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Abstract—Many navigation systems for mobile robots use a
metrical map for localization and trajectory planning. In several
situations, however, building such a map upfront is hard or even
impossible. In this paper, we present a combined approach for
robot localization and navigation solely relying on a hand-drawn
sketch of the environment. In our work we model the sketch
as a two-dimensional manifold with an unknown metric. We
use Monte Carlo Localization for estimating the state of the
robot in combination with the local deformation of the sketch.
Accordingly, our approach can track both, the pose of the robot
and the local metric properties of the drawing. Furthermore,
we couple the pose tracker with a path planner that uses the
global information of the sketch and the estimated local metric
to robustly perform navigation tasks in real world environments.

I. INTRODUCTION

Several approaches to mobile robot navigation rely on a
metrically consistent map where desired paths are executed
combining online pose estimation and trajectory planning.
Although such methods have been shown to be remarkably
robust as well as highly efficient, they all rely on the as-
sumption that an accurate map of the scenario is available
beforehand. Typically, such a map is retrieved with human-
driven or active exploration. This can however be hard or
even impossible in many circumstances: rescue or harmful
operations are just few examples where teleoperating a robot
could be undesirably time-consuming or difficult. Furthermore,
both research and industry are increasingly investigating new
service applications in contexts where robots are designed to
operate and interact with non-expert people. Consequently, an
intuitive representation of maps and environments could be
helpful to not overburden the user with preliminary tedious
operations.

In this work we address the problem of performing au-
tonomous navigation tasks only relying upon a hand-drawn
sketch of indoor environments whose metrical description is
not available. The navigation system proposed here models
the sketch as a two-dimensional metric manifold. We base our
work on the assumption that the local metric on the sketch can
be approximated by means of suitable scales that account for
the local deformation along a particular reference frame of the
drawing. Consequently, a metric conversion between the real
world and the robot’s sensors can be applied in order to match
the measurements with the map. On top of this, we develop
a path planner that combines the global connectivity of the
sketch with the scaled sensor measurements (Fig. 1). As a
consequence, inconsistencies due to the approximate sketch as
well as unmapped obstacles can be safely avoided. The work
presented here expands upon the ideas proposed by Behzadian
et al. [1], where hand-drawn maps together with an enhanced

Fig. 1. The navigation system proposed in this paper and the robot used for
the experiments. The robot performs navigation only with a laser rangefinder.

Monte Carlo method have been employed for robot localization
in indoor environments.

In the remainder of the paper we first discuss the related
work in Sec. II. Then, in Sec. III, we present the proposed
distortion model and its integration within both the Monte
Carlo Localization and the path planning algorithms. Finally,
we present experimental results and evaluations in Sec. IV.

II. RELATED WORK

Thus far, there has been limited research in the context of
robot navigation without metrically consistent maps. An early
attempt to perform localization and navigation only relying on
the topological structure of the environment has been proposed
by Koenig and Simmons [2]. The authors analyzed the problem
as a Partially Observable Markov Decision Process (POMDP)
and developed an extension of the Baum-Welch algorithm
to learn the metric conversion between the topological map
and real world. Navigational actions are consequently planned
according to the underlying POMDP model. In this work,
however, only simple maps with regular patterns have been
studied. Konolige et al. [3], proposed a hybrid method where
a topological map obtained from a SLAM graph is used to plan



global paths. They encode those paths as a coarse sequence of
way points on the graph. The robot heads towards the way
points following metrically consistent trajectories output by a
local planner that uses the current laser scans. Setalaphruk et
al. [4] considered indoor navigation tasks relying on a blueprint
of a building, which is converted into a topological map using
a Voronoi decomposition. The authors only localize the robot
in a topological sense by adopting Multi-Hypotheses Tracking.
Autonomous navigation is achieved by exploiting the metric
properties of the blueprint coupled with a local path planner
for simple obstacle avoidance.

Using hand-drawn sketches of environments to enhance
the spatial cognition of robots has been already studied by
both the robotics and AI communities. Research so far has
mainly investigated the topic from the perspective of human-
robot interaction, focusing on the usability of sketches as
means for interoperating with robots. Indeed, many works have
approached the problem by emulating a human-like navigation
based on landmark matching. Skubic et al. [5], for instance,
focused on a human-robot interface to communicate navigation
tasks to the robot. A user provides a sketch of the scene
and a trajectory. During navigation, a set of rules is used to
determine the position of the robot along the path and selects
an appropriate behavior-based controller to follow it. Similar
approaches and interfaces have been studied in the past [6],
[7], [8] where fuzzy methods substitute deterministic state
controllers. The corresponding authors also investigated the
interactive control of a team of robots [9].

