
Efficient Traversability Analysis
for Mobile Robots using the Kinect Sensor

Igor Bogoslavskyi Olga Vysotska Jacopo Serafin Giorgio Grisetti Cyrill Stachniss

Abstract— For autonomous robots, the ability to classify their
local surroundings into traversable and non-traversable areas is
crucial for navigation. In this paper, we address the problem of
online traversability analysis for robots that are only equipped
with a Kinect-style sensor. Our approach processes the depth
data at 10 fps-25 fps on a standard notebook computer without
using the GPU and allows for robustly identifying the areas in
front of the sensor that are safe for navigation. The component
presented here is one of the building blocks of the EU project
ROVINA that aims at the exploration and digital preservation
of hazardous archeological sites with mobile robots. Real world
evaluations have been conducted in controlled lab environments,
in an outdoor scene, as well as in a real, partially unexplored,
and roughly 1700 year old Roman catacomb.

I. INTRODUCTION

Autonomous outdoor navigation is an active research field
in robotics. In most navigation scenarios, the classification
of terrain into traversable and non-traversable areas plays an
important role. Failing to stay on roads or other traversable
surfaces can introduce wheel slippage, which in turn leads
to errors in the odometry, and the risk of getting stuck or of
destroying the platform. Therefore, the ability to robustly
detect traversable areas is important for safe navigation,
especially in fully autonomous settings.

Our work is motivated by a project for the autonomous
exploration and digital preservation of hard-to-access arche-
ological sites such as catacombs. Catacombs are old Roman
burying places used between the 2nd and 5th century in
Italy. Even today, they are partially unexplored due to the
high risk of entering them. First, most sites are unstable and
can collapse. Second, most of the (non-ventilated) catacombs
yield a high concentration of radioactive radon gas so that
humans are only allowed to stay in these sites for 15 min-
30 min to prevent serious health issues. Thus, robots are
an excellent tool for the exploration, mapping, and digital
preservation of such sites. To achieve that, the robots have
to operate and explore the space in a completely autonomous
fashion and for this task, robust traversability analysis is an
essential prerequisite.

The main contribution of this paper is an accurate, fast to
compute, and comparably easy to implement traversability
analysis approach for mobile robots. Our system operates on
the depth images of a Microsoft Kinect or an ASUS Xtion

Igor, Olga, and Cyrill are with the University of Freiburg, Institue of
Computer Science, 79110 Freiburg, Germany. Jacopo and Giorgio are with
the La Sapienza University of Rome, Dept. of Systems and Computer
Science, 00185 Rome, Italy. This work has partly been supported by the
European Commission under FP7-600890-ROVINA.

Fig. 1. Example or a stair case observed with a Kinect and a corresponding
labeling into traversable (green) and non-traversable (red) areas.

pro live camera and analyzes the visible area in front of the
robot at 10 fps-25 fps on a notebook computer without using
the graphics processing unit (GPU). Not relying on GPUs has
the advantage of requiring less energy, which is a relevant
issue for small-scale autonomous robots. Our approach has
been implemented and evaluated in several sites including
a real catacomb. An example of a labeled depth image is
shown in Fig. 1.

II. RELATED WORK

Estimating traversable areas is essential for most naviga-
tion tasks and thus has been investigated intensively in the
past. For example, Rasmussen [16] proposes an approach to
trail following for mobile cross country robots. The robot
investigates the local variance of depth measurements, struc-
tural texture, and contrast to identify and follow a trail. The
work closest to our approach is probably the work of Renner
et al. [18] that aims at estimating environment properties such
as positive obstacles, flexibility, shape, dimensions, slope,
etc. using a camera and a PMD depth sensor. Besides visual
information such as texture, color, and variance in contrast,
they also consider surface normals and steps to identify
obstacles and create a polar, robot-centric model based on
which they navigate. Similar to Renner et al., De Cubber
et al. [5] address outdoor terrain traversability using a PMD
and a stereo camera. They estimate a ground plane and seek
for pixels that have a high probability of belonging to the
ground plane. Then, they use the color information of other
pixels to classify all image pixels as traversable.

