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Abstract—Hand drawn sketches are natural means by which a
high level description of an environment can be provided. They
can be exploited to impart coarse prior information about the
scene to a robot, thereby enabling it to perform autonomous
navigation and exploration when a full metrical description of
the scene is not available beforehand. In this paper, we present
a navigation system supplemented by a tablet interface that
allows a user to sketch a rough map of an indoor environment
and a desired trajectory for the robot to follow. We propose
a novel theoretical framework for sketch interpretation based
upon the manifold formalism in which associations between the
sketch and the real world are modeled as local deformation of a
suitable metric manifold. We also present empirical results from
experimental evaluations of our approach in real world scenarios
both from the perspective of the navigation capability and the
usability of the interface.

I. INTRODUCTION

The design and implementation of intuitive methods of
communication between robots and humans has attracted
considerable amount of attention from both the robotics and
AI communities thus far [19]. In the context of robot nav-
igation, significant amount of research has been devoted to
develop natural and human-friendly means for transferring
spatial information from users to robots as well as to en-
hance the robot’s cognition about the surrounding environment
[24, 23, 6, 12]. The ability to navigate in a known environment
is a key requirement for robots to be fully autonomous.
Such a capability is usually achieved employing metrically
consistent maps, which are retrieved up front typically by
means of human teleoperation or autonomous exploration.
Although many popular methods for simultaneous localization
and mapping (SLAM) have proven to be extremely efficient as
well as accurate [5, 4], they all require preliminary operations
that could be tediously time-consuming or sometimes even
unfeasible. Rescue scenarios, for instance, are common exam-
ples where remotely controlling a robot could be impossible
for an external operator. Furthermore, new service applications
require robots to be employed even by naı̈ve users, such as
older people or children, which would be overburdened by
tedious or excessively complex operations.

To overcome these difficulties, researchers have investigated
the use of hand-drawn maps and sketches to provide a rough
descriptions of the environment. An early attempt to perform
simple navigation tasks only relying upon sketched maps
was suggested in [8]. In this research, the authors proposed
a POMDP based approach to learn a metrical conversion
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Fig. 1. Top: Snapshot of the tablet interface. Figure shows the drawn map
and the path (green). The starting (S) and goal (G) positions are annotated.
Bottom: The environment used for the experiments.

between a sketch, encoded as a topological map, and the real
world. More recent approaches have tackled the problem of
providing a quantitative interpretation of a hand-drawn sketch
via landmarks’ matching, mimicking human-like navigation.
Kawamura et al. [7] developed a full navigational system in
which a robot is instructed to track a trajectory in a sketch.
The robot navigates heading towards the waypoints that best
match the predicted scenario perceived by the robot’s sensors
and the landscape observable by the waypoints. The current
robot pose is meanwhile tracked by triangulating the relative
positions of the predicted landmarks.

A wide and deep investigation into sketch-based navigation
has been proposed by Skubic et al. [19, 15, 16, 17, 18, 3].
In their works, the authors focused on designing and testing
sketch interfaces with the aim of instructing a robot, or even a
team of robots, to perform simple navigation tasks. The users
were required to sketch a map of the scene and a feasible
path. A fuzzy state controller is then responsible for outputting
suitable motion commands based on the qualitative state of the
robot inferred from local sensor readings. The state is retrieved
from the spatial relations between landmarks, modeled using
histogram of forces, and later converted in a linguistic de-
scription by means of fuzzy rules. Shah and Campbell [14]
have proposed an extension to this approach. The authors
used techniques inspired from landmark-based SLAM to track
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Fig. 2. System architecture showing the software components on the tablet
and in the robot. As described in Sec III, ξt is the robot state. Πg and
Π′

t are respectively the global and local path, ut is the control and zt the
measurements. (ΩS ,RS ) is the sketched map.

uncertain landmarks and plan trajectories accordingly. Paths
are therefore encoded as a set of waypoints output by a
quadratic optimizer that accounts for the mutual position of the
robot and estimated landmarks. Other approaches for matching
the sketched scene with the real world have been suggested in
[11] where Particle Swarm Optimization techniques are used
to fit a hand-drawn sketch to an occupancy grid build using
the current sensor data.

