
Robust LiDAR-based Localization in Architectural Floor Plans

Federico Boniardi* Tim Caselitz* Rainer Kümmerle† Wolfram Burgard*

Abstract— Modern automation demands mobile robots to be
robustly localized in complex scenarios. Current localization
systems typically use maps that require to be built and inter-
preted by experienced operators, increasing deployment costs
as well as reducing the adaptability of robots to rearrangements
in the environment. In contrast, architectural floor plans can be
easily understood by non-expert users and typically represent
only the non-rearrangeable parts of buildings. In this paper we
propose a system for robot localization in architectural CAD
drawings. Our method employs a simultaneous localization and
mapping approach to online augment the floor plan with a
map represented as a pose-graph with LiDAR measurements.
Whenever the environment is accurately mapped in the vicinity
of the robot, we use the graph to perform relative localization.
We thoroughly evaluate our system in challenging real-world
scenarios. Experiments demonstrate that our method is able to
robustly track the robot pose even when the floor plan shows
major discrepancies from the real-world. We show that our
system achieves sub-centimeter accuracy and is suitable for
real-time application.

I. INTRODUCTION

Autonomous navigation is a crucial technology for modern
flexible automation, with applications ranging from logistics
to reconfigurable factories. Most of these scenarios require
vehicles to be accurately localized during their operation.
Traditional solutions for localization in industrial settings
often employ installations in the factory hall, such as mag-
netic spots, markers, or guiding wires in the floor [1], [2].
However, modern approaches have proven their robustness
and precision employing solely the safety LiDAR sensors on-
board the vehicles and a map of the environment built with
a comparable sensor modality [3], [4]. These maps are typ-
ically obtained during a preliminary process which requires
supervision by an expert operator. They are built by solving
the simultaneous localization and mapping (SLAM) problem
and often encoded as occupancy grids which are not always
intuitive for users due to noise and local distortions [5], as
well as their intrinsic probabilistic representation. In fact,
occupancy grid maps significantly differ from floor plans
of buildings, which are commonly used human-readable
architectural drawings created with modern CAD software.
In order to understand occupancy maps, additional training
for shop floor workers might be needed, resulting in an
increased deployment time. Moreover, modifications of the
environment are costly as they require new maps to be built,
thus limiting the flexibility of rearranging building interiors
or factory floors. Conversely, architectural drawings are often
available and can therefore be leveraged for mobile robot
navigation, reducing the set-up costs and the burden on the
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Fig. 1. The trajectory obtained with our localization system (red) in an
architectural floor plan (blue) of a factory-like scenario. The map of LiDAR
observations (black) shows also structures not represented in the floor plan.
The map is aligned online to the CAD drawing to localize the robot. Our
system works robustly even when the floor plan is fully occluded and in
situations where Monte Carlo Localization (gray) fails.

workers. Furthermore, they can be easily adapted to represent
only the immutable features of a building, such as walls and
doorways, thus providing an abstract representation which is
independent of the actual configuration of the factory floor.

In this work, we propose a robust LiDAR-based system
for localization in architectural floor plans. Our approach
combines mapping and localization techniques to exploit the
information encoded in the CAD drawing as well as the
observations from the real world, which are obtained during
navigation and are not represented in the floor plan. In com-
plex indoor environments only parts of the architectural CAD
drawing match the current observations of the robot. Often,
furniture and large equipment are located close to walls,
covering them partially or even occluding them completely.
This can significantly affect localization approaches that
directly compare the sensor observations against a floor plan.
To overcome the issue, our approach not only relies on pure
localization techniques, but also performs mapping using
a pose-graph-based SLAM formulation [6]. We propose a
scan-to-map-matching method based on Generalized ICP
(GICP) [7] to obtain constraints that align the estimated pose-
graph to the CAD drawing as well as to overcome potential
metrical inconsistencies of the floor plan. In order to reduce
the computational burden, we perform maximum a posteriori
(MAP) estimation of the current pose using relative measure-
ments to the pose-graph once the mapping process is locally
stabilized. Fig. 1 shows our system localizing a robot in a
factory-like environment, including situations where the floor
plan is fully occluded by large structures.