Other approaches perform a semantic scene analysis to
support navigation [17], [19]. Ren et al. [17] propose an
approach for indoor scenes using a Kinect. They compute
a combination of color and depth features using kernel
descriptors and achieve a high labeling performance by
combining Markov random fields with segmentation trees.

Katramados et al. [12] present a real-time approach for
traversable surface detection using a monocular camera

mounted on robot. Based on the currently assumed to be
traversable location, the system searches similar areas in
the image given color and texture features. The approach of
Maier et al. [13] combines a monocular camera with sparse
laser range data on a humanoid to identify obstacles on the
ground plane. They infer the traversability information based
on the vision data after learning a classifier from sparse laser
information.

Terrain types have also been classified using vibration sen-
sors [4], [20]. Here, the vibration measurements are usually
analyzed in the Fourier domain. Brooks and Iagenemma [4]
use a combination of PCA and LDAto classify terrain and
Weiss et al. [20] use SVMs. Vibration-based approaches
typically offer highly accurate classification results. The
drawback of such methods, however, is that only the terrain
the robot is moving on can be classified and not the terrain
in front of the robot.

There exist approaches that apply self-supervised learning
to classify terrain and detect obstacles. A number of methods
have been developed that exploit local terrain knowledge
to predict surface terrain in the far range. These near-to-
far approaches use color information [9], [8], 3D geometry
information [14], or texture information [1]. Self-supervised
learning using laser and vison data is also used by Dahlkamp
et al. [6] in a vision-based road detection system. Finally,
traversability analysis is also the motivation for several
approaches that aim at detecting vegetation such as grass.
They typically use laser remission values [22], laser range
data [10], [21], and also combinations with vision [3], [7].

III. OUR APPROACH

The main objective of our work is developing an accurate
and fast to compute traversability analysis system for mobile
robots operating in catacomb-like environments. A central
focus lies on the online capabilities of the system on a
standard notebook computer without requiring a GPU so that
the traversability analysis can be computed and integrated
into the model on the fly. Our approach considers only the
depth image. Our motivation is that first, the underground
environments are completely dark and RGB data is basically
useless. Second, the depth cue is in general more informative
for estimating the traversability compared to RGB data.

Our approach can be split up into two main steps. After
a preprocessing step, our system first estimates the local
traversability based on a single depth image. This step
takes into account the navigation capabilities of the vehicle.
Second, the integration of the single-image traversability
estimates into a local traversability map.

Note that we assume the depth images to be locally
registered, i.e., the traversability analysis does not account
for any pose uncertainty of the vehicle. In practice, we use an
incremental ICP-based matching approach that uses the point
clouds and normal vectors and can be executed on the fly.
The approach can also be used with global methods such as
graph-based SLAM and obtain a globally consistent model.
This is straight forward if the local traversability estimates
are stored in the nodes of the SLAM graph. After the

optimization, the global traversability map can be rendered
from the local views in the global frame. Global mapping,
however, is not the scope of this paper.

A. Traversability for a Mobile Robot

Given a typical robotic platform such as a Pioneer 2AT
or a Mesa Element platform, the traversability is mainly
governed by three factors. First, a maximum step height
limits the vehicle from climbing steps higher than 5 cm-
15 cm (depending on the wheels/tracks and the exact setup).
Second, the maximum slope the robot can climb or descend.
The exact figures depend on the weight distribution of the
platform and its sensors. In our case, the maximum slope
was 15 deg. A third factor, that limits the traversability is the
height of the platform, which may prevent the robot from
driving into low niches or similar places. Additional factors
may impact the traversability of a platform such as mud or
water – such surfaces are, however, hard or even impossible
to be identified with a depth sensor such as the Kinect and
are therefore not considered here.

Our approach only considers the environment and not
explicitly the shape of the platform such as its width and
height. The question if the robot physically fits into an area
that is labeled as traversable has to be done by the planner
itself as the state of the robot, especially its orientation,
influences that. Thus, this decision is done by the planner.
Therefore, also currently unreachable places can be classified
as traversable as the planner will not expand these states.

