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Abstract— As people move through their environments,
they do not move randomly. Instead, they are often engaged
in typical motion patterns, related to specific locations they
might be interested in approaching. In this paper we propose
a method for adapting the behavior of a mobile robot
according to the activities of the people in its surrounding.
Our approach uses learned models of people’s motion be-
haviors. Whenever the robot detects a person it computes a
probabilistic estimate about which motion pattern the person
might be engaged in. During path planning it then uses
this belief to improve its navigation behavior. In different
practical experiments carried out on a real robot we demon-
strate that our approach allows a robot to quickly adapt its
navigation plans according to the activities of the persons
in its surrounding. We also present experiments illustrating
that our approach provides a better behavior than a standard
reactive collision avoidance system.

I. I NTRODUCTION

Whenever mobile robots are designed to operate in
populated environments, they need to be able to perceive
the people in their environment and to adapt their behavior
according to the activities of the people. Within this paper
we consider the problem of how knowledge about typical
motion patterns of people can be utilized to improve
the navigation behavior of the robot. In particular, we
are interested in predicting the motions of persons and
instructing the robot to choose appropriate detours so that
the risk of interferences with persons is minimized.

As an example, consider the situations illustrated in
Figure 1. In the left image a robot is entering a corridor
and moving to the left approaching its designated target
location. At the same time, a person is walking from left
to right in the same corridor. In this particular situation,
the robot needs to be able to detect the person and to
predict its future actions in order to prevent interfering
with it. A similar situation is depicted in the right image.
Here, the robot is standing in a doorway and a person, that
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Fig. 1. Situations in which a robot interferes with a person. In both
cases the knowledge that the person’s path will lead through the position
of the robot would help the robot to avoid this conflict.

wants to enter the room, is approaching the robot. Again,
if the robot fails to detect the intention of the person and
to react appropriately, the person cannot enter the room
immediately.

The goal of this paper is to introduce a technique that
allows a mobile robot to predict future motions of persons
and to incorporate this knowledge into its navigation plans.
In particular, we describe a probabilistic technique to
determine potential motion patterns of persons detected by
a robot. The knowledge about potential intentions is then
used to plan the actions of the robot in its configuration
time-space. This way, the robot is able to avoid interfering
with persons by choosing trajectories that stay away from
the predicted paths of the persons in its surrounding.

This paper is organized as follows. After discussing
related work in the following section, we briefly describe
the representation of the motion patterns. In Section IV we
explain how the learned motion models can be integrated
into a path planning system. After briefly describing our
laser-based implementation, we present several experi-
ments in Section VI. There, we focus on the the ability of
our approach to improve the behavior of mobile robots by
adapting their navigation plans when observing persons.

II. RELATED WORK

Recently, a variety of service robots have been devel-
oped that have been designed to operate in populated envi-
ronments. These robots, for example, have been deployed
in hospitals [8], museums [5], office buildings [1], and de-
partment stores [6], where they perform various services,
e.g., deliver, educate, entertain [17] or assist people [16],
[11], [15]. Additionally, a variety of techniques has been
developed that allows a robot to estimate the positions of
people in its vicinity or to adapt its behavior accordingly.
For example, the techniques presented by Schulz et al.
and Prassler et al. [18], [9] are designed to track multiple
persons in the vicinity of a robot. The technique described
by Bui et al. [4] uses an Abstract Hidden-Markov-Model
to learn and predict motions of a person. The authors,
however, do not explain how to cluster different motions
into motion patterns and how to exploit the learning results
to control a mobile robot. Recently, we have developed a
technique to learn motion patterns of persons [3] based on
typical trajectories of the persons in their environment. In
this paper, we describe how these learned motion patterns
can be used to improve the navigation behavior of a robot.



In the past, different techniques were introduced to adapt
the behavior of a robot according to the knowledge about
the actions of people in its surrounding. For example, the
approaches presented by Tadokoro et al. [20] and Zhu [21]
apply Hidden-Markov-Models to predict the motions of
moving obstacles in the environment of a robot. Since
these approaches do not learn typical motion patterns,
they can only predict short-term motions and not complete
trajectories. The system described by Kruse and Wahl [10]
uses cameras to track people and to learn where persons
typically walk. In contrast to our system, Kruse and Wahl
do not predict the motion of an observed person. When
the path of the robot is blocked the robot stops and
replanning is invoked, treating the unforeseen obstacle as
a static obstacle. Kasper et al. [7] presented an approach to
improve the behavior of a robot by following the activities
of a teacher. Latombe et al. [12] developed a system that
is able to keep track of a moving target even in the case of
possible occlusions by other obstacles in the environment.
The major difference between the latter two approaches
and our technique lies in the different evaluation functions.
Whereas Kasper et al. seek to optimize the navigation
skills, Latombe et al. generate actions to maximize the
visibility of a moving object. The approach presented in
this paper, in contrast, has the goal to minimize the risk of
interfering with persons given the knowledge about typical
motion patterns.