II. RELATED WORK

The field of mobile robot localization has been extensively
studied for several decades. Traditionally, the localization
problem has been modeled as a Bayesian filtering problem
by matching sensor readings with a globally consistent map
of the environment. The most widespread methods assume
underlying Markov models and use Kalman filters, histogram
filters, or particle filters [8]. The latter approach is com-
monly known as Monte Carlo Localization (MCL). More
recent works borrowed the idea of relative measurements
exploited in pose-graph-based SLAM [6] and multi-robot
localization [9], [10] and proposed the concept of relative
localization to relax the need of globally consistent maps.
Sprunk et al. [11] introduced the idea of localization against
user-taught trajectories, encoded as a chain of consecutive
odometry and 2D LiDAR measurements (anchor points).
During the replay of the taught trajectory, the robot deter-
mines its pose with respect to the anchor points by matching
the current scan with the reading stored during the teaching
phase. The current anchor point is selected as the closest one
to the robot. Mazuran et al. [12] extended this approach
using an improved topological transition model for selecting
anchor-points, allowing the robot to localize itself in a
complex network of 2D LiDAR scans associated to a SLAM
pose-graph.

Despite the extensive research on robot localization, few
works have addressed the problem of localization using CAD
floor plans. Luo et al. [13] proposed an integrated system for
localization on floor plan maps fusing camera and ultrasonic
measurements. The floor plan image is processed to extract
useful features, namely room plates and corners in doorways
and passages, which are used as landmarks for localization.
The robot estimates its current pose using a Bayesian filter
that encodes the confidence to observe the landmarks. Ito et
al. [14] use Monte Carlo Localization to localize a device
using only a CAD drawing, an RGB-D camera, an inertial
measurement unit (IMU) and the WiFi signal strength. The
proposal distribution is obtained using visual odometry and
the likelihood of each particle is computed by extracting
sections of the point cloud obtained from the depth camera.
The WiFi signal is used to initialize the particle weights
during the global localization phase in order to speed up
convergence to a uni-modal distribution. Winterhalter et al.
[15] proposed a similar method to localize a Google Tango
tablet using the RGB-D and IMU data of the device. Inertial-
visual odometry is utilized to define the proposal distribution
and a simple 3D model shaped on the floor plan is used to
define the expected measurements of a beam sensor model.
Hile et al. [16] localize a mobile phone on a CAD drawing
employing GPS and the camera of the phone. The method is
purely geometric and relies on detecting landmarks based on
“cornerity” features of the environment and matching them
with the CAD drawing, thus inferring the relative pose of
the camera with respect to those landmarks.

Our method for localization in floor plan drawings differs
significantly from the approaches described above. Instead of

TABLE I
THE NOTATION USED IN THE PAPER.

Symbol Description

SE(2) Manifold of 2D rigid transformations.
⊕,	 Compound operations in SE(2) (i.e., Cheeseman symbols).
ttr Translation term of t ∈ SE(2).

tR, tφ Rotation matrix and rotation angle of t ∈ SE(2).
tx Rigid transformation of a vector x ∈ R2: tRx+ ttr .
JtK Element of SE(2) as a vector in R3.

Σ,Ω Covariance matrix and related information matrix.
‖x‖2 Standard Euclidean `2-norm: (x>x)1/2.
‖x‖Σ Mahalanobis norm: (x>Ωx)1/2.
ξt:T The sequence (ξt1 , ..., ξtn ), t = t1 < t2 < . . . < tn = T .
(ξi)i Shorten notation for (ξi)

m
i=1. Similarly for multi-indices.

addressing the problem using sensor models that are robust
to the missing information in the drawings, we adopt SLAM
techniques and concepts from relative localization to fit a
map onto the floor plan in order to overcome the lack of
features in CAD drawings. We also localize with respect
to previously acquired LiDAR measurements whenever the
map provides a sufficiently complete representation of the
environment. To the best of our knowledge, the work that is
algorithmically most similar to our approach was proposed
by Vysotska et al. [17]. The authors used SLAM with prior
information from OpenStreetMap to align the SLAM map
of an outdoor urban environment to the map provided by
OpenStreetMap, thus improving the robustness of the SLAM
process and the quality of the generated map. Our work uses
different prior maps and extends this approach presenting a
long-term pure localization perspective.