In our work, we present a theoretical framework for quan-
titatively interpreting a hand-drawn sketch of an indoor en-
vironment solely relying upon simple assumptions, namely
topological consistency and small deformation. For this, we
employ the Riemaniann manifold formalism and embed the
sketch into a metric manifold whose metric tensor is unknown.
Consequently, following [1] we estimate the metric together
with the current robot pose using Monte Carlo Localization
algorithm [22]. Once the conversion between current local
metric in the sketch and the real world is known, a Dijkstra
based planner is used to plan collision free paths in close
proximity of the robot. This allows the robot to avoid un-
mapped obstacles as well as overcome minor inconsistencies
in the sketch. In addition, we designed and implemented a
tablet interface that allows a user to sketch a map of the
environment and a path that the robot should follow for
simple navigation and exploration tasks. A stack of planners
autonomously handle small inconsistencies in the sketch as
well as avoidance of unmapped obstacles, therefore the user
is only required to provide a high level description of the
environment.

The reminder of the paper is organized as follows. Section II
outlines the design and core components of the tablet interface.
In Section III we describe the navigation stack employed to
perform the autonomous navigation tasks using hand-drawn
maps. Finally in Section IV, we present the results from our
experimental evaluation, both in terms of the autonomous
navigation capability of the robot and from the usability
perspective of the interface.

II. THE SKETCH INTERFACE

The sketch interface was designed to run on a tablet or
a mobile phone with a stylus or a touch interface. The
overall system architecture shown in Fig. 2, was implemented
using the Robot Operating System (ROS) framework and
the interface components were implemented on the Android
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Fig. 3. A finite state machine depicting the tasks that a user can perform
using the tablet interface.

operating system. ROSJava, a Java based distribution of ROS
was used in the Android application to publish and subscribe
to topics to the ROS core running on the robot. The tablet and
the robot communicate through WiFi.

The tasks that a user can perform using the interface can be
represented as a finite state machine as shown in Fig. 3. The
user is first presented with a canvas of size 2540 x 1252 pixels,
in which he/she can sketch a map of the environment and
draw polygons for obstacles. The sketched map is then sent to
the robot when the user presses the Send Sketch button. The
user then has the ability to draw the trajectory that the robot
should take in the sketched environment. It is assumed that the
user starts to draw the trajectory from the current position and
orientation of the robot. There were no actual constraints set
for the path to be drawn. The user can then send the sketched
trajectory to the navigation system by pressing the Send Path
button. The button is only activated and available to the user
after the map is successfully sent.

The sketched map is encoded in the robot as a grid map,
while the path is stored as a set of waypoints obtained by
listening to touch events on the tablet. We interpret the initial
position of the robot as the starting point of the path and set the
initial orientation by estimating the direction of vector from
the starting point to the next consecutive point beyond a preset
threshold distance. This was done to avoid small squiggles in
the beginning that affect the direction computation. A more
detailed description on how the sketch is interpreted during
the navigation tasks is given in Sec. III.

During both the map and path sketching, the user has the
ability to redraw or erase parts of the sketch. This gives
the user a very similar experience as drawing with a pencil
and paper. The robot can then be instructed to navigate the
sketched path by pressing the Execute button. The button is
only activated and available to the user, after the navigational
stacks on the robot have been initialized. This is notified to
the interface using the /status command. He/She can also
abort the mission at any point of time during the execution. A
feedback message is displayed once the sketch and path are
successfully sent and once the task is executing or is aborted.