A slightly different perspective has been suggested by Shah
and Campbell [10]. Their work focuses on creating a path
planner that outputs trajectories that are consistent with a
hand-drawn map in terms of spatial relationships. A further
optimization layer is responsible for avoiding collisions. Kawa-
mura et al. [11] developed a navigational system on sketch
maps where trajectories are defined by a set of way points. A
topological estimation of the robot pose is computed by trian-
gulating the landmarks perceived by the robot’s sensors (the
Sensory Egosphere) with the qualitative landscape observable
from the path’s way points (the Landmark Egosphere). The
robot navigates heading towards those way points that output
the best matching between the two egospheres.

Yun and Miura [12] aimed to provide a quantitative mea-
sure of the navigability of sketched maps. To do so, they
employed a localization system based on Multi-Hypotheses-
Tracking and a basic planner that executes a set of primi-
tive motions. According to the success rate of goal-reaching
tasks, they fit a navigability function dependent upon shape
and dimension of the sketch as well as uncertainty of the
robot tracked position and landmarks’ existence. Although
this seems to be the only approach so far that designed an
objective measure of the quality of the sketch, only simulated
and simplified scenarios have been used in the experiments.
Parekh et al. [13] proposed a method to match occupancy grid
maps with sketches by means of particle swarm optimization
(PSO) techniques. In Li et al. [14] visual segmentation is
used to match landmarks with a sketch using a database of
objects. The robot is given only a sketched path together with
an approximate distance between the starting point and the
goal position. The path is then followed by triangulating the
observed landmarks.

Although navigation in hand-drawn maps has been recently
addressed in research, very few works have investigated the
possibility of extending a standard navigational system that
relies on robot pose tracking in the hand-drawn map. Matsuo
and Miura [15] suggested a method to track the robot state us-
ing Monte Carlo localization. During navigation, they combine
a fastSLAM algorithm with Particle Swarm Optimization to fit
the hand-drawn map to a local occupancy grid obtained from
stereo-data. Albeit the authors’ claims, they assumed a very
simple configurations of sketches with only rectangular shapes
representing buildings. Conversely, the methods described in
this paper aims to provide a general approach to navigation
in sketch map relying only on minimal assumptions, namely,
topological consistency and moderate deformations. Moreover,
the approach described here does not attempt to fit the sketch
to the real world, on the contrary, we try to convert sensors’
observations and measurements to the sketch. Such approach
has been used in [1] and seems, according to our investigation,
to be the first attempt towards this direction.

III. NAVIGATING IN SKETCHED MAPS

In this section we describe how we tackle the problem of
metrical inconsistencies between the sketch map and the real
world. We model the problem in terms of estimating a set of
suitable scale factors that convert the standard euclidean metric
into the local metric of the sketch.

In order to mathematically formalize this, assume to be
given a sketched map S := (OS ,RS ) encoded as a rasterized
image OS together with a reference frame RS . The sketch
describes a real world environment W := (OW ,RW ), again en-
coded as a rasterized image. We assume that the sketch satisfies
the following consistency property: there exists a diffeomor-
phism Φ : OW ⊂R2 −→OS ⊂R2 which transforms pixelwise
the free space of the related occupancy grid maps. Thus, any
robot trajectory (xW

t )t≥0 = ([xW
t ,yW

t ,θW
t ])t≥0 ⊆ SE(2) in the

metrically consistent map W can be described in the sketched
map in terms of composition of the path with the transforma-
tion Φ, that is, (xS

t )t≥0 = ([Φ(xW
t ,yW

t ),θS
t ])t≥0 ⊆ SE(2). As

a consequence, with ∂Φ being the Jacobian operator,∫ −→x S
t

−→x S
0

d−→x S = TS→W

∫ −→x W
t

−→x W
0

∂Φ(xW
t ,yW

t )d−→x W , (1)

where the arrow notation represents the planar components
of the pose and TS→W is the transformation that aligns
the origin of the sketch to the origin of the world. Mul-
tiplications such as the one in the right-hand term of (1),
where only planar components of SE(2) are affected, will be
henceforth shorthanded as 〈M, ·〉, with M ∈ R2×2. According
to (1) and observing that the infinitesimal increment dxW

