
Utilizing Learned Motion Patterns to Robustly Track Persons

Maren Bennewitz† Wolfram Burgard† Grzegorz Cielniak‡

†Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
‡Department of Technology,̈Orebro University, 70182̈Orebro, Sweden

Abstract

Whenever people move through their environments they do
not move randomly. Instead, they usually follow specific
trajectories or motion patterns corresponding to their inten-
tions. Knowledge about such patterns may enable a mobile
robot to robustly keep track of the position of the persons
in its environment or to improve its behavior. This paper
proposes a technique for learning collections of trajecto-
ries that characterize typical motion patterns of persons.
Data recorded with laser-range finders is clustered using
the expectation maximization algorithm. Based on the re-
sult of the clustering process we derive a Hidden Markov
Model (HMM). This HMM is able to estimate the current
and future positions of multiple persons given knowledge
about their typical motion patterns. Experimental results
obtained with a mobile robot using laser and vision data
collected in a typical office building with several persons il-
lustrate the reliability and robustness of the approach. We
also demonstrate that our model provides better estimates
than an HMM directly learned from the data.

1. Introduction
Recently, a variety of service robots has been developed that
have been designed to operate in populated environments.
These robots for example, have been deployed in hospi-
tals [8], museums [2], office buildings [1], and department
stores [5] where they perform various services e.g., deliver,
educate, entertain [17] or assist people [11].

Whenever mobile robots are designed to operate in pop-
ulated environments, they need to be able to perceive the
people in their neighborhood and to adapt their behavior
according to the activities of the people. Knowledge about
typical motion behaviors of persons can be used in several
ways to improve the behavior of a robot since it may pro-
vide better estimates about current positions of persons as
well as allow better prediction of future locations.

In this paper we present an approach for learning prob-
abilistic motion patterns of persons. We use the EM-
algorithm [10] to simultaneously cluster trajectories belong-
ing to the same motion behavior and to learn the characteris-

tic motions of this behavior. We apply our technique to data
recorded with laser-range finders. Furthermore, we demon-
strate how the learned models can be used to predict posi-
tions of persons by deriving an HMM [15] from the learned
motion patterns.

The paper is organized as follows. The next section in-
troduces our approach to learn motion patterns from ob-
served trajectories and describes how we generate Hidden
Markov Models to predict motions of persons. In Section 3
we present several experiments illustrating the robustness
of our approach for estimating the positions of single and
multiple persons using laser and vision data with a mobile
robot. We also give results indicating that our models pro-
vide better estimates than Hidden Markov Models directly
learned from the observations.

2. Learning Motion Patterns
When people perform their everyday activities in their envi-
ronment they do not move permanently. They usually stop
at several locations and stay there for a certain period of
time, depending on what activity they are currently carrying
out. Accordingly, we assume that the input to our algorithm
is a collection of trajectoriess = {s1, . . . , sN} between
resting places. The output is a number of different types
of motion patternsθ = {θ1, . . . , θM} a person might ex-
hibit in its natural environment. Each trajectorysi consists
of a sequencesi = {si,1, si,2, . . . , si,Ti} of positionssi,t.
Accordingly,si,1 is the resting place the person leaves and
si,Ti

is the destination. The task of the algorithm described
in this section is to cluster these trajectories into different
motion behaviors and finally to derive an HMM from the
resulting clusters.

2.1. Motion Patterns
We begin with the description of our model of motion pat-
terns, which is subsequently estimated from data using EM.
A motion pattern denoted asθm with 1 ≤ m ≤ M is repre-
sented byK probability distributionsp(x | θm,k) whereM
is the number of different types of motion patterns a person
is engaged in.
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Throughout this paper we assume that the input to our al-
gorithm consists of trajectories which have the same num-
ber of observed positions, i.e., thatTi = T for all i. To
achieve this, we transform the trajectories ins into a setd of
N trajectories such that eachdi = {di,1, di,2, . . . , di,T } has
a fixed lengthT and is obtained fromsi by a linear interpo-
lation. The lengthT of these trajectories corresponds to the
maximum length of the input trajectories ins. The learning
algorithm described below operates solely ond1, . . . , dN

and does not take into account the velocities of the persons
during the learning phase. In our experiments, we never
found evidence that the linear interpolation led to wrong re-
sults or that the walking speed of a person depends on its
intention. Note that one can easily extend our algorithm
to also incorporate the velocities by introducing further di-
mensions to the state variables.