This paper provides three contributions to the problem of
robot localization in poorly informative maps. First, we pro-
pose a pose-graph-based framework for localization in floor
plans using information from measurements irrespectively of
being represented on the CAD drawing or not. Second, we
introduce a method for scan-to-map-matching to obtain pose
information relative to the floor plan. Third, we propose and
evaluate a unified system for mapping and pure localization
that is robust, accurate, and suitable for long-term operation.

III. PROPOSED METHOD

The goal of this work is to track the pose of a robot in an
architectural floor plan using a 2D LiDAR sensor. Given a
coarse estimate of the starting pose x0 in the reference frame
of the floor plan and the current LiDAR reading Zt, we want
to estimate the 2D pose xt of the robot in that reference
frame. The proposed method is not intended to solve the
global localization problem since for many applications, such
as industrial ones, robots start their operation at a known
location, for instance a charging station. Henceforth, we refer
to Tab. I for the notation and symbols adopted in this section.

The backbone of the method consists in a maximum
a posteriori pose-graph-based SLAM system [18], which
uses priors obtained from a CAD floor plan. Following the
formulation of pose-graph-based SLAM with prior knowl-
edge proposed in [19], given the trajectory of the robot



represented as a sequence of poses x0:t ∈ SE(2)n and
relative measurements (∆xti,tj )ij ∈ SE(2)m between pairs
of poses, we compute the trajectory that maximizes the
posterior distribution of the relative measurements. Formally,
assuming conditional independence of the measurements
given a trajectory as well as prior independence of the related
poses, we estimate the posterior trajectory as

x̂0:t , arg max
x0:t

∏
ti,tj

p(∆xti,tj | x0:t)
∏
tk

p(xtk). (1)

Assuming Gaussian noise in the relative measurements,
namely p(∆xti,tj | x0:t) ∼ N (Jxtj 	 xtiK,Σij), and either
Gaussian or uniform noise of the priors, that is p(xtk) ∼
N (JxkK,Σk) or p(xtk) ∼ U , the problem in Eq. 1 can be
solved using non-linear least squares optimization as follows:

x̂0:t = arg min
x0:t

∑
ij

‖eij‖2Σij
+
∑
k

‖ek‖2Σi

≈ arg min
x0:t

∑
ij

ρm
(
‖eij‖Σij

)
+
∑
k

ρp (‖ek‖Σk
) ,

(2)

where eij , J	∆xti,tj 	 xti ⊕ xtj K, ek , Jxk 	 xtkK and
the right summation is to be intended only for normally
distributed priors and ρm, ρp : R≥0 → R≥0 are robust
kernels used to reduce the influence of outliers.

In the remainder of this section we outline how this frame-
work can be used and adapted for efficient and robust pose
tracking even when floor plans are metrically inaccurate.
Sec. III-A describes our localization method, while Sec. III-B
presents how we estimate the trajectory prior using GICP-
based scan-to-map-matching.

A. Localization Using Floor Plan Pose-Graphs

Although incrementally solving the SLAM with priors
problem for the whole robot trajectory x0:t can provide
an MAP estimate of the current robot pose xt, it might
be computationally intractable for long-term applications,
unless the pose-graph is maintained sparse during navigation.
Furthermore, the number of constraints in Eq. 2 related
to relative measurements will eventually outweigh those
generated by the priors, thus decoupling the pose-graph from
the CAD drawing. In the following sections we propose two
efficient methods to address these problems.

1) Maximum a Posteriori Localization: Assuming that a
stable pose-graph anchored to the CAD drawing is available,
we can adapt the MAP estimation in Eq. 1 to track the current
robot pose without altering the underlying pose-graph and
thus keeping the computational complexity bounded. Given
the relative measurements (∆xt,tj )j at time t with respect to
some previous poses in the trajectory (xtj )j , we can estimate
the current robot pose as

x̂t , arg max
xt

∏
tj

p(∆xt,tj | xt)p(xt). (3)

Under the assumptions of Eq. 2, the estimation above can
be computed by solving the following optimization:

x̂t ≈ arg min
xt

∑
j

ρm
(
‖ej‖Σj

)
+ vtρp (‖et‖Σt

) , (4)

where ej , et, ρm and ρp are defined as above. The term
vt ∈ {0, 1} encodes whether a Gaussian or a uniform prior
is used, or, more concretely, if the scan-to-map-matching is
valid or not. As for the optimization problem in Eq. 2, we
compute x̂t using a non-linear least squares optimization.