III. NAVIGATION IN HAND-DRAWN MAPS

In order to interpret the hand-drawn sketch from the met-
rical perspective, we assume that a hand-drawn map S :=
(ΩS ,RS ) is given as a rasterized image that describe a
portion of plane ΩS , with a own reference frame RS . Such



map describes qualitatively a real world indoor environment
W := (ΩW ,RW ) again encoded as a rasterized image. Under
the assumption that the two images are topologically equiva-
lent, we can further assume that there exists a diffeomorphism
Φ : ΩW ⊂ R2 −→ ΩS ⊂ R2 that transforms pixel by pixel
the free space of the two images. As a consequence, we can de-
scribe the robot trajectory (xW

t )t≥0 := ([xW
t , y

W
t , θ

W
t ])t≥0 ⊂

SE(2) into the sketched world by applying the diffeomorphism
Φ to the planar components of the robot poses, that is,
([Φ(xW

t , y
W
t ), θW

t ])t≥0. From trivial differentiation rules, it is
apparent that the following integral relation holds:∫ −→x S

t

−→x S
0

d−→x S = TS→W

∫ −→x W
t

−→x W
0

[∂Φ(xW , yW )]d−→x W , (1)

where ∂Φ : ΩW ⊂ R2 −→ R2×2 represents the Jacobian
operator of the diffeomorphism Φ and the arrow notation the
planar components of the pose. Thus, the motion of the robot
in the real world can be translated into the sketch by means
of a linear scaling operator or, more formally, the sketch can
be taught as a differential (Riemaniann) manifold with metric
tensor gx,y := ∂Φ(x, y)T∂Φ(x, y). Indeed, a chart for the
sketch can be trivially defined via diffeomorphism by consid-
ering as new global coordinate system for the manifold the
streamlines of Φ. As a consequence, owing to the fact that we
can approximate the increment dxW

t by means of the odometry
readings ut, namely dxW

t ≈ xW
t+1−xW

t ≈ xW
t ⊕ut−xW

t , we
can track the robot pose during the execution of a navigation
task just exploiting the metric gx,y and the operator ∂Φ.

Extending the idea presented in [1], in the rest of this
section we describe how Monte Carlo Localization [22] can
be adapt to track an approximation of the tensor metric on
the sketch together with the current pose of the robot. A final
section outlines the routine employed to track trajectories in
the sketched map as well as how a local planning strategy can
be used to avoid collisions with unmapped obstacles lying in
the proximity of the robot.

A. Localization and Metric Estimation
To estimate the current pose of the robot while approxi-

mating the tensor metric gx,y we will henceforth assume that
the local deformations are approximately shearing free. More
precisely, we assume that

gx,y ≈
[
a(x, y)2 0

0 b(x, y)2

]
, (2)

with a(x, y), b(x, y) > 0. To understand why this assumption
is reasonable, observe that, up to a flip of the diagonal terms,
from Eq. 2 and using the Singular Value Decomposition
Theorem as well as restricting the case of sketches that
are consistent in terms of orientation, the Jacobian of the
diffeomorphism simplifies to

∂Φ =

[
cosω(x, y) − sinω(x, y)
sinω(x, y) cosω(x, y)

] [
a(x, y) 0

0 b(x, y)

]
. (3)

Therefore, under the assumption that Eq. 2 holds, Eq. 3 can
be read as the fact that the diffeomorphism applies a local
distortion (stretch or compression) and a further local rotation.

Since we can assume that people are able to perceive
orthogonality and parallelism of walls and it is a common
experience to observe indoor environments mainly constituted
of parallel and perpendicular walls, we can suppose that a
sketch preserves a reasonable representation of parallel and or-
thogonal features. This hypothesis can be transferred into Eq.
3 by setting ω(x, y) ≡ ω ∈ [0, 2π), that is, the local rotation is
indeed a global one. Owing to this, the rotational component
of the diffeomorphism can be therefore absorbed into the
rotational term of the transformation TS→W , provided that
a suitable reference frame for the sketch has been choosen,
say RS . At a high level, this models the fact that the sketch
could have been drawn with an arbitrary orientation, but still,
it is inaccurate in terms of local stretching and compressions
along the orthogonal coordinate systems of a reference frame
RS . As an example, the reader could think of a building with
multiple rooms and a sketch which approximately preserve the
directions of walls but the ratio of the sizes of the rooms are
not accurate (as described in Fig. 4).