For eachθm,k the probability distributionp(x | θm,k)
is computed based onβ = dT/Ke subsequent positions
on the trajectories. Accordingly,p(x | θm,k) specifies the
probability that the person is at locationx after [(k−1)·β+
1; k · β] steps given that it is engaged in motion patternm.
Thus, we calculate the likelihood of a trajectorydi under
them-th motion patternθm as

p(di | θm) =
T∏

t=1

p(xi,t | θm,dt/βe). (1)

2.2. Expectation Maximization
In essence, our approach seeks to identify a modelθ that
maximizes the likelihood of the data. To define the like-
lihood of the data under the modelθ, it will be useful to
introduce a set of correspondence variables denoted ascim.
Herei is the index of the trajectorydi, andm is the index of
the motion patternθm. Each correspondencecim is a binary
variable. It is 1 if and only if thei-th trajectory corresponds
to them-th motion pattern. If we think of a motion pattern
as a specific motion activity a person might be engaged in,
thencim is 1 if person was engaged in motion activitym in
trajectoryi.

In the sequel, we will denote the set of all correspon-
dence variables for thei-th data item byci, that is,ci =
{ci1, . . . , ciM}. For any data itemi the fact that exactly one
of its correspondence variable is1 leads to

∑M
m=1 cim = 1.

Throughout this paper we assume that each motion pat-
tern is represented byK Gaussian distributions with a fixed
standard deviationσ. Accordingly, the application of EM
leads to an extension of the fuzzyk-Means Algorithm (see
e.g. [4]) to trajectories. The goal is to find the set of motion
patterns which has the highest data likelihood. EM is an al-
gorithm that iteratively maximizes expected data likelihood
by optimizing a sequence of lower bounds. In particular it
generates a sequence of models denoted asθ[1], θ[2], . . . of

increasing data likelihood. The standard method is to use a
so-calledQ-function which depends on two models,θ and
θ′. In our case thisQ-function is factored as follows:

Q(θ′ | θ) =
N∑

i=1

(
T · M · ln 1√

2πσ

− 1
2σ2

·
T∑

t=1

M∑
m=1

E[cim | θ, d]‖xi,t − µ′
m,dt/βe‖

2

)
.(2)

The sequence of models is then given by calculating

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]) (3)

starting with some initial modelθ[0]. Whenever theQ-
function is continuous as in our case, the EM algorithm con-
verges at least to a local maximum.

In particular, the optimization involves two steps: cal-
culating the expectationsE[cim | θ[j], d] given the current
modelθ[j], and finding the new modelθ[j+1] that has the
maximum expected data log likelihood under these expec-
tations. The first of these two steps is typically referred to
as the E-step (short for: expectation step), and the latter as
the M-step (short for: maximization step).

To calculate the expectationsE[cim | θ[j], d] we apply
Bayes’ rule, obeying independence assumptions between
different data trajectories:

E[cim | θ[j], d] = p(cim | θ[j], d) = p(cim | θ[j], di)
= ηp(di | cim, θ[j])p(cim | θ[j])
= η′p(di | θ[j]

m ), (4)

where the normalization constantsη andη′ ensure that the
expectations sum up to 1 over allm. If we combine (1) and
(4) utilizing the fact that the distributions are represented by
Gaussians we obtain:

E[cim | θ[j], di] = η′
T∏

t=1

e
− 1

2σ2 ‖xi,t−µ
[j]
m,dt/βe‖

2

. (5)

Finally, the M-step calculates a new modelθ[j+1] by
maximizing the expected likelihood. Technically, this is
done by computing for every motion patternm and for each
probability distributionp(x | θm,k) a new meanµ[j+1]

m,k . We

thereby consider the expectationsE[cim | θ[j], d] computed
in the E-step:

µ
[j+1]
m,k =

1
β
·

k·β∑
t=(k−1)·β+1

∑N
i=1 E[cim | θ[j], d]xi,t∑N

i=1 E[cim | θ[j], d]
. (6)
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2.3. Estimating the Number of Model Compo-
nents

Since in general the correct number of motion patterns is
not known in advance, we need to determine this quantity
during the learning phase. If the number of motion patterns
is wrong, we can distinguish two different situations. First,
if there are too few motion patterns there must be trajecto-
ries, that are not explained well by any of the current motion
patterns. On the other hand, if there are too many motion
patterns then there must be trajectories that are explained
well by different model components. Thus, whenever the
EM algorithm has converged, we check whether the overall
data likelihood can be improved by increasing or decreasing
the number of model components. To limit the model com-
plexity, during the evaluation we use a penalty term that de-
pends on the number of model components. This avoids that
our algorithm learns a model that overfits the data, which in
the worst case is a model with one motion pattern for ev-
ery single trajectory. If the maximum number of iterations
is reached or if the overall evaluation cannot be improved
after increasing and decreasing the model complexity our
algorithms stops and returns the model with the best value
found so far. In most of the experiments carried out with
different data sets our approach correctly clustered the tra-
jectories into the corresponding categories.