In order to decide whether a pure localization or a full
pose-graph optimization should be executed, we use the fol-
lowing simple heuristic based on the associations computed
by the front-end: pure localization is performed at time t
only if enough associations can be obtained in the vicinity
of the robot, that is, if the number of relative measurements
(∆xt,tj )j exceeds a threshold value Nloc. This approach
efficiently maintains the number of vertices and edges of
the pose-graph bounded without any complex and computa-
tionally expensive pose-graph sparsification procedure. The
pseudo-code of the whole system is reported in Algorithm 1.

Algorithm 1 MAP Localization in Architectural Floor Plans.
1: procedure LOCALIZATION(Zt)
2: 〈∆xt−1,t,Σt−1,t〉 ← relative motion(Zt−1,Zt)
3: if ‖∆xtrt−1,t‖2 < d ∧ |∆xφt−1,t| < α then
4: return
5: xt ← x̂t−1 ⊕∆xt−1,t

6: Gt ← ∅
7: if t− 1 = t̃ then . t̃ : time of the last full optimization

8: Gt ← Gt ∪ {〈∆xt−1,t,Σt−1,t〉}
9: 〈xt,Σt, vt〉 ← prior(xt,Zt,floorplan)

10: Gt ← Gt ∪ {〈xt,Σt, vt〉}
11: n← 0
12: for xτ in x̂0:t̃ do
13: if ‖xtrτ − xtrt ‖2 ≤ R ∧ |τ − t| > S then
14: 〈∆xt,τ ,Σt,τ 〉 ← relative measure(Zt,Zτ )
15: Gt ← Gt ∪ {〈∆xt,τ ,Σt,τ 〉}
16: n← n+ 1

17: if n ≥ Nloc then
18: x̂t ← estimate pose(Gt)
19: else
20: x0:t ← (x̂0:t̃,xt)
21: G0:t ← (G0:t̃,Gt)
22: x̂0:t ← estimate trajectory(G0:t)

2) Balancing the Constraints: As already mentioned, the
constraints related to the measurements must be balanced
with the prior constraints if CAD drawings are metrically in-
accurate (see Fig. 5). We can assume that inaccuracies act as
bias terms βββ(xti ,xtj ) ∈ R3 in the relative measurements. As
a consequence, the relative measurement are now distributed
as p(∆xti,tj | x0:t) ∼ N (Jxtj 	 xtiK + βββ(xti ,xtj ),Σij).
Setting βββij , βββ(xti ,xtj ) and omitting the robust kernels for
simplicity, the MAP estimation becomes

x̂0:t = arg min
x0:t

∑
ij

‖eij + βββij‖2Σij
+
∑
k

‖ek‖2Σk

= arg min
x0:t

∑
i

∑
j

‖eij + βββij‖2Σij
+ ‖ei‖2Σi

 . (5)
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Fig. 2. The construction of the association set (Sec. III-B.1-2a/2b). The grid represents the pixel discretization of the CAD drawing (in blue). In gray
the accepted associations, in orange the rejected ones. First the candidate ma

s is selected using the proximity map (left). When the association is rejected,
the new candidate mb

s is obtained via ray-tracing (center). The final associations contains both ma
s and mb

s (right).

The summations can be merged as the error terms ek are
indexed on the vertices of the pose-graph.

As the number of relative measurements increases, the
prior term becomes negligible with respect to the inner
summation. It is therefore necessary to introduce a weighting
term Wij ∈ R3×3 on the information matrix Ωij that reduces
the effect of the bias terms βββij in the relative measurements.
A natural choice is to multiply the each information matrix
by Wij , n−1

i I3×3, where ni is the number of measurements
(∆xti,tj )j related to the pose xti .

B. Trajectory Priors Using Generalized ICP

As described above, trajectory prior p(x0:t) is modeled as
a joint distribution of independent Gaussian terms p(xtk).
The mean JxtkK and covariance Σk of each term are com-
puted using scan-to-map-matching. For this, we adapted the
GICP framework proposed by Segal et al. [7].