III. M OTION PATTERNS

Our approach uses motion patterns of people that are
learned using the technique described in [3]. The key
idea of this method is to cluster trajectories of persons
into motion pattern using the EM-algorithm. The output
is a numberM of different types of motion patterns
θ = {θ1, . . . , θM} a person might exhibit in its natural
environment. A motion pattern, denotedθm with 1 ≤
m ≤ M , is represented byK Gaussian distributionsθ[k]

m =
N(µ[k]

m , σ) with meanµ
[k]
m and fixed standard deviationσ

for all m andk. Each such Gaussian specifies for each data
point xi and eachθ[k]

m the likelihoodp(xi | θ
[k]
m ) that the

person is at locationxi given that stepi of the trajectory
x corresponds to stepk of motion patternm:

p(xi | θ[k]
m ) =

1√
2πσ

e−
1

2σ2 ‖xi−µ[k]
m ‖2

. (1)

As in [3], we assume that all motion patterns are of the
same lengthK, which can be achieved in a straightforward
way by linear interpolation.

In the remainder of this section we describe how the
learned motion patterns can be used to predict motions
of surrounding people. Suppose the robot observes a
sequencez = {z1, z2, . . . , zR} of positions of a person.
What we are interested in is a distribution which gives us
for each motion patternθm the probabilityp(θm | z) that

the person is engaged inθm givenz. According to Bayes’
rule, this corresponds to

p(θm | z) = αp(z | θm)p(θm). (2)

Here, p(z | θm) is the likelihood of the data givenθm,
p(θm) is the prior forθm, andα is a normalizer ensuring
that the left-hand side sums up to one over allθm.

It remains to describe howp(z | θm) is computed.
Unfortunately,z does not necessarily start at the initial
position of the corresponding motion pattern. Suppose
θ
[k]
m with 1 ≤ k ≤ K is the position inθm the first

observed positionz1 corresponds to. Furthermore, suppose
θ
[k′]
m with k ≤ k′ ≤ K is the position ofθm the final

observationzR of z corresponds to. Since bothk and
k′ are unknown, we apply the law of total probability
and computep(z | θm) by summing over all possible
combinations ofk andk′:

p(z | θm) =
K∑

k=1

K∑
k′=k

p(z | θm, k, k′)p(k, k′). (3)

The prior probabilityp(k, k′) depends on the velocity and
on the length of the given segment on the motion pattern.
To get p(z | θm, k, k′) we compute the product of the
likelihoods of each observationzr in z given that it starts
at k and ends atk′:

p(z | θm, k, k′) =
R∏

r=1

p(zr | θm, k, k′) (4)

=
R∏

r=1

p(zr | θ[df(r,k,k′)e]
m ) (5)

where

f(r, k, k′) =
k′ − k

R − 1
r +

kR − k′

R − 1
(6)

realizes a linear mapping of the individual observations
z1, . . . , zR to the componentsθ[k]

m , . . . , θ
[k′]
m of θm.

IV. I NTEGRATING PREDICTED MOTIONS OFPERSONS

INTO PATH PLANNING

In the previous section we described how to estimate the
probability that a person is engaged in a motion pattern
θm given an observation sequencez. Within this section
we now focus on the question of how the robot can exploit
this information to improve its navigation behavior. In
particular, we want to focus on the question how the belief
of the robot about the intentions of surrounding persons
can be considered during the path planning process.

Our robot applies theA∗ procedure for path planning
and searches for the minimum-cost path in its three
dimensional configuration time-space. The environment is
represented as a static occupancy grid map [14]. Each cell
〈x, y〉 of this grid stores the probabilityP (occx,y) that
the corresponding area in the environment is occupied. As



in [2] the cost for traversing a cell〈x, y〉 is proportional to
its occupancy probabilityP (occx,y). To avoid that paths
lead through walls etc. we apply a threshold function
γ(x) which is infinite if x exceeds 0.8 andx elsewhere.
As a heuristics we use the value function obtained by a
deterministic value iteration in the static 2D map. This
allows the robot to quickly re-plan its path whenever new
measurements have arrived and the belief of the intended
trajectories of the persons has changed.