Based on the constraints described above, the tasks of
estimating the traversability consists of analyzing the en-
vironment covered by the sensor and to identify height
constraints, steps, and slopes. Before providing further details
on that, we briefly describe how to efficiently compute
surface normals directly from the depth image and introduce
the sparse data structure that we use to store the 3D data.
Both support the three detection steps and are key for fast
online processing.

B. Fast Normal Computation from a Depth Image

Our approach exploits information about the surface nor-
mals of the perceived environment. Thus, the first operation
we perform is to compute a normal vector for each 3D point
using the depth image. For a point p, we can compute its nor-
mal by considering a Gaussian distribution with parameters
µ and Σ, which models the distribution of the neighboring
points of p. The eigenvector of Σ that corresponds to the
smallest of the three eigenvalues provides the direction of
the normal.

We apply a fast method for normal extraction that exploits
the structure of the input similar to [11], and takes advantage
of the underlying hardware. We can rewrite the computation
of the mean and the covariance matrix as:

µ =
1

N

∑
i

pi︸ ︷︷ ︸
P

=
1

N
P (1)

Σ =
1

N

∑
i

pip
T
i︸ ︷︷ ︸

S

−µµT =
1

N
S − µµT , (2)

where N is the number of neighbors of p. If we know the
terms P and S, we can compute the covariance matrix and
thus the normals in constant time. By exploiting the fact that
we are using a depth image as the input, we can realize the
computation of P and S in constant time too through the
use of integral images.

The integral image I(i, j) → (Pij , Sij) maps the pixel
coordinates (i, j) to the tuple (Pij , Sij) such that

Pij =

i∑
k=1

j∑
l=1

pkl Sij =

i∑
k=1

j∑
l=1

pklp
T
kl, (3)

where pkl corresponds to the 3D point, which is observed by
the pixel (k, l). Thus, this integral image is a 2D array where
the position (i, j) contains the sum Pij and the squared sum
Sij of all other points visible in the rectangular area between
(1, 1) and (i, j).

Exploiting the fact that the terms S and P support ad-
dition and subtraction, we can determine S and P for any
rectangular region (i1, j1) to (i2, j2) in the integral image by

I(i1, j1, i2, j2) =

I(i2, j2) + I(i1, j1)− I(i1, j2)− I(i2, j1). (4)

By processing the depth image from the top left to the
lower right corner, each computation exploits the result of
the previous step leading to a constant time computation of
Pij and Sij for each pixel.

Note that the computation of the normals through the
integral image is an approximation. The reason is that only
rectangular image regions can be queried with Eq. (4) and the
queries are performed in image coordinates and not in world
coordinates. The appropriate size of the region, however, can
easily be determined given the distance of the query point
to the camera.

The implementation of the algorithm described above can
furthermore exploit the SSE extensions of Intel CPUs by
operating on packed structures of four floats. The points are
stored as homogeneous vectors p = (x, y, z, 1)T . The terms
P and S are stored as a 4-dimensional vector and as a 4×4
matrix respectively. Adding points to an accumulator P using
this representation, results in a homogeneous component
that contains the number of points. This has the effect of
removing conditional instructions and of performing the
evaluation almost entirely in the SSE subsystem of the
CPU. This provides a speed up of a factor of 3 compared
to an implementation of the same algorithm without SSE
instructions.

C. Sparse 3D Map

The second operation we perform is to store the measured
endpoints and normals in a 3D data structure. In theory, a raw
point cloud could be used but they have the disadvantage that
finding neighboring points is expensive. As finding neighbors
is explicitly required later on, we propose to approximate

the points using a grid-like structure. As our data is sparse
compared to the number of cells of a full 3D grid, we store
the data in a sparse grid that is realized via a two-layered
hash-table like structure.