According to the above discussion, the Jacobian can be
finally written as

∂Φ = R(ω)

[
a(x, y) 0

0 b(x, y)

]
=: [TrotS→W ]S(x, y). (4)

Since further details about how the reference frame RS is
computed are not necessary at this point, we postpone the
explanation to the next section.

In order to track both the position of the robot and the
tensor metric during a navigation task, following the idea
introduced in [1], we employ an extended version of the
Monte Carlo Localization algorithm [22]. More precisely, we
define the enhanced robot’s state ξt := (xS

t , at, bt) where
at, bt > 0 are the local scale with respect of the current robot
position, namely a(xW

t , y
W
t ) and b(xW

t , y
W
t ). Accordingly, we

apply the standard Bayes’ filter, conditioning on the history of
commands u1:t−1 and sensors’ measurements z1:t, obtaining
the following recursive update:

p(ξt | u1:t−1, z1:t) ∝ p(zt | ξt) ·∫
p(ξt | ξt−1,ut−1) p(ξt−1 | u1:t−2, z1:t−1)dξt−1.

(5)

Standard Monte Carlo Localization approximates the state
distribution using set of weighted samples, called particles.
A first propagation step is performed and the particles are
drawn according to a proposal distribution that encodes the
evolution of the state with respect of the robot’s commands and
the surrounding environment. In the second step, the particles
are “resampled” with importance sampling according to their
weight, which is the likelihood of the current measurements
if the observations would have been retrieved from the pose
represented by the particle.

To select a proposal distribution, we assume that the scales
at and bt are independent one of the other as well as condi-
tionally independent from the robot pose xS

t , consequently

p(ξt | ξt−1,ut) ≈
p(xS

t−1 ⊕ 〈[∂Φ]t−1,ut−1〉) p(at|at−1) p(bt|bt−1)
(6)



being [∂Φ]t−1 as in Eq. 4 with diagonal terms at−1, bt−1 and
〈M, ·〉 : SE(2) → SE(2) the action of a matrix M on the
planar components of SE(2). According to Eq. 6, the following
model is a natural choice for describing the evolution of the
state: 

xS
t := xS

t−1 ⊕ 〈[∂Φ]t−1,ut−1 + εεεt−1〉,
at := at−1γt−1,

bt := bt−1ρt−1,

(7)

where εεεt ∼ [N0,σj ]3j=1 is a random vector with independent
normally distributed components (wrapped-normal for the
orientation) and γt, ρt are independent multiplicative white
noise, namely, with distribution Γσ−2

i ,σi
(i = 1, 2), the choice

of the parameters ensures unitary mean and tunable variance.
As observation model for the likelihood function p(zt | ξt)

we extended the likelihood fields model for range finders
described in [22]. Using the metrical conversion provided by
[∂Φ]t, we can convert the actual sensor readings in the sketch
metric manifold. More precisely, let zt = (zi,t)

N
i=1 encoded

as endpoints in the robot’s reference frame. We set TS→R

to be the transformation between RS and the robot’s own
coordinate system and we convert the readings endpoint in the
sketch manifold by setting z′i,t := TtransS→R + St[T

rot
S→R]zi,t.

Here St is the diagonal matrix defined in Eq. 4, computed with
respect of the current scales at, bt. Observe that the operation
St[T

rot
S→R]zi,t is actually the projection of the readings on

the tangent space of the sketch manifold. We then define the
likelihood field for the raw sensor measurements as

p(zt | ξt) :=

N∏
i=1

No′i,t,σi
(z′i,t)Lλ,at(a′t)Lν,bt(b′t), , (8)

being o′i,t the closest obstacle to z′i,t in the sketch and No′i,t,σi

Gaussian kernels. Although this model is extremely robust
in standard metrical consistent maps [13], the presence of
scaling factors can increase the change of “seeing through
walls” effect, typical of endpoint models. To overcome this, we
introduce another factor to bias the scaling factors. That is, we
introduce a virtual measurement (a′t, b