2.4. Laser-based Data Acquisition
The EM-based learning procedure has been implemented
for data acquired with laser-range finders. To acquire the
data we used several laser-range scanners which were in-
stalled in the environment so that the relevant parts of the
environment were covered. First, to identify persons in the
laser data our system extracts features which are local min-
ima in the range scans that come from the legs of persons.
Additionally, it considers changes in consecutive scans to
more reliably identify the moving people. To keep track of
a person, we use a Kalman filter [20].

In a second step we identify the resting places and per-
form a segmentation of the data into different slices in
which the person moves. Finally, we compute the trajec-
tories, i.e. the sequence of positions covered by the person
during that motion. When computing these trajectories, we
ignore positions which lie closer than 15cm to each other.

2.5. Deriving Hidden Markov Models from
Learned Motion Patterns

Once the motion patterns of the persons have been learned,
we can easily derive Hidden Markov Models to estimate
their positions. To achieve this, we distinguish two types
of nodes. The first class are the initial and final nodes that
correspond to the resting places. To connect these nodes
we introduce so-called intermediate nodes which lie on the

learned motion patterns. In our current system we use a
sequence ofLm intermediate nodesν1

m, . . . , νLm
m for each

motion patternθm. The intermediate nodes are distributed
over θm such that the distance between two consecutive
nodes is∆ν = 50cm . Given this equidistant distribution of
the sub-nodes and assuming a constant speedv with stan-
dard deviationσv of the person, the transition probabilities
of this HMM depend on the length∆t of the time inter-
val between consecutive updates of the HMM as well as
on v and σv. In our current system, this value is set to
∆t = 0.5secs. Accordingly, we compute the probability
that the person will be in nodeν′

m given it is currently in
νm and given that the time∆t has elapsed as:

p(ν′
m | νm,∆t) =

∫ ν′
m+∆ν

2

ν′
m−∆ν

2

N (νm + v · ∆t, σv, x) dx. (7)

HereN (νm + v · ∆t, σv, x) is the value of the Gaussian
with meanνm + v · ∆t and standard deviationσv at posi-
tion x. We currently define the same transition probabilities
for all intermediate nodes and assume that the persons are
moving at constant speed. The transition probabilities for
the resting places are computed based on two statistics. The
first one is a statistics about the average time period which
elapses before the person starts to move after staying at the
corresponding resting place. Furthermore, we count how
often a person starts to move on a particular trajectory af-
ter staying at the resting places and this way determine the
transition probabilities for the nodes corresponding to the
resting places.

To update such an HMM based on sensory input we dis-
tinguish two different situations, namely when we are track-
ing a single person and when we are tracking multiple per-
sons.

2.5.1 Keeping Track of a Single Person

Let us first consider the case that we are tracking a single
person. We apply the well-known recursive Bayesian up-
date scheme:

p(ν | z1, . . . , zR) = α · p(zR | ν) · p(ν | z1, . . . , zR−1). (8)

Here α is a normalizer and the observationzr is either
the position of a person provided by the laser-based peo-
ple tracking system or the information that no person was
detected. To compute the likelihood of an observationz
given the stateν we have to distinguish four different cases.
When the observation is the positionzxy of a person and the
robot is at positionrxy we get:

p(z = zxy | ν, rxy)

=
{

N (0, σz, ‖zxy − ν‖) if ν is visible fromrxy

c1 otherwise.
(9)
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Hereσz is the variance in observations of persons andc1 is a
constant that is determined by counting how often a person
detection aroundzxy is reported even if actually no person
is in the vicinity ofν.

For the case that no person is detected we define the like-
lihood of this observation as:

p(z = no Person| ν, rxy)

=
{

c2 if ν is visible fromrxy

c3 otherwise.
(10)

Here the constantc2 stands for the cases in which the peo-
ple tracker fails to detect a person even if there is one in the
vicinity of ν. c3 is proportional to the probability that the
people tracker gives the correct information that no person
is in the sensor range. Again the values forc2 andc3 can be
determined by counting. The constants are needed in order
to prevent that all probabilities vanish from the correspond-
ing nodes in the case that the people tracker fails to track a
person or, in the other case, a false positive detection occurs.