t
can be approximated by means of the odometry reading ut
as ∆xW

t := xW
t − xW

t−1 = (xW
t−1⊕ut−1)− xW

t−1, it is natural to
describe the motion of a robot in a sketched map in terms of a
matrix valued function Σ : OW ⊂R2 −→GL(2) which defines
the local deformation between the real world and the sketch. In
terms of manifold representation, we can think of a sketched
map as a two-dimensional Riemannian manifold in R2 and
we characterize the motion of the robot on the manifold in
terms of the Riemannian metric induced by the positive definite
matrix [∂Φ(xW ,yW )]T ∂Φ(xW ,yW ). We observe that we used
the assumption of the existence of a diffeomorphism between



the sketch and the real world map to provide a mathematical
insight on the role of the scales. However this assumption can
be relaxed due to the discrete nature of the rasterized images
OS and OW .

In this work, we assume that the sketch respects the
orthogonality and parallelism of the real world, up to minor
inaccuracies. We believe that this is not a strong assumption,
since people in general have a good understanding of orthog-
onality and parallelism of walls in indoor environments. This
assumption also relies on the empirical evidence that an indoor
environments commonly have parallel and perpendicular walls.
Under these hypotheses, we can simplify our model so that the
global transformation Φ can be described in terms of composi-
tion of a metric and orientation preserving transformation and
a local distortion with approximately no shearing. Formally,
we suppose that

∂Φ≈R(φ)S : OW ⊂ R2 −→ GL(2), (2)

where, R(φ) ∈ SO(2) is a constant rotation matrix and S
is a diagonal matrix-valued function. The matrix R(φ) can
be thought as the rotational component of the transformation
between RW and a suitable reference frame RS in the sketch.
Consequently, R(φ) can be absorbed in the rotational compo-
nent of the transformation between the world reference frame
and the sketch TS→W , i.e., ∂Φ≈ [Trot

S→W ]S. Henceforth, we
assume this to be valid.

In the rest of this section we outline the two main compo-
nents of the navigation stack, namely the localization algorithm
and the path planning routine. As it is reported below, we show
how Monte Carlo Localization can be employed to estimate
the deformation factors together with the current robot’s pose.

A. Monte Carlo Localization and Scale Estimation

To track the robot pose xS
t = [xt ,yt ,θt ]

S while estimating
the local scale operator S, we employ an extension of Monte
Carlo Localization algorithm [16]. We enhance the current
robot state with two scale parameters a,b∈R+ which encodes
the local deformation along the reference axes of RS . More
precisely, we can approximate the scaling operator in (2) as

∂Φ(xW
t ,yW

t )≈[Trot
S→W ]

[
at 0
0 bt

]
=:

=:[Trot
S→W ]St =: Σt .

(3)

Such approach is a straightforward extension to the method
described by Behzadian et al. [1] where a single, frame
independent scale is estimated together with the robot’s pose.

Accordingly, we can apply the standard Bayes filter to the
augmented state ξt := (xS

t ,at ,bt) conditioning on the history
of commands u1: t and sensor measurements z1: t . That is, the
joint posterior can be estimated applying the recursive relation

p(ξt | u1: t ,z1: t) ∝ p(zt | ξt) ·

·
∫

p(ξt | ξt−1,ut)p(ξt−1 | u1: t−1,z1: t−1)dξt−1. (4)

Monte Carlo Localization represents the state belief with a
set of weighted samples, usually referred to particles, which
approximates the state distribution as a weighted sum of
Dirac’s delta distributions. At each iteration step, particles

are propagated according to an evolutionary model of the
robot state, and finally resampled with importance sampling
with respect of weights defined by the likelihood of the
observations.