′
t) for the scales obtained

by solving the following least-square approximation: set ri is
the endpoint obtained ray casting along the direction of the
endpoint zi,t from the predicted robot’s pose, we compute

min
A,B∈R

N∑
i=1

{
[πa(ri −Azi,t)]2 + [πb(ri −Bzi,t)2]

}
, (9)

where and πa and πb are the projection along the axes
centered in the robot position and aligned to the related scaling
directions. Finally, we approximate the actual likelihood of the
measurements as

p(zt | ξt) ≈ p(zt | ξt)Lλ,at(a′t)Lν,bt(b′t), (10)

where Lβ,s is a Laplace distribution with mean s. The reason
for choosing such distribution is to not suppress excessively
the value lying far from the virtual scales since the ray casting
procedure is unstable due to the inaccuracies of the sketch.

RS

Fig. 4. Reference frame computed using the method described in Sec. III-B.
On the left a SLAM image of an indoor building computed using the
CARMEN framework [20]. On the right, the lab map sketched with our
interface.

B. Estimating the Coordinate System on the Sketch

According to Sec. III-A, we assumed that the sketch con-
tains only deformation along the directions of a suitable
reference frame RS . Applying the simple heuristic that walls
in indoor environments are mainly orthogonal, we can select
a coordinate system so that one of its axes is parallel to the
most frequent direction of the walls and obstacles drawn in
the sketch. To identify such direction we use an approach
similar to the one suggested in [21]. More precisely, since
a metrical consistent map ΩW can be thought as a chart for
the sketch manifold and since the both ΩS and ΩW can be
embedded in R2, we can set without ambiguity the world
reference frame RW to be aligned to the pixel coordinates of
the rasterized image ΩS . Then we preprocess the image with
the Canny’s algorithm for edge detection [2]. Finally we run
the Progressive Probabilistic Hough Transform [10] to obtain
a set of direction {θi}Ni=1 ⊂ [0, 2π) with respect of RW . In
conclusion, to select the rotation angle for TS→W we run
k-means on {θi}Ni=1 and set ω to be the mean of the biggest
cluster. Such procedure identifies the direction of ω up to a
rotation of π, however it is easy to see that this does not affect
the behavior of the scaling factors. An example of the output
is reported in Fig. 4.

C. Trajectory Tracking and Local Planning

In order to set up a navigation system that is able to track
and execute a desired path in the sketch, we designed the
robot’s controller to have three different layers, namely:
• A global planner that stores a path drawn by a user.
• A local planner responsible for outputting collision free

trajectories from the current robot position to the target
waypoint on the global path. In this work, we use a
Dijkstra planner on the local occupancy grid defined by
the scaled readings (z′i,t)

N
i=1 (see Sec. III-A). A local

planner that computes collision free trajectories is needed
as the sketch should provide a high level description of
the indoor environment without accounting for all the
possible obstacles in the scene.

• A trajectory tracker that matches the current robot po-
sition with an approximate position on the desired path,
with the aim of coordinating the two planners. It is appar-
ent that, due to the presence of obstacles and inaccuracies
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Fig. 5. Avoidance of unmapped obstacles in the sketch. In blue
WL(xS

t , rL). The dashed blue line represents the scaled scan (z′i,t)
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in the sketch, only the local path is safe and consequently
actuated by the robot. Thus the robot’s trajectory can
result in significant displacement from the desired global
path, therefore a trajectory tracker is required.