2.5.2 Keeping Track of Multiple Persons

To keep track of multiple persons in an environment one
in principle would have to maintain a belief over the joint
state space of all persons. This approach, however, is usu-
ally not feasible since the complexity of the state estima-
tion problem grows exponentially in the number of persons
or dimensions of the state space. Additionally, learning the
joint transition probability distribution would require a huge
amount of training data. We therefore approximate the pos-
terior by factorizing the belief over the joint state space and
by considering independent beliefs over the states of all per-
sons. With our current system we first compute an indi-
vidual HMM for every person. To maintain the individual
beliefs, however, we need to be able to update the HMMs
for the persons based on observations made by the robot,
which requires the ability to reliably keep track of persons
and to identify them. To achieve this, our current systems
combines laser and vision information.

To track multiple persons in the range scans, we apply
independent Kalman filters, one for each feature. To solve
the data association problem, we apply a nearest neighbor
approach, i.e., we update a filter using the observationzr+1

that is closest toz−r+1. New filters are introduced for obser-
vations from which all predictions are too far away. Further-
more, filters are removed if no corresponding feature can be
found for one second.

We also need to be able to identify a person in order to
appropriately update the belief about the location of that
person. To achieve this we additionally employ the vision
system of our robot and learn an image database before-
hand. For each person this database contains one histogram
which is built from 20 images. To identify a person, we pro-
ceed as follows: Every time the laser-based people tracker

detects a person in the field of view of the camera, an image
is collected and the following three steps are applied:

1. Segmentation:The size of a rectangular area of the
image containing the person is determined. To deter-
mine the area in the image corresponding to a feature
detected by the laser tracking system, we rely on an
accurate calibration between the camera and the laser.
We use a perspective projection to map the 3D posi-
tion of the person in world coordinates to 2D image
coordinates.

2. Feature extraction: We compute a color histogram
for the area selected in the previous step. Whereas
color histograms are robust with respect to translation,
rotation, scale and to any kind of geometric distor-
tions they are sensitive to varying lighting conditions.
To handle this problem we consider the HSV (Hue-
Saturation-Value) color space. In this color model the
intensity factor can be separated so that its influence is
reduced. In our current system we simply ignore this
factor. Throughout all our experiments we could not
find any evidence that this factor negatively affected
the performance of the system.

3. Database matching:To determine the likelihood of a
particular person, we compare the histogram computed
in step 2 to all prototypes existing in the database. To
compare a given query histogramI with a prototype
M in the database we use the normalized intersection
norm H(I,M) [19]. This quantity can be computed
as:

H(I,M) =

∑n
j=1 min(Ij ,Mj)∑n

j=1 Mj
, (11)

whereI and M are color histograms both havingn
bins. One advantage of this norm is that it also allows
to compare partial views, i.e. when the person is close
to the camera and only a part of it is visible.

To incorporate the vision information into the update
procedure of the HMM, we apply the following formula:

p(ν | z1, . . . , zR)

= α ·


p(zR | ν) · p(ν | z1, . . . , zR−1)

if zr is only a range measurement
p(zR | ν) · H(I,M) · p(ν | z1, . . . , zR−1)

if zr is a range and vision measurement

(12)

Whenever a person is not in the field of view of the cam-
era but the robot perceives laser range information about
the position of a person we update all HMMs using the
range data as we do when we track a single person only
(Equations 8 to 10). If, however, the measurement includes
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Figure 1: Trajectories of three different motion patterns and evolution of the motion patterns during the EM algorithm (images
1-4) and resulting HMM (rightmost image).

range and vision information, we update each HMM us-
ing the range information but also proportional to the like-
lihood that this measurement was reflected by the person
corresponding to the particular HMM. Thus, to integrate
the similarity measure provided by the vision system into
the HMM of the personπ, we simply multiply the likeli-
hoods provided by the laser tracking system with the simi-
larity measureH(Ij ,Mπ) of the query histogramIj for the
segmentj and the data base prototypeMπ for personπ.