1) Model for the Evolution of the State: We assume con-
ditional independence of both the local scales from the robot
pose [1] and the local scales between each others. Using this
assumption and (1), the posterior distribution of the state ξt in
the integral term of (4) can be approximated as follows:

p(ξt | ξt−1,ut)≈
p(xS

t−1 + 〈Σt−1,∆xW
t 〉)p(at | at−1)p(bt | bt−1). (5)

Thus, owing to (5), it is natural to choose a proposal
distribution that combines the probabilistic counterpart of the
motion model in (1) with two independent martingales that
describe the evolution of the local scales, formally

xS
t := xS

t−1⊕〈Σt−1,ut−1⊕εεε t−1〉,
at := at−1ηt−1,

bt := bt−1ζt−1,

(6)

where the independent noise terms in (6) are chosen so
that εεε t ∼ [N0,σ j ]

3
j=1 is Gaussian-distributed zero-mean random

vector with independent components (Wrapped Gaussian for
the orientation component). The multiplicative noise ηt ,ζt can
be chosen to be Gamma-distributed with unitary expected
value so the noise ranges in the entire scale space R+.
Γ(σ−2

i ,σ2
i ) is a natural choice for multiplicative white noise

as it provides a parameter for the variance, while the mean is
constant. Martingales are also a natural choice for propagating
the scales because the local changes of the deformations may
be completely arbitrary and no prior bias should be expected.

2) Observation Model: Given the endpoints zt := (zi,t)
N
i=1

related to the sensor measurements at time t, the likelihood of
sensor measurements p(zt | ξt) is computed by converting the
readings according to the metric in the sketch. More precisely,
we consider a generalization of the likelihood fields model for
range finders described in [16]. Set TS→R to be the transfor-
mation between the sketch and the robot reference frame and
defined oi,t to be the closest obstacle to the beam endpoint zi,t
and z′i,t := T tran

S→R +St [Trot
S→R]zi,t the scaled scan, we employ

the following approximation for the sensors’ likelihood model,

p(zt | ξt)≈ Lλ ,at (a
′
t)Lν ,bt (b

′
t)

N

∏
i=1
Noi,t ,σ2(z′i,t). (7)

In (7), Noi,t ,σ2 is a Gaussian kernel centered in oi,t with
variance σ2, Lβ ,s is a Laplace distribution centered in s with
scale parameter β and (a′t ,b

′
t) are virtual measurements for

the scales obtained by raytracing the sketch from the predicted
pose of the best particle. More formally, we infer (a′t ,b

′
t) by

solving the following least squares problem

min
A,B∈R

N

∑
i=1

[πa(pi−Azi,t)]
2 +[πb(pi−Bzi,t)]

2, (8)

where pi is the raytraced endpoint and πa,πb represent the
orthogonal projections on a reference frame parallel to RS and
centered in the robot position. The indexes a and b refer to
the directions of the related scales. Such least-square problem,



TS→W

Fig. 2. The scaling directions computed using the method described in
Sec. III-B to a sketch of Building 079. The rotation angle between the world’s
frame RW aligned with the pixels coordinates and the detected frame RS is
φ ≈ 0.777634 rad≈ 44.555 deg.

can be easily decoupled in two subproblems related to each
scale, then the solution can be obtained by projecting the
beam and raytraced endpoints on that reference system and
computing the mean of the ratios of the raytraced value and
the real sensor measurement along the a,b-directions. We add
this further term in the likelihood model in order to reduce the
effect of “looking through walls” typical of likelihood fields
models. Indeed, in our case, the presence of scaling factor can
increase the chance of matching wrong obstacles, such as walls
behind the actual walls detected. In other terms, the state of
the robot is underdetermined in the sense that, given a pose,
multiple configurations of the scales could be equally likely.

Finally, we observe that the choice of using a Laplace dis-
tribution for the scales is motivated by the fact that raytracing
on the sketch is generally unstable due to the imprecision of
the drawing. Therefore, we need a kernel function that does
not excessively suppress outliers

Roewekaemper et al. [17] have shown that the likelihood
field models are robust even when unmapped obstacles and
dynamical objects interact with the robot, which is the natural
scenario we envision for our work.

B. Choosing the Direction for Scaling

To select a suitable reference frame so that (2) and (3)
can be satisfied, we apply the heuristic that walls in indoor
environments are mainly orthogonal. Accordingly, it is natural
to assume a world’s reference frame RW aligned to the pixel
coordinates and to choose RS so that one of the axes is parallel
to the most frequent direction of the walls sketched in the map.
This procedure can be easily performed by detecting the line
segments in the sketch and applying a clustering procedure to
the set of directions. Similarly to [18], in our work we applied
the Progressive Probabilistic Hough Transform [19] after hav-
ing preprocessed the sketch with Canny’s algorithm for edge
detection [20]. We obtain a set of segments whose slopes with
respect to the pixels’ coordinate system are {θi}K

i=1 =: Θ⊂R.
We further run k-means on Θ. The rotation angle of Trot

S→W is

then defined as the centroid of the biggest cluster. Please note
that, in general, this procedure does not compute the actual
rotation angle φ in (2) since the direction of the lines are
determined up to a rotation of π . As a consequence, φ is
matched up to a rotation of kπ (k ∈ Z). However, this does
not affect our model as the scaling acts along the direction of
the axes. Indeed, this only results in a flipped behavior of the
scaling factors.