In order to match the current position of the robot with a
waypoint on the global path, we apply the strategy depicted
in Fig. 5. That is, given a global path Πg := {xS

k }Kk=1 and
a current robot pose on the sketch xS

t , we define the local
window W (xS

t , rL) to be the set of all poses xS so that
‖xS

t −xS ‖g < rL, where the norm applies only to the planar
components. Here rL > 0 is a parameter that can be expressed
for example as length in pixels. Consequently, we select the
subpath Π′t := WL(xS

t , rL) ∩ Πg and consider the current
position of the robot on Πg to be the waypoint xS

k(t) that best
approximates half of the arc length of Π′t. In general Π′t is not
connected if a user has drawn a convoluted path. However, it is
easy to discriminate which connected component of Π′t should
be chosen by following the ordering of the waypoints on Πg

and marking those that have already been visited.
To coordinate the two planners, we select a lookahead

window WH(xS
k(t), rH) depending on a parameter rH > 0

as above and define the waypoint xS
k∗
∈ Πg∩WH(xS

k(t), rH){

(k(t) < k∗) to be the first waypoint in the path that lies
outside the lookahead window. Finally, we plan a path in the
sketch from xS

t to xS
k∗

with respect of the scaled readings as
discussed above.

IV. EXPERIMENTAL EVALUATION

Experiments were carried out in an indoor environment
built using temporary walls at the University of Freiburg.
Obstacles were then placed at random locations inside the test
environment. For carrying out the experiments, we used the
Festo Robotino, an ominidirectional mobile platform equipped
with a Hokuyo URG-04LX laser rangefinder. A picture of the
test environment is shown in Fig. 1. The participants were first
briefed about the task they had to perform and were shown
the environment where the experiment was to be conducted.
The participants did not have any technical knowledge on how
the system worked or had seen the environment beforehand.
As we envision the target users to be common people with
different backgrounds, it was ensured that the participants were
not experienced robot operators.

The task for them was to sketch a map of the environment
and draw a path that they want the robot to follow in the

(g)
(h)

(slam)

(c)(b)
(a)

(f)(e)(d)

Fig. 6. Example sketches drawn by participants during the experiments.
Some participants also sketch the obstacles. Bottom right, a map of the area
obtained using Rao-Blackwallized SLAM.

sketched map. Most of the participants were not very familiar
with drawing on a tablet so they were allowed sketch a few
trials to get acquainted with the interface. The participants
were not specifically instructed whether they should also draw
the obstacles in the environment, this was intentional done in
order to evaluate different scenarios.

There were a total of thirteen participants and they were
split into two groups. The first group used the tablet in the
landscape mode and the second group used the tablet in the
portrait mode. We decided to conduct experiments using the
tablet in different orientations because we noticed that users
feel the urge to use the entire canvas to sketch the map,
even if the proportions of the walls that they drew were very
different from the real environment. Interestingly, this lead
to different results in either cases. The results are discussed
in the following sections. At the end of the experiment, the
participants were asked to fill out a questionnaire and were also
asked for suggestions to incorporate more intuitiveness into the
interface. In order to maintain consistency in the evaluations,
the environment was not altered in any way between each
experiment cycle.

A. Usability Tests

There were significant variations in the sketches drawn
by the participants. A few interesting examples are shown
in Fig. 6. Some participants were concerned about drawing
extremely straight lines for the walls but ignored drawing the
obstacles (Fig 6(d), Fig 6(f)), whereas others were particular
about drawing every obstacle in the environment (Fig. 6(c),
Fig. 6(g)) but did not pay attention to the relative scales
and positions of the walls (Fig. 6(a), Fig. 6(h)). Fig. 6(d)
and Fig. 6(e) are some of the accurate sketches sufficiently
depicting the environment. The time that the participants spent
on drawing the maps varied from 27 seconds to over 6 minutes,
while the average being 2.38 ± 1.42 minutes. Though there
does not appear to be a pattern such as, the more time you
spend on sketching, the higher is the success rate for the robot
to complete the task, as each person pays attention to different
parts of sketching and some spend considerable amount of
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Fig. 7. Plot showing results from the post experiment survey. Strongly
disagree, Disagree, Neutral, Agree, Strongly agree.

time erasing and redrawing the map. We also noticed that
the attitude of the participants varied from one another, as
some wanted to retry the experiment when the robot failed to
navigate in their sketch, whereas some wanted to really push
the navigation capabilities.