3. Experimental Results

The experiments described in this section are designed to
illustrate that our algorithm can learn complex motion be-
haviors of persons in different types of environments. We
also demonstrate that the HMMs derived from the learned
motion patterns allow a robust estimation of the positions of
persons. Finally, we present an experiment illustrating that
our approach yields better estimates than a standard Hidden
Markov Model directly learned from the input data.

3.1 Learning Example

To see how our EM-based learning procedure works in prac-
tice please consider Figure 1. In this example, a model for
nine trajectories of three different motion patterns has to be
learned. The leftmost image shows the initial model (the
means of the three model components are indicated by cir-
cles). In the next two images one can see the evolution of
the model components. The fourth image shows the model
components after convergence of the EM algorithm. As can
be seen, the trajectories are approximated quite well by the
corresponding motion patterns. Finally, the rightmost pic-
ture shows the HMM derived from these motion patterns.
The different resting places are indicated by rectangles and
numbers.

Figure 2: Hidden Markov Model derived from learned mo-
tion patterns.

3.2. Learning Motion Patterns in an Office En-
vironment

To evaluate our approach, we applied it to data recorded
over two hours in our office environment. During the ac-
quisition phase the average speed of the person wasv=107
cm/sec with a standard deviationσv=25 cm/sec. From the
resulting data our system extracted 129 trajectories which
were successfully clustered into 49 different motion pat-
terns. The resulting HMM as well as identified resting
places are shown in Figure 2.

3.3. Tracking a Single Person
The first experiment is designed to illustrate that our ap-
proach is able to reliably estimate the position of a person
in its environment. In this experiment, a single person was
moving in our department and the task of the robot, which
itself did not move, was to estimate the positions of this per-
son. Especially, we were interested in the probability that
the person stayed at the correct resting place.

Figure 3 shows a scene overview (left hand side) for a
part of an experiment in which a single person was moving
through the environment. The robot could only cover a part
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Figure 3: Albert tracking a person while it is moving through the environment. The center images depict the results of the
laser-based tracking system. The images on the right show the evolution of the belief over the position of the person.

of the environment with its sensors (which was mainly the
corridor as indicated) but even though it was able to main-
tain and update the belief about the position of the person.
The center images of the figure depict the results from the
laser-based people tracking system and the images on the
right hand side show the evolution of the HMM. In this
case we did not use vision information because we assumed
only one person was moving in the environment. In the
HMM the grey dot corresponds to the position of the per-
son provided by the laser tracking system. The size of the
squares of the states of the HMM represents the probabil-
ity that the person is currently in the corresponding state,
similarly the resting places are labeled with the probability
that the person stays currently at this particular place. In
the images depicted in the first row of this figure the robot
observed the person walking through the corridor. Then the
person entered a room and walked outside the field of view
of the robot. According to the transition probabilities of
the HMM, which models the typical behavior of the per-
son, most of the probabilities “wander” to resting place 7
(second row of Figure 3).

Figure 4 plots for different resting areas the probability
that the person stays in this particular place. Whereas the
x-axis represents the individual time steps, the y-axis indi-
cates the probability. The graph also includes the ground
truth, which is indicated by the corresponding horizontal
line-pattern at the .9 level. As can be seen from the figure,
the system can reliably determine the current position of the
person. During this experiment it predicted the correct place
of the person in 93% of the time.

0 20 40 60
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Figure 4: Evolution of the probability of the person to be at
the different resting places over the time. The ground truth
is indicated by the horizontal line-pattern at the .9 level.

3.4. Estimating the Locations of Multiple Per-
sons

As an application example consider the situation depicted
in the left image of Figure 5. In this particular situation two
persons (Wolfram and Greg) are walking along the corridor
within the perceptual field of the robot. The right image
of Figure 5 shows the estimate of the laser-based people
tracking system at the same point in time. The correspond-
ing image obtained with the robot’s camera is shown in the
left image of Figure 6. Also shown there are the two seg-
ments of the image that correspond to the two persons de-
tected with the laser. The right image of this figure plots
the similarities of the two segments to the individual proto-
types stored in the data base. Finally, Figure 7 depicts the
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HMM for Wolfram (who is the left person in Figure 6). As
can be seen, the probabilities indicated by the size of the
rectangles are slightly higher for the states that correspond
to Wolfram’s true location. Throughout this experiment the
robot was able to predict the correct location of the persons
in 79% of all cases.