This procedure captures the qualitative direction of the
walls as the hand-drawn walls are affected by local bending
which are therefore filtered. Indeed, the Hough Transform
detects every wall as superimposition of shorter consecutive
lines. Fig. 2 shows an example sketch map with the computed
directions.

C. Path planning in sketches

The sketch carries only few information about the real
displacement of obstacles in the vicinity of the robot. Conse-
quently, we need to merge the high level knowledge provided
by the sketch with the actual configuration of the environment,
which can be retrieved by the sensor data. To do so, we
incorporate two planners based on Dijsktra’s shortest path
algorithm, namely:

• A global connectivity planner that computes trajecto-
ries solely on the sketch map.

• A metric local planner that plans a local collision free
path only with respect to the scaled readings (z′i,t)

N
i=1

and the current robot pose.

Whereas the global planner computes trajectories that are
consistent with the connectivity properties of the sketched map,
that is, captures a high level description of the topology of
the real world, the local planner enforces the robot to avoid
unmapped obstacles as well as to correct local inconsistencies
between the real world and the sketch such as misplaced doors
or walls.

To coordinate the planners, given a time stamp t during the
navigation, we define a local window around the current robot
position Wρ(xS

t )⊂OS to be the circle with radius ρ centered
in xS

t . The local window will be the local area where the
scaled scans are account for planning. Hence, we first compute
a global path {xS

i }N
i=1 from xS

t to a target pose, by means of
the Dijkstra algorithm on the sketch map OS . Then, we select
a local target pose xS

∗ defined as the farthest way point of the
global path that lies in the local window Wρ(xS

t ), formally:

xS
∗ := argmax

{∥∥x−xS
t
∥∥
R2

∣∣x ∈Wρ(xS
t )∩{xS

i }N
i=1
}
.

Such a way point is in general not uniquely defined. Accord-
ingly, we pick the first way point with respect to the order
defined by the indexing. Please note that we use the standard
distance on R2 although the natural choice would have been
the local metric of the sketch ‖ ·‖St . The reason is that points
are planned uniformly as the global scaling operator S is not
known, as a consequence a local contraction and dilatation
does not result in finer or coarser set of way points. Using the
local metric ‖ · ‖St the set of way points in the local window
could reduce to the solely current robot position.

Finally, we compute the local path from xS
t to xS

∗ with
respect to the scaled sensors, that is, on the local grid map



defined by the scaled scans. This path is the actual trajectory
tracked by the robot.

IV. EXPERIMENTAL EVALUATION

To assess the performance of our navigation system we
performed a set of sequential goal-reaching tasks in two
environments, namely the Building 079 at the University of
Freiburg and a scenario created in our laboratory. All the
sketches provide only information about the static obstacles
(walls) since we believe that a real application scenario should
not overburden the user by requiring information other than the
high level description.

We employed a Festo Robotino omnidirectional robot
provided with a Hokuyo URG-04LX laser rangefinder (see
Fig. 1). To control the robot we used the differential drive
controller provided by the manufacturer.

We assumed the initial pose of the robot to be known and
provided by a user, while the initial scales are estimated from
the sketch applying the least-square approximation described
in Sec. III-A2. The initial set of particles was thereby sampled
according to the state model in (6). In all the experiments,
the initial estimation of the robot pose was provided by the
user only at the beginning of the first navigation task. Every
time the robot lost track of its current pose a new guess was
provided and the task was marked as a failure.

Since metrical information are no longer reliable on the
sketch, we are interested in evaluating the navigation capability
from a qualitative perspective. We instruct the robot to reach
positions in the environment, such as a room or a enclosed
space, and we considered a task successful if, given a starting
pose, the robot is able to access them. Furthermore, we
required the executed trajectories to be topologically consistent
with the sketch, up to minor inconsistencies in the drawing.

A. Experimental results

For the experiments in the real building we took four
sketches of Building 079 drawn by different students. We
select a sequence of rooms and command the robot to enter
them. Approximate starting and goal positions are annotated
in Fig. 3.