We assume a floor plan to be encoded as a binary image
FP : I ⊂ N2 −→ {0, 1} with known resolution σ > 0,
where I , {1, . . . ,H} × {1, . . . ,W} is the set of pixels.
Having a know resolution is not restrictive as common
CAD drawings have metrical annotations and can therefore
automatically be exported as images with desired scale.
Moreover, we assume the floor plan to be endowed with
a reference frame, say Fw, which can be assumed as the
world reference frame. Accordingly, we can define b·cσ,Fw

to be the discretization operator that converts a point in world
coordinates into the corresponding pixel on the floor plan
image. Similarly, d·eσ,Fw will denote the pseudo-inverse of
the discretization operator, which converts a pixel to the
corresponding grid point in world coordinates. Given a floor
plan image, we define ΠI : I −→ I to be the function that
associates to every pixel p the closest occupied pixel ΠI(p)
in the image. We can extend ΠI to a map Π defined as
Π(x) , dΠI(bxcσ,Fw)eσ,Fw , for any point x ∈ R2 in the
floor plan, expressed in world coordinates. Finally, we define
the image normal field ν as the function that maps every
point on the floor plan to the normalized image gradient of
FP at dpeσ,Fw whenever that normalized gradient exists, ⊥
otherwise. We assume that image normals point towards the
free space of the floor plan.

1) The Algorithm: Given an initial guess t0 ∈ SE(2) and
a 2D LiDAR scan as a set of endpoints Z , {zs}Ns=1 ⊂ R2

expressed in the sensor reference frame Fl, repeat for Nmax
iterations the following optimization procedure:
1 – Compute the scan normal field νZ that associates to

every endpoint zs the normal vector νZ(zs) to the scan
curve pointing towards the origin of Fl.

2 – Compute the association set A , {(zs,ms)}s ⊂ Z×R2

as follows: given θiter > 0 dependent on the current
iteration and a candidate association (zs,ms), add the
association if the following conditions are satisfied{

‖t0zs −ms‖2 < θiter,

ν(ms) 6=⊥ and ν(ms)
>tR0 νZ(zs) ≥ 0,

(6)

that is, the Euclidean distance between the beam end-
point and the corresponding map point does not exceed
a threshold value and the related normals are not point-
ing in opposite directions. The map correspondence
candidate ms for a beam endpoint t0zs is selected
according to the following heuristics (see Fig. 2):

2a – first set ms , ma
s , Π(t0zs), that is, the closest

occupied point on the floor plan,
2b – whenever 2a fails to satisfy Eq. 6, set mi , mb

i ,
dp(t0zs)eσ,Fw , where p(t0zs) is the pixel obtained
by ray-tracing the floor plan image from the LiDAR
pose along the beam direction of t0zs.

3 – Update the initial guess with the transformation that
optimally aligns the associated points in A. That is,

t̂ , arg min
t∈SE(2)

∑
(zs,ms)∈A

ρ
(
‖tzs −ms‖Σs,t

)
, (7)

where ρ : R≥0 → R≥0 is again a robust kernel and

Σs,t , Rms

[
η 0
0 1

]
R>ms

+Rtzs

[
δ 0
0 1

]
R>tzs . (8)

As in the work of Segal et al. [7], Rm and Rtzs are
the rotation matrices that align the standard Euclidean
basis to the normals ν(ms) and tRνZ(zs), which is the
normal to the LiDAR endpoint transformed using t.

Finally, xtk is set to be t̂ at the last iteration, expressed
in the reference frame of the CAD drawing.



Fig. 3. The datasets used in the experiments. In red the trajectories estimated with our method, in black the map built by the robot to localize in the
CAD drawings (blue). Left: Lab079. Center-top: Irc080. Center-bottom: Hall078. Right-top/bottom: ground truth dataset (cluttered scenarios). The figures
have different scales.

The selection of map candidates for the association set A
is designed to trade-off between efficiency (2a) and robust-
ness (2b). While the associations obtained via the proximity
map can be computed in constant time, the method might
result in many rejections, for instance, if the transformed
endpoint t0zs lies on the innermost pixels of thick walls,
where the normalized gradient does not exist. Conversely,
associations obtained via ray-tracing always have valid nor-
mals, at the price of more expensive computations. The
combination of the two reduces the depletion of associations
while keeping the system efficient.