First, a hash-table is used to index points in the x-y
plane in world coordinates. The key of the hash-table is the
discretized (x, y) coordinate of points that can, given the
range and resolution of the Kinect sensor, be modeled by a
single 32 bit integer. This hash table acts as a sparse 2D grid
as only those cells are instantiated for which 3D points with a
corresponding (x, y) coordinate exists. For every non-empty
(x, y) grid cell, we initiate a red-black tree, which is a self-
balancing binary search tree that allows for quickly accessing
elements and for processing them in a sorted order. The key
of each red-black tree is the discretized z coordinate of the
endpoints to be stored. From an implementation point of
view, this may sound complex but note that the C++ standard
template library implements a red-black tree within std::map
and thus can directly be used without additional efforts. The
same holds for the hash table (std::unordered map).

The overall data structure models a sparse 3D grid that
allows us to store discretized (x, y, z) triplets and, thanks
to the red-black tree, allows for parsing the z coordinate
efficiently in an ordered way. This will be used to compute
steps for (x, y) cells and to estimate if the height constraints
of the platform are violated.

In sum, the points of the point cloud that is computed from
the depth image are added to the sparse 3D grid. For each 3D
cell, we compute the average 3D coordinate and normal on
the fly. In our current implementation, we use a discretization
of 4 cm. As a result of that, we obtain a (deterministically)
subsampled point cloud that is stored in a sparse 3D grid.
The following two operations can be conducted efficiently:
accessing any cell including neighboring cells and iterating
over the sorted z-coordinates of all cells for a given (x, y)
coordinate.

D. Accounting for the Vehicle Height

The easiest criterion that impacts the traversability of the
terrain is the height constraint of the vehicle. For every
(x, y) location in our sparse 3D map M , we start from the
lowest measured z value and compute the free space in z
direction to the next obstacle. Any obstacle for which the
difference in the z coordinate to the previous obstacle is
larger than the height of the platform can be discarded as it
does not constrain the motion of the vehicle. All obstacles for
which this distance is smaller than the height of the platform
are maintained in M and will, in the subsequent steps, be
analyzed according to their step height and slope.

E. Efficient Step Detection

Based on the sparse 3D map M , we can efficiently query
the neighboring points for any 3D coordinate. By analyzing
the height differences between points stored in neighboring
cells, we can quickly check for large steps that the robot
cannot traverse. The neighbors of a point p up to a distance

of d can be written as

N (p, d) = {q | q ∈M ∧ ||p− q|| ≤ d}. (5)

For each instantiated grid cell p ∈ M , we inspect the z
coordinates of the neighbors

qz = {z | (x, y, z) ∈ N (p, d)} (6)

and test if the coordinate is larger then zmax , which is the
maximum step that the vehicle can climb or descend. The
decision about traversability is then done by the following
function

a
(p)
step =

{
1 ∃ q ∈ qz : ||pz − q|| ≤ zmax

0 otherwise (7)

The expression is equal to 1 if there is any non-traversable
step at p and a = 0 otherwise. In our implementation, the
neighbor distance d was set to 10 cm and the maximum step
height zmax that the robot can traverse was 10 cm as well.

F. Robust Slope Detection

Besides steps, there is a second criterion that is important
for deciding if terrain is traversable or not: Up to which
degree can the robot climb slopes?

For computing the slope of a local area, we consider local
normal vectors which are efficiently computed as explained
in Sec. III-B. Based on the normal vector n and the gravity
vector ng , a straight forward test allows us to estimate the
traversability of a perceived surface based on the slope as

ng · n ≤ cos(αmax), (8)

where · is the scalar product and αmax the maximum slope
the robot can handle. In our setup, the gravity vector ng is
obtained from a standard IMU. We use an XSens MTi, which
provides the gravity vector up to an error of approx. 0.5 deg.

The test in Eq. (8) allows us to efficiently detect normal
vectors that yield a steeper slope than the navigation capa-
bilities of the robot. However, testing only for the slope is
not enough. Consider a small step that the robot can traverse.
The vertical surface of the step will create normal vectors that
are orthogonal to the gravity vector and thus report a steep
slope that cannot be traversed. Mathematically, that surface
is correctly labeled as 90 deg slope but it should not affect
the traversability labeling as long as the step is small enough
to be traversed by the robot. Thus, we are only interested in
slopes that have a minimum extension in the x-y plane in
order to be classified as a slopes, which cannot be traversed.