To incorporate the robot’s belief about future trajecto-
ries of the persons, we additionally discount a cell〈x, y〉
according to the probability, that one of the persons covers
〈x, y〉 at a given timet. Suppose our robot has observedL
persons and supposep(covx,y,t | zl) is the probability that
a personl covers〈x, y〉 at timet given the observationszl

corresponding to this person. If we consider the individual
persons independently, we can then compute the costs
Ccov(x, y, t) introduced by the fact that〈x, y〉 might be
covered at timet as follows:

Ccov(x, y, t)

=
L∑

l=1

p(covx,y,t | zl) (7)

=
L∑

l=1

M∑
m=1

K∑
k=1

K∑
k′=k

(
p(covx,y,t | θm, k, k′, zl)

·p(θm, k, k′ | zl)
)

(8)

It remains to describe how the individual termsp(covx,y,t |
θm, k, k′, zl) and p(θm, k, k′ | zl) are computed. For the
latter term we have

p(θm, k, k′ | zl)
= αp(zl | θm, k, k′)p(θm, k, k′) (9)

= ηp(zl | θm, k, k′)p(θm)p(k, k′) (10)

whereη is another normalizer. Finally, we need to describe
how we actually compute the probabilityp(covx,y,t |
θm, k, k′, zl) that a person engaged in motion patternθm

will cover 〈x, y〉 at time t given the observationszl and
given thatzl starts atθ[k]

m and ends atθ[k′]
m . In our current

system, we are using a Gaussian distribution to represent
the uncertainty about the position of the person at time
step t. The mean of this Gaussian is computed as that
point on θm which has the distancevt from the latest
observed positiont′, wherev is the velocity of the person
in the observationszl. Thus, we predict the motion of the
person starting from locationt′ according to the average
velocity v and the trajectory given byθm.

The overall cost for the robot to traverse a cell〈x, y〉
at time t is then computed as:

C(x, y, t) = γ(p(occx,y)) + Ccov(x, y, t) (11)

At this point it is worth noting that our approach can
be used to predict the intentions of multiple persons and
that it can even deal with persons not engaged in any of
the learned motion patterns. If a person’s behavior cannot
be associated well to any of the known models, the belief
p(θm | z) will be uniformly distributed which introduces
higher costs for fields on learned motion patterns.

V. DETECTING AND TRACKING PEOPLE

To apply the technique described above, a robot must
be able to detect persons in its vicinity and to keep
track of them. Similar to [18], [13], our current system
extracts features out of range scans and considers changes
in consecutive scans to identify moving people. To keep
track of a person we use a Kalman filter. The statex of a
person is represented by a vector[x, y, δx, δy]′. Whereas
x and y represent the position of the person, the terms
δx and δy represent the velocity of the person inx- and
y-direction. Accordingly, the prediction is carried out by
the equation:

x−r+1 =

∣∣∣∣∣∣∣∣
1 0 tr 0
0 1 0 tr
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ xr (12)

where tr is the time elapsed between the measurement
yr+1 andyr. Usually, sensors only give the position of an
object. Since the sensors we are using generally do not
provide the velocitiesδx and δy, which are also part of
our state space, the measurement matrix projects onto the
first two components of the state space. Accordingly, the
predicted measurement at stepr + 1 is:

y−r+1 =
∣∣∣∣ 1 0 0 0

0 1 0 0

∣∣∣∣ x−r+1. (13)

The positionszi of a person that are input to our path
planning routine, are computed out of eachxi by using
the first two components of the state space. To deal
with multiple persons we use independent Kalman filters
to keep track of them. To solve the data association
problem, we apply a nearest neighbor approach, i.e. we
update a filter using that observationyr+1 that is most
closely toy−r+1. New filters are introduced for observations
from which all predicted observations are too far away.
Furthermore, filters are removed if no updates can be made
to a filter for several update steps.

VI. EXPERIMENTAL RESULTS

To evaluate the capabilities of our approach, we per-
formed extensive experiments. The experiments demon-
strate that our robot is able to use the learned models to
classify observed trajectories, predict motions of persons
and adapt its own behavior accordingly. All experiments
were carried out using our B21r platform Albert in the
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Fig. 2. Albert moves into a doorway to let the person pass by.

corridor environment of the department of Computer Sci-
ence at the University of Freiburg. Albert is equipped
with a laser-range finder which is used in the experiments
reported here for people tracking and obstacle avoidance.

A. Planning Detours

The first experiment is designed to demonstrate that
our approach allows a mobile robot to reliably predict
the possible trajectories of persons and to appropriately
incorporate this information into its motion plans. The
task of the robot was to travel along the corridor of
our building. At the same time, a person walking in the
opposite direction was approaching the robot. Figure 2
shows the initial position of the robot and the position
of the person when it was discovered by the robot for
the first time. Given the first two estimates about the
person’s position and the existing motion patterns, possible
trajectories lead to the locations D, M, E and W which are
also shown in Figure 2. Obviously, all the corresponding
motion patterns lead through the corridor so that the robot
was likely to interfere with the person. Accordingly, the
cost-optimal action for the robot was to drive into the
doorway to the right in front of it and to wait there until
the person eventually had passed by.