2) Computing the Information Matrix: Following Grisetti
et al. [6], we set the covariance matrix Σk to be the inverse
of the information matrix of the system obtained by first-
order linearization of the error function in Eq. 7 at its last
iteration. To do so, we observe that, set εs(t) , tzs −ms,
the following equations hold:

‖εs(t)‖2Σs,t = ‖L>s,tεs(t)‖22 = es(t)
>es(t), (9)

where Ls,tL>s,t is the Cholesky decomposition of the infor-
mation Ωs,t related to the covariance matrix in Eq. 8 and
es(t) , L>s,tεs(t). As a consequence, the cost function
in Eq. 7 can be linearized as described in [6] since the
information matrices weighting the error terms es(t) are now
independent from the optimization variables, in fact, identity
matrices. Setting Es(t) , ‖es(t)‖−1

2 es(t)
√
ρ(‖es(t)‖2), the

information matrix simplifies to

Ωk ,
∑
s

[
∂Es
∂δδδ

(t̂⊕ δδδ)
∣∣∣∣
δδδ=0

]> [
∂Es
∂δδδ

(t̂⊕ δδδ)
∣∣∣∣
δδδ=0

]
, (10)

where ∂ ·
∂δδδ is the Jacobian operator with respect of δδδ ∈ SE(2).

C. Role of the Initial Guess

The MAP estimation at Eq. 1 requires the priors p(xtk)
to be independent of (∆xti,tj )ij for any tk. Since the initial

guess at tk is chosen as x̂tk−1
⊕∆xtk−1,tk , xk depends on

x̂0:tk−1
, that is, on the previous relative measurements. How-

ever, assuming a good initial guess, GICP converges to the
same estimate for small perturbations of (∆xti,tj )ij , hence
xk is (locally) independent of (∆xti,tj )ij . Thus, p(x0:t)
defined as joint distribution of independent Gaussian terms
obtained using scan-to-map-matching is a valid trajectory
prior. In Eq. 3, p(xt) never depends on (∆xt,tj )j for any
initial guess, therefore, it is again a valid prior.

IV. EXPERIMENTAL EVALUATION

Since no CAD floor plan is available for almost any
public 2D LiDAR-based SLAM dataset, we evaluated our
localization approach using seven datasets recorded in dif-
ferent buildings at the campus of the University of Freiburg.
We collected the data by teleoperating a Pioneer R© P3-DX
equipped with SICK R© S300 Professional laser rangefinder
with 270◦ of field of view, 540 beams and 30.0 m range. For
this, we collected two groups of datasets (see Fig. 3):
• Ground truth datasets: Four 10 minutes long datasets

recorded in two environments created in our lab using
movable panels, each with and without clutter. We used
a motion capture system with ten Raptor-E cameras to
precisely track the ground truth pose of the robot. We
used the same motion tracker to measure the environ-
ment and create a floor plan drawing accordingly.

• Performance datasets: Three datasets, named Hall078,
Lab079 and Irc080, recorded in real buildings and
respectively 15, 35 and 60 minutes long.

We used only the ground truth datasets to assess the
accuracy of the method since no ground truth is available
for the performance datasets. We exploited the latter to
benchmark the runtime performance of our system in longer
runs. The quantitative evaluation of our results are reported
in Sec. IV-C and Sec. IV-D.
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Fig. 4. Errors over time for the two ground truth datasets (left and right). In blue the uncluttered settings, in red the cluttered ones.

A. Implementation Details and Parameter Selection

For the optimizations in Eq. 2, 4, and 7 we used the
implementation of the Levenberg-Marquardt algorithm pro-
vided by the g2o framework [20]. We utilized ICP with
point-to-line metric from the C(anonical) Scan Matcher by
Censi [21] to estimate the relative measurements (∆xti,tj )ij ,
both for loop closures and incremental scan matching, and
our implementation of GICP-based scan-to-map-matching.

The parameters used for the evaluation have been em-
pirically selected and are the same for all the experiments.
Referring to the notation used in Sec. III-A and Algorithm 1,
we set d = 1 m, α = 0.5 rad, R = 1.5 m, S = 10, Nloc = 10,
and Huber kernels both for ρm and ρp. To compute the prior
for the trajectory, we exported the floor plans with resolution
σ = 10 mm/px and used 3×3 Scharr kernels to calculate the
image normal field ν. We chose Nmax = 10, θiter = 0.25√

iter
m,

η = 0.05, δ = 0.05, and Huber kernels for the optimization
in Eq. 7.