To achieve this, we apply a rather standard erosion-
dilation filter [2] with a 5-cross structuring element to our
traversability map. Let a(x,y)slope be the traversability label for
the position (x, y) where 0 refers to traversable and 1 to
non-traversable. The erosion step updates the estimate

a
(x,y)
slope ← max

(
a
(x,y)
slope , a

(x−d,y)
slope , a

(x+d,y)
slope ,

a
(x,y−d)
slope , a

(x,y+d)
slope

)
, (9)

Fig. 3. Photos of the individual test objects: two steps of different size, a
connected shallow and steep slope, steps of changing size.

and is followed by the dilation step

a
(x,y)
slope ← min

(
a
(x,y)
slope , a

(x−d,y)
slope , a

(x+d,y)
slope ,

a
(x,y−d)
slope , a

(x,y+d)
slope

)
. (10)

Here, the scalar d describes the distance in which the
neighbor considered (as in the previous subsection on step
detection). As a result of the erosion-dilation filtering, small
slopes such as steps are filtered out while “real slopes”, i.e.,
larger areas with a steep inclination angle, are maintained.

Finally, the traversability a(x,y) is obtained by combining
the traversability extracted from slopes a(x,y)slopes and steps and
height constraints a(x,y)steps by

a(x,y) = max
(
a
(x,y)
slope , a

(x,y)
step

)
. (11)

In sum, this approach provides a traversability estimate
given a single depth image.

G. Traversability Map Estimation

Let zt be such a traversability estimate of a local area
obtained from a single Kinect image taken at time t. As
this estimate is not free of errors, we integrate multiple
of such measurements into one model. We achieve that by
employing a static state binary Bayes filter that integrates the
information for every non-empty cell i in M .

Following the work of Moravec [15], we can compute a
recursive update formula for P (ai | z1:t) as

P (ai | z1:t) =[
1 +

1− P (ai | zt)
P (ai | zt)

1− P (ai | z1:t−1)

P (ai | z1:t−1)

P (ai)

1− P (ai)

]−1

.(12)

In order to gain efficiency, one can furthermore use the
log-odds formulation of Moravec, so that the operations in
Eq. (12) are realized via addition and subtractions in the
log-odds space.

To apply the Bayes filter, we need to specify the inverse
observation model P (ai | zt). As the depth resolution
decreases quadratically with increasing distance from the
sensor, we use the inverse sensor model (assuming a prior
of P (ai) = 0.5)

P (ai | zt) = 0.5 +
2ai − 1

2 + l2
, (13)

where l is the distance between the camera and the measured
cell (0.7 m-4 m) and ai ∈ {0, 1}. With this filter, the indi-
vidual traversability estimates that are computed per depth
image can easily be integrated into one model.

Fig. 2. Ground truth comparison using the objects pictured in Fig. 3. Left: ground truth labeling. Middle: our approach. Right: overlayed images (truth
above estimate). Green cells are labeled as traversable, red refers to non-traversable and yellow to cells for which not enough observations have been made
to allow for a confident labeling. Wrongly labeled pixels are highlighted in black. Note that most error are due to discretization effects.

640×480 pixels 320×240 pixels
CPU normals trav. fps normals trav. fps

i7 38 ms 55 ms 10.7 18 ms 22 ms 25
i5 85 ms 70 ms 6.6 40 ms 25 ms 15.3

Fig. 4. Average timings of the normal computation and traversability
analysis and the overall rate for two different resolutions of the depth image.

IV. EXPERIMENTS

The experimental evaluation is designed to show the ca-
pabilities of our traversability estimation system in different
environments. Throughout all our experiments, we used
either a Microsoft Kinect (catacomb scenes) or an ASUS
Xtion pro live (office and outdoor scenes) installed on a
mobile robot. We only used the depth information for the
traversability estimate, the RGB information is only used
for visualizations.