Figure 2 also shows the whole trajectory of the person
(dashed line) as well as the trajectory of the robot (solid
line). As can be seen from the figure, the person went to
the location E and the robot continued to move towards
its designated goal point after the person had walked by.

Figure 3 shows a similar situation. Again, the robot
had been driving in the corridor when it realized a person
approaching it. According to the observations, the most
likely motion patterns of the learned model lead to the
locations D, M, L, and S. However, since the prior
probabilities of the motion patterns with target locations L
and S were very low, the resulting costs introduced to the
configuration time-space did not prevent the robot from
driving further. Since the other possible intentions leading
the person to D and M had a sufficiently high prior, the
system stopped in the middle of the corridor and waited
until the person entered room M in this case. Figure 4
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Fig. 3. Albert moves forward and waits until the likelihood of interfering
with the person is low enough.

Fig. 5. Tracking two persons using Kalman filters.

shows images of the robot and the person taken during
this experiment. As can be seen, the robot successfully
avoided that the person had to take a detour in order to
arrive in the target location.

B. Multiple Persons

Figure 6 shows a situation in which Albert was about
to leave a room while two persons were walking along the
corridor and approaching the robot from either direction.
Figure 5 shows laser-range scans and the estimated posi-
tions of the persons at different time steps. The trajectories
of the persons are depicted as solid lines in Figure 6. Since
Albert was not able to leave the room before personP1

had walked by it stayed in the doorway. AfterP1 had
passed the doorway the behavior of the robot was mainly
influenced by the intention ofP2. Since P2 continued
walking along the corridor Albert waited until alsoP2

had passed the doorway. If, in contrast,P2 had walked
into one of the offices before passing the robot orP2 had
moved at a lower speed, Albert would have started moving
immediately afterP1 had unblocked the robot’s path. The
possible intentions are also depicted in Figure 6.

C. Comparison to a Reactive Collision Avoidance System

Additionally, we compared our approach to a reactive
collision avoidance [19]. Figure 7 shows the behavior of
the robot in the same situation as depicted in Figure 2.
As can be seen from the figure, the robot immediately
started to move towards its target location. As soon as the



Fig. 4. Albert moves forward and waits until the likelihood of colliding with the person is low enough.

robot
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Fig. 6. Albert observes two persons and waits in the doorway until
they have passed it.

person

robot

Fig. 7. If the robot does not use our predictive planning system and
solely relies on a reactive collision avoidance system in the same situation
as depicted in Figure 2, it will get pretty close to a person and will force
it to slow down.

person was close by, the robot tried to move around it.
Please note that in this case the person had to reduce its
speed and let the robot move aside before it could go on.
This illustrates, that our system provides a much better
behavior in dynamic environments than purely reactive
collision avoidance systems.

D. Giving Space to Persons

The final experiment described here is designed to
illustrate that our technique can also be used to improve
the bevahior of the robot even in situations in which
the robot is not performing a navigation task. In this
particular situation (see Figure 8) the robot had no goal
point and rested in a doorway waiting for instructions.
Then it realized that a person was approaching from the
left. According to the learned motion patterns, Albert
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Fig. 8. Albert moves aside in order to let a person pass by.

Fig. 9. Albert moves away from a doorway in order to let a person
enter the corresponding room.

inferred a high chance that the person would enter the
room through the doorway that was blocked by it. The
cost-optimal action according to the path planner was to
drive to the middle of the corridor in order to give space.
Figure 9 shows two images taken during this experiment.

VII. C ONCLUSIONS

In this paper we presented a method for adapting motion
strategies of a mobile robot according to the activities of
surrounding people. Our approach uses motion patterns
learned out of real data and exploits these patterns to
predict the motions of persons sensed by the robot. To
compute cost-optimal paths that minimize the risk of
interfering with a person we consider the configuration
time-space of the robot. The integration of the estimated
motion patterns of the persons into the path planning
allows the robot to adapt its behavior more appropriately
and at an earlier stage than purely reactive approaches.

Our technique has been implemented and applied to
data recorded with mobile robots equipped with laser-



range sensors. The current implementation is highly ef-
ficient and allows to quickly react to its sensory input. In
different experiments we demonstrated that the behavior
of a mobile robot can be improved by predicting the mo-
tions of surrounding people. They furthermore illustrated
advantages over standard reactive systems.
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