As mentioned in the description of the experiments, the
participants performed experiments using the tablet in two
different orientations. We found that the sketches drawn by
the participants were more proportionally scaled, hence higher
navigation success rate, when the tablet was used in the
portrait orientation. As the screen real estate is smaller on
the horizontal direction, it prevented them from drawing
disproportionately rectangular sketches.

The questionnaire given to the participants was designed to
get an insight on whether they felt at ease using the interface
to complete the task at hand. We adopted the Likert scale
[9] to rate the questions, with 5 (Strongly agree) being most
satisfied and 1 (Strongly disagree) being the least. The survey
revealed that using sketches to describe the environment was
very intuitive for the participants, as they scored an average of
4.09. The users reported that having a small number of steps
to perform in the interface to get the task done, the ability
to edit the sketch and having multiple colors to sketch with,
were all commendable.

Although only 30% of the participants strongly agree that
the sketch is entirely representative of the environment and
is easier to sketch than on paper, their comments revealed
that this was because free-hand sketching on a tablet requires
some practice and most participants had not sketched on
a tablet before. This could be improved by providing the
option of using predefined geometries for drawing. Almost
no participant strongly agreed that the system is sufficient to
complete the task, though 53% agreed. The users commented
that this was because there was not enough feedback from
the robot after the execute command is sent. Timely position
updates and warnings or alerts can help provide more feedback
to the user.

B. Navigational Autonomy

The experiments described above were also used to evaluate
our navigation system. Overall, thirteen experiments were
performed with a successful rate of 69.23% (9 successful
runs of 13 sketches). The reliability of the entire system is

dramatically affected by the quality of the sketch.
The parameters in the navigation stack were initially cal-

ibrated and were kept constant during the experiments. We
tuned the parameters for odometry and sensor models using
Monte Carlo Localization on metrically consistent map. The
variances for the scales’ model were chosen trading off the
capability of adapting to the deformation of the sketch and the
risk of increasing false detection. Similarly, the radius of the
local lookahead window rH affects the way the robot tracks
the desired trajectory. If the radius is big, the robot is forced
to track the locally optimal trajectory output by the Dijkstra
planner. This results in considerable displacement from the
drawn path if it is significantly suboptimal. However, if the
parameter is chosen to be too small, the planner is not able to
react quickly enough to unmapped obstacles and the safety of
the navigation is severely affected.

All the failures occurred as a consequence of localization
errors, in particular, it appears that the system is not robust
to handle quick changes in the scales (the effect is visible
in the right border of Fig. 6(g)). Moreover, we observed that
participants drew sketches with different levels of details, but
we observed that a navigation task was successful independent
of the amount of clutter drawn in the sketch, for instance
Fig. 6(b), Fig. 6(d),Fig. 6(e) were successful, while Fig. 6(c)
was not.

V. CONCLUSIONS

In this paper we addressed the problem of equipping a
non-expert user with an interactive tool using which spatial
information about the environment can be communicated to
the robot. To accomplish this, we designed and implemented
a tablet interface that allows a user to sketch a map of an
indoor environment and specify a desired trajectory that the
robot should follow. We presented a theoretical framework that
enables the robot to localize itself with respect to the hand-
drawn map, which is achieved by tracking the pose of the
robot together with a local metric of the sketch. We further use
this metrical description to convert the sensor’s readings into
the sketched environment and use these virtual measurements
to perform avoidance of unmapped obstacles as well as to
overcome small inconsistencies in the drawing.

We performed a usability study of our interface to determine
how practical it is to sketch a map of the environment that
sufficiently describes the real-world, in order to successfully
carry out a navigation task. We found that each user has a
very different style and focus while sketching a map and
the system has to be robust to all the variations of the
sketch. Nevertheless, we have shown that even in a cluttered
environment, a minimal representation of the scene as a sketch
is adequate for successfully navigating it.
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