A. Timing Experiments

The first experiment is designed to illustrate that our
method runs online on a notebook computer without GPU
usage and can process the incoming depth images at high
framerate. We tested our system on two standard notebooks,
one equipped with a 2.3 GHz i7 processor and one with an
i5-2410M processor. Fig. 4 illustrates the results. As can be
seen, we achieve framerates between 10 fps and 25 fps on an
i7 notebook depending on the depth image resolution. Thus,
the environment in front of the robot can be analysed on
the fly allowing for autonomous navigation and exploration.
Even on the i5, the data can be analyzed with 15 fps on a
320×240 pixel depth image.

B. Ground Truth Comparison

The next experiment is designed to analyze the error
of our traversability estimate. It is non-trivial to provide a
ground truth analysis outside a simulator, but we put our
best efforts to achieve a near ground truth evaluation by
observing custom-made structures with known 3D geometry
and compare the traversability estimates pixel by pixel with
the geometric model. Fig. 2 illustrated the objects and the
results. The right image shows the overlay of the ground
truth (left) and estimated (middle) maps. All errors based
on a pixel-by-pixel comparison are highlighted in black.
In this experiment, 7.2% of the cells are wrongly labeled
if considered independently. However, nearly all wrongly
labeled cells occur at the borders of the obstacles and are
between one and two cells sizes away from the real obstacle.
Most of these errors actually result from discretization errors
or slight smoothing effects at steps when computing the
normal. In addition to that, 1.9% of the cells were not

observed sufficiently to allow for an appropriate labeling.
This occurs if P (ai | z1:t) has a value close to the prior
(here 0.5). These cells are colored yellow.

This experiment shows that our approach provides an
accurate labeling when ignoring the discretization errors.
This can typically be done on most real navigation settings
and the system classifies well for our application—exploring
an unknown catacomb with a mobile platform.

C. Traversability Estimated Obtained in Different Scenes

Finally, we would like to show initial results obtained
with our system in real world scenes. First, this includes
the deployment of a prototype robot based on a Pioneer2
AT system in the Catacombe di Priscilla in the underground
of Rome, see Fig. 5. The robot was steered through the
environment, incrementally aligning the depth images of a
Kinect and building the traversability map. Fig. 6 illustrates
a fraction of the traversability map showing the traversable
and non-traversable areas. Fig. 7 and 8 illustrate two selected
places showing the RGB image from the Kinect and the local
traversability map.

Finally, Fig. 9 shows the results obtained on the Freiburg
computer science campus outdoors on a cloudy day. As can
be seen, the small rocks are traversable for the outdoor
platform but not the big rock and two steps. Finally, the
motivating example in Fig. 1 illustrates a labeled depth image
(without the integration into a traversability map).

D. Limitations

We also experienced limitations of our system. There are
situations in which parts of the environment are traversable
only if the robot steers in a specific way, otherwise not.
An example are track-like obstacles that are too high to be
traversed but are at the same time low enough to fit between
the wheels of the robot. Another example is a v-shaped valley
in which the slopes are traversable except a corner-shaped
bottom, which is not non-traversable (it is depended on the
position of the wheels on the platform). These situations are
subject to future work.

V. CONCLUSION

Traversability information is important for autonomous
mobile robots. This paper presents a system for estimating
the local traversability for a mobile robot based on Kinect
images online. Our approach can process the depth data at
10 fps-25 fps on a standard i7 laptop computer without a
GPU and allows for robustly identifying the areas in front
of the sensor that are safe for navigation. The component
presented here is one of the building blocks of the EU

Fig. 5. Pictures of our robot and of the Catacombe di Priscilla used as a
test environment for our approach.

Fig. 6. Fraction of the explored space of the Catacombe di Priscilla.

Fig. 7. A stair case experienced during the mapping of a catacomb site
that is not traversable for the Pioneer robot. Left: RGB image from the
Kinect. The image is dark as the onboard light was not powerful enough to
appropriately illuminate the scene. Right: traversability estimate.

Fig. 8. A situation in which the ground level is flat and traversable but
the height of the platform prevents the robot from entering the niche. Left:
RGB image from the Kinect. Right: traversability estimate.

