HtΣtH
T
t +WtRtW

T
t )

· (HtΣtH
T
t +WtRtW

T
t )−1HtΣt (45)

=M t +KtHtΣt , (46)

which finishes the proof.
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