B. Robustness

No significant failure has been encountered for any dataset.
From a qualitative standpoint, the robot was always local-
ized during navigation with only few situations where the
localization was poor, mainly due to wrong associations in
the scan-to-map-matcher. Failures happened only temporarily
when a portion of the environment was newly observed. No
errors appeared after the map was corrected by optimizing
the map with new loop closures. According to the exper-
iments, neither small metrical inconsistencies of the CAD
drawing (see Fig. 5), nor significant or even full occlusion
due to clutter or large installations have a substantial effect
on the method. We compared our method with saturated
likelihood field MCL. We fine-tuned the parameters of our
implementation of MCL (250 mm saturation and 5000 parti-
cles) to be able to track the robot even in a highly occluded
scenario. A comparison of our system with the best run of
MCL is shown in Fig. 1. The results of our method are
substantially more consistent with the floor plan.

MCL performs poorly since CAD drawings can signifi-
cantly differ from the observations due to not represented
structures. Consequently, the particle weighting does not
necessarily peak around the true robot pose. This results
in a wrong pose estimate, particularly when the proposal
distribution has a high covariance. However, choosing a
distribution with low covariance reduces the capability of
MCL to recover from failures. In contrast, although our
method can also be temporarily affected by a bad initial guess
for computing the trajectory prior, the approach benefits from
the online built pose-graph to retrieve a good estimate of
the current pose, making the system robust to failures. In
essence, the role of the optimization in Eq. 1 is to provide
a good initial guess for the prior estimation.

C. Localization Accuracy

The results of the experiments on the ground truth datasets
are shown in Fig. 4. In the best scenario the robot localized
with an average error of (7.5± 5.8) mm and (9.5± 8.5) mm
along the x and y axes respectively and a yaw average error
of (0.52± 0.47)◦. As expected, the presence of unmapped
clutter reduces the performance of the system. In the worst
case we obtained an average error of (22.8± 18.7) mm in
x, (35.3± 26.4) mm in y and (2.90± 1.73)◦ in yaw. We
compared the above results with MCL on the same maps.
The best run outperformed MCL, which localized at its best
with (21.8± 24.0) mm error in x, (33.9± 26.1) mm in y

Fig. 5. Metric inaccuracy of the floor plan for Lab079. The SLAM map
(black) shows that the CAD is 0.6 m shorter than the real world.
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Fig. 6. Runtime performance for Hall078 (top), Lab079 (center) and Irc080
(bottom). The runtime of single updates (blue) is less than the available time
between two consecutive updates (gray). The moving average of the runtime
(black) is below the scan time (red), which is 83 ms/scan.

and (2.44± 18.70)◦ in yaw, showing that the accuracy of
our method is comparable with that of MCL.

D. Runtime Performance

The experiments were run on an 8-core 4.0 GHz
Intel R© CoreTM i7 CPU. The moving average of the sys-
tem runtime is bounded even for long navigation runs,
which shows that our approach is suitable for long-term
applications. The elapsed time at each update step for
Hall078, Lab079 and Irc080 is shown in Fig. 6. The average
runtimes over each entire experiment were (54± 27) ms,
(58± 19) ms, and (44± 26) ms respectively, showing that
the system is on average comparable to standard likelihood
field MCL ((52± 8) ms in our implementation with same
parameters of Sec. IV-C) and usable in near real-time.

V. CONCLUSIONS

In this paper we presented a LiDAR-based system for
localization in architectural floor plans. While the robot is
moving through its environment, we use a SLAM method
to online generate a map, represented as a pose-graph with
LiDAR readings. The priors for the trajectory are computed
with the proposed GICP-based scan-to-map-matcher to fit
the generated pose-graph onto the floor plan. When the map
sufficiently covers the area in the vicinity of the robot, we
estimate its relative pose with respect to the matching nodes
of the pose-graph without a global optimization process. This
combination makes the system robust to missing information
in CAD drawings and also computationally efficient. We
evaluated our approach in several real-world scenarios and
showed that the method works robustly in complex environ-
ments and is as accurate and efficient as common state-of-
the-art localization systems.
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