Fig. 9. Example of an outdoor scene on the Freiburg campus observed
by a rough terrain robot. The left image shows a photo and the right one
shows the local traversability map (distorted). The black region corresponds
the area behind the obstacle that was not visible.

project ROVINA that aims at the exploration and digital
preservation of hazardous archeological sites with mobile
robots. As we showed in our experimental evaluation, our
approach is able to reliably estimate the traversability in
different environments, ranging from lab to outdoor scene
as well as in a real partially unexplored, and nearly 1700
year old Roman catacomb in the underground of Rome.

REFERENCES

[1] A. Angelova, L. Matthies, D. Helmick, and P. Perona. Dimension-
ality reduction using automatic supervision for vision-based terrain
learning. In Proceedings of Robotics: Science and Systems, 2007.

[2] A. Bovik. Handbook of Image and Video Processing, chapter 2.
Elsevier, 2005.

[3] D. Bradley, R. Unnikrishnan, and J. Bagnell. Vegetation detection for
driving in complex environments. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2007.

[4] C.A. Brooks, K. Iagnemma, and S. Dubowsky. Vibration-based terrain
analysis for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), pages 3415–3420, 2005.

[5] G. De Cubber, D. Doroftei, H. Sahli, and Y. Baudoin. Outdoor
terrain traversability analysis for robot navigation using a time-of-
flight camera. In RSS Workshop on RGB-D: Advanced Reasoning
with Depth Cameras, 2011.

[6] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-
supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), Philadelphia, USA, 2006.

[7] B. Douillard, D. Fox, and F. Ramos. Laser and vision based outdoor
object mapping. In Proc. of Robotics: Science and Systems, 2008.

[8] G. Grudic, J. Mulligan, M. Otte, and A. Bates. Online learning of
multiple perceptual models for navigation in unknown terrain. In Field
and Service Robotics, pages 411–420. Springer, 2008.

[9] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proceedings of
Robotics: Science and Systems, 2006.

[10] M. Hebert and N. Vandapel. Terrain classification techniques from
ladar data for autonomous navigation. In Proc. of the Collaborative
Technology Alliances conference, College Park, MD., 2003.

[11] S. Holzer, R.B. Rusu, M. Dixon, S. Gedikli, and N. Navab. Adaptive
neighborhood selection for real-time surface normal estimation from
organized point cloud data using integral images. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

[12] I. Katramados, S. Crumpler, and T.P. Breckon. Real-time traversable
surface detection by colour space fusion and temporal analysis. In
Proc. International Conference on Computer Vision Systems, 2009.

[13] D. Maier, C. Stachniss, and M. Bennewitz. Vision-based humanoid
navigation using self-supervised obstacle detection. The Int. Journal
of Humanoid Robotics (IJHR), 10, 2013.

[14] L. Matthies, M. Turmon, A. Howard, A. Angelova, B. Tang, and
E. Mjolsness. Learning for autonomous navigation: Extrapolating from
underfoot to the far field. J. of Machine Learning Research, 1, 2005.

[15] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI
Magazine, pages 61–74, 1988.

[16] C. Rasmussen. Kinects for low- and no-sunlight outdoor trail-
following. In RSS Workshop on RGB-D: Advanced Reasoning with
Depth Cameras, 2012.

[17] X. Ren, L. Bo, and D. Fox. Indoor scene labeling using rgb-d data. In
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
2012.

[18] A. Renner, T. Foehst, and K. Berns. Perception of environment
properties relevant for off-road navigation. 2009.

[19] C. Stachniss, O. Martı́nez-Mozos, A. Rottmann, and W. Burgard.
Semantic labeling of places. In Proc. of the Int. Symposium of Robotics
Research (ISRR), San Francisco, CA, USA, 2005.

[20] C. Weiss, H. Frohlich, and A. Zell. Vibration-based terrain classi-
fication using support vector machines. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[21] D.F. Wolf, G. Sukhatme, D. Fox, and W. Burgard. Autonomous terrain
mapping and classification using hidden markov models. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[22] K.M. Wurm, H. Kretzschmar, R. Kümmerle, C. Stachniss, and W. Bur-
gard. Identifying vegetation from laser data in structured outdoor
environments. Journal of Robotics & Autonomous Systems, 2012.