3.5. A Comparison to Standard HMMs
The final experiment is designed to demonstrate that an
HMM that takes into account the motion behaviors of per-
sons allows a better prediction than a standard HMM that
is directly generated from the observed trajectories of the
persons. To evaluate the performance of the two different
approaches we chose two motion patterns from those de-
picted in Figure 2. The first pattern is the one leading from
resting place 7 via the office containing resting place 6 to
the staying area 2. The second one is the motion pattern
between the places 6 and 5. We defined a standard HMM
over the possible states of the person in the〈x, y, dx, dy〉
space wherex and y were discretized in 15 cm patches;
dx anddy encode 9 possible incremental moves per cell.
The transition probabilities were learned from the trajecto-
ries corresponding to both motion patterns by counting. We
randomly chose a position along the trajectories of both pat-
terns as the observed position of a person. The states of the
HMM were initialized according to the observation model.
After convergence of the HMM we measured the likelihood
of the true destination. We compared the results to those ob-
tained with the HMM for the two corresponding motion pat-
terns as they are generated by our algorithm. We repeated
this experiment for different locations along the trajectories
of both patterns and determined the average probability of
the true goal location. Whereas we obtained an average of
.74 with our model, the corresponding value of the standard
HMM is .56. This illustrates that our model leads to better
results because in contrast to a standard HMM our model is
able to differentiate between various motion behaviors and
automatically chooses the correct transitions. Note that this
experiment was carried out using only the range informa-
tion so that both HMMs used exactly the same input.

4. Related Work
A variety of laser-based techniques has been developed for
tracking people [18, 12]. These approaches assume that the
models of the motion behavior of the objects to be tracked
are given. Our approach, in contrast, is able to learn such
models and to use the learned models for the long-term pre-
diction of motions of persons. Kruse and Wahl [9] use a
camera system mounted at the ceiling to track persons in
the environment and to learn where the people usually walk
in their workspace. Johnson and Hogg [7] learn probabil-
ity density functions (pdfs) of typical object trajectories to

Figure 5: Typical scene with two persons walking along
the corridor (left image) and corresponding estimate of the
laser-based people tracking system (right image).

Figure 6: Segmentation of the two persons from the image
grabbed with the camera of the robot (left image) and sim-
ilarity of these segments to the data base prototypes (right
image).

detect atypical behaviors. Compared to the work presented
here, their approach lacks a technique to estimate the num-
ber of different behaviors. The goal of the work by Stauf-
fer and Grimson [3] is also to detect unusual events. They
learn codebooks of a given number of prototypes. Rosales
and Sclaroff [16] analyze 3D trajectories to learn typical
classes of actions like walking, running, and biking. Oliver
et al. [14] use data obtained from various sensors as input
to an Layered HMM and infer the state of a user’s activ-
ity. Galata et al. [6] use Variable Length Markov Models
(VLMMs) to model structured behaviors. One problem to
be solved in the context of VLMMs is the estimation of the
optimal size of the time window in order to correctly pre-
dict the next states. In our approach the relevant steps in
the past are generated automatically by the clustering pro-
cedure. Nguyen et al. [13] recently proposed to use an Ab-
stract Hidden Markov mEmory Model (AHMEM) to infer
intentions of persons. The idea of an AHMEM is to model
higher level behaviors by a stochastic sequence of more
simple behaviors at the lower levels. The authors apply an
EM-based learning method for labeled trajectories to deter-
mine the transition probabilities for the states at the low-
est level (grid cells) and assume that the landmarks the per-
sons want to approach are given. Our approach in contrast
applies an unsupervised clustering method to the observed
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Wolfram

Greg

Figure 7: Posterior after incorporating the two segments
shown in Figure 6 into the belief over Wolfram’s position.

trajectories and is also able to automatically infer resting
places which correspond to the landmarks in the AHMEM.

5. Conclusions
In this paper we presented a method for learning and uti-
lizing motion behaviors of persons. Our approach applies
the EM-algorithm to cluster trajectories recorded with laser
range sensors into a collection of motion patterns, each cor-
responding to a possible motion pattern of a person. From
these learned motion patterns we automatically derive an
HMM that can be used to predict the positions of persons in
their environments. We presented techniques to update the
resulting HMMs using laser range and vision information.

Our approach has been implemented and applied suc-
cessfully to data recorded in a typical office environment. In
practical experiments we demonstrated that our method is
able to use learned motion models to reliably predict states
of multiple persons. The experiments have been carried
out using a mobile robot equipped with a laser-range sen-
sor and a vision system. We furthermore presented experi-
ments indicating that standard HMMs directly learned from
the same input data are less predictive than our models.
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