As shown in Table I, the performance of the proposed
method are mainly affected by the quality of the sketch.
Ranging from almost 87% for the best trail, to 26% in the
worst case. In the table we reported the approximate length of
the paths in the real world for each navigation task, computed
using a metrically consistent map.

We identified two main causes for the failures. On the one
hand, the limited field of view of the range sensors is reducing
the effectiveness of the filter in tracking the scales. Such a
phenomenon is apparent, for instance, whenever the robot is
navigating along a corridor with only lateral walls observable.
This results in a wrong estimation of the scale along the
direction of the corridor. This is evident in sketches A and D,
which result in a different successful rate. Similarly, occlusions
due to clutter and unmapped obstacles can result in wrong
estimation of the scales as the filter can update the scale so
that clutter is matched with the obstacles in the sketch. On the
other hand, local magnitude of the scales could be significantly

1 2 3 4
5 6 7

89
0

A

B

C

D

Fig. 3. The sketches employed in the experiments (bottom) and the occupancy
grid (top) of Building 079, computed using the CARMEN framework [21].
Rooms 6 and 7 are now split, as shown in the sketches. In red we annotated
the starting and goal positions.

1
2

3
4

5 6

7

A

B

Fig. 4. Sketches used for the experiments in the scenario created in our
laboratory. A metrical map based on SLAM is reported on the left. In red we
annotated the starting and goal positions.

varying within the area perceived by the rangefinder so that
the robot has a false perception of the obstacles in the scene.

To confirm our analysis, we ran the same experiments in
the scenario reported in Fig. 4 where a part of the area is
discontinuously down-scaled (bottom region) with respect of
the other half (top region). We observed that in all experiments
the failures occurred when the robot tried to access region
6. Indeed, approaching that region, the gross inconsistency
between the sensor measurements related to the two sides
of the area results in a wrong localization. Results of the
experiments are reported in Table II.

V. CONCLUSION AND DISCUSSION

In this work we proposed a robot navigation system that
solely relies on a rough sketch, hand-drawn by a user. The



TABLE I. EXPERIMENTS IN BUILDING 079 AT THE UNIVERSITY OF
FREIBURG.

Success rate (success/attempts)
Path Length (apprx.) A B C D

0→ 1 6.4m 10/10 10/10 8/10 10/10
1→ 2 9.7m 10/10 10/10 7/10 8/10
2→ 3 9.5m 9/10 10/10 6/10 0/10
3→ 9 7.1m 9/10 0/10 9/10 0/10
9→ 4 13.6m 6/10 0/10 2/10 0/10
4→ 5 8.5m 8/10 0/10 6/10 0/10
5→ 8 7.9m 7/10 9/10 2/10 1/10
8→ 6 9.6m 10/10 10/10 1/10 0/10
6→ 7 8.2m 10/10 0/10 9/10 5/10

Average 8.94m 87.7% 54.5% 55.5% 26.6%

TABLE II. EXPERIMENTS IN THE LABORATORY SCENARIO.

Success rate (success/attempts)
Path Length (apprx.) A B

1→ 2 3.8m 9/10 8/10
1→ 4 6.7m 9/10 10/10
2→ 5 5.4m 10/10 9/10
2→ 6 6.0m 5/10 5/10
3→ 6 4.0m 4/10 5/10
4→ 5 6.3m 9/10 10/10
7→ 5 6.2m 9/10 10/10

Average 5.48m 78.5% 81.4%

problem is motivated by the need of investigating intuitive
means to provide prior information of the environment, avoid-
ing time-consuming operations such as algorithmic exploration
or teleoperation. In our approach, we used an extension of
Monte Carlo Localization algorithm to track the robot pose
together with two scale factors that approximate the discrep-
ancy between the sketch map and the real world. For this,
we construct a theoretical framework where the sketch map
is regarded as a two-dimensional metric manifold. The local
metric can be thereby used as a conversion between the sketch
map and the real world as well as the robot’s sensors. In
addition, we proposed a trajectory planner on the sketch map
that couples a rough global planner that accounts for the
topological properties of the map and a local planner that
performs local obstacle avoidance according to the transformed
sensor readings. We evaluated our approach by performing
autonomous navigation tasks in two real world scenarios.
Despite some failures in the experiments, mainly due to gross
inconsistencies of the sketch map, we show that the robot is
able to perform autonomous navigation tasks up to a success
rate of 87% in a real cluttered environment.
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