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Abstract

Accurate localization is an essential technology for flexible automation. Industrial applications require mobile platforms to be
precisely localized in complex environments, often subject to continuous changes and reconfiguration. Most of the approaches use
precomputed maps both for localization and for interfacing robots with workers and operators. This results in increased deployment
time and costs as mapping experts are required to setup the robotic systems in factory facilities. Moreover, such maps need to be
updated whenever significant changes in the environment occur in order to be usable within commanding tools. To overcome those
limitations, in this work we present a robust and highly accurate method for long-term LiDAR-based indoor localization that uses
CAD-based architectural floor plans. The system leverages a combination of graph-based mapping techniques and Bayes filtering to
maintain a sparse and up-to-date globally consistent map that represents the latest configuration of the environment. This map is
aligned to the CAD drawing using prior constraints and is exploited for relative localization, thus allowing the robot to estimate its
current pose with respect to the global reference frame of the floor plan. Furthermore, the map helps in limiting the disturbances
caused by structures and clutter not represented in the drawing. Several long-term experiments in changing real-world environments
show that our system outperforms common state-of-the-art localization methods in terms of accuracy and robustness while remaining
memory and computationally efficient.
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1. Introduction

The ever increasing usage of mobile platforms for industrial
and service applications demands navigation systems to com-
bine accurate and robust localization with simplicity of use and
deployment. Some of the most advanced localization techniques
in industrial settings use the on-board safety LiDAR sensors and
rely on maps that require to be built upfront, usually by solving
the so called simultaneous localization and mapping problem
(SLAM). In many circumstances, however, acquiring those maps
can be a nuisance since it requires tedious and time-consuming
preliminary operations, which increase deployment time and
costs for robot manufacturers. In complex environments, expert
operators are often needed in order to ensure the consistency
of the generated maps and their usability for the robot. More-
over, most common methods use occupancy grid-maps [1] that
are now becoming a standard tool for navigation [2] but differ
significantly from commonly used drawings of indoor build-
ings. Grid-maps often present local distortions and pixelation as
well as color conventions and encoding that are unusual, mak-
ing them hardly readable and understandable to inexpert users
[3]. Thus, special training is required for shop floor workers
and operators in order to get acquainted with such maps, for
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instance, as visual interfaces for navigation. In contrast, archi-
tectural drawings are an interesting bridge between an accurate
sensor-based robot-centric map representation and an intuitive
human-friendly description of indoor environments. They are
common in everyday life, for example, on emergency evacuation
plans in private and public buildings; they are often available
to factory owners and they can be easily manipulated and ex-
tended with modern CAD software. Moreover, they represent
the unchangeable structures in buildings, thus being an abstract
representation of environments that can be flexibly used indepen-
dently from their actual configuration. Consequently, they can
constitute a natural mean for intuitive communication with the
navigation tools. Despite these advantages, using such drawings
for accurate localization with LiDAR sensors is challenging due
to significant discrepancies between the environment observed
by the robot and the information represented by the floor plan.
The goal of this work is to develop a robust and highly accurate
2D LiDAR-based framework for indoor localization that is de-
signed for long-term operation, even when poorly descriptive
CAD floor plans are used.

This paper extends our previous research presented in [4].
In that work, we proposed an approach to estimate the current
robot pose in the global reference frame of a prior floor plan.
We combined prior measurements obtained by directly matching
the LiDAR readings against the floor plan with relative measure-
ments between readings acquired during navigation. Leveraging
past observations allows to correct errors and inaccuracies that
might occur during navigation due to the absence of information

Preprint submitted to Robotics and Autonomous Systems February 7, 2019

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the architectural drawing. To do so, we used the graph-based
mapping framework introduced in [5]. More concretely, we aug-
mented the floor plan with an online built map and used suitable
priors for the robot trajectory that constrains the map onto the
floor plan. Accordingly, the robot localizes within that map,
overcoming the absence of information in the CAD drawing
while providing a pose estimation consistent with the floor plan.

Although [4] proved that this approach works robustly in sev-
eral experimental settings, it still relies on the assumption that
the robot is navigating within a fully static environment. This
premise poses serious limitations to the usability of the system
for continuous operation. The core contribution of this work is
to extend the previously proposed system and present a unified
framework for long-term localization on prior floor plans, which
is able to handle both static and changing environments. For
this, we introduce a robust and highly efficient front-end that
is capable of maintaining a sparse and up-to-date pose graph
that is consistent with the latest observable scenario, without any
assumption on the amount of rearrangements that the environ-
ment may undergo. We employ a Bayesian filtering approach
to track the probability of past LiDAR readings to represent the
current scenario. Based on that probability, we constantly dis-
card outdated information from the online built map, resulting
in a computationally and memory efficient system usable for
long-term operation.

The remainder of this manuscript is organized as follows.
Related work is discussed in Section 2. In Section 3 we present
a detailed formulation of the problem addressed in this work and
the related assumptions. In Section 4 we provide an overview
on our LiDAR-based system for floor plan localization and
detail the main methodological contributions of the paper. We
first outline the system from a general perspective, then focus
on describing both the back-end and our robust front-end for
changing environments. An extensive experimental evaluation
is presented in Section 5. The experiments reported in this paper
are original and extend those presented in [4]. Finally, we refer
the reader to Table 1 for the mathematical conventions as well as
notations adopted throughout the manuscript, unless otherwise
specified.

2. Related Work

Mobile robot localization is a vast research field that has been
widely investigated. Its crucial role for autonomous robot navi-
gation made it one of the major topics in the robotics community
over the last decades, resulting in mature techniques that de-
liver robust and efficient solutions. Many methods that have
been successfully developed and deployed treat the localization
problem within the Bayesian state estimation framework. The
earliest approaches used Kalman and histogram filter-based tech-
niques [7, 8]. More recently, particle filter-based approaches,
called Monte Carlo Localization methods (MCL) [9] proved to
be one of the most efficient and versatile. Over the years, these
algorithms were extended in different variants to account for
movable and unmapped obstacles [10, 11]. Typically, in order
to represent the static parts of the environments, they use maps
computed with the same sensor modality as the one used for

Symbol Description

ı̂, ̂ The natural Cartesian basis of the R2.
SE(2) The group of proper rigid transformations of R2.
⊕,	 Compound and inverse operators on SE(2) [6].

x,y,φ x-, y- and yaw-components (e.g. as indices).
ptr Translation component of p ∈ SE(2) (i.e. [px,py]).
pR Rotation matrix of angle pφ for p ∈ SE(2).
px Rigid transformation of x ∈ R2 (i.e. pRx+ptr).

JpK p ∈ SE(2) as an element of R2× (−π,π]⊂ R3.
Σ,Ω Covariance and related information matrix.
‖x‖ Euclidean norm: (x>x)1/2.
‖x‖Σ Mahalanobis norm: (x>Ωx)1/2.
xt0:tn The sequence (xt0 , . . . ,xtn), t0 < t1 < .. . < tn.

xt0:tn \ xtk Removal of xtk from xt0:tn .
#X Number of elements in a finite set.

#xt0:tn Number of element in a finite sequence.
f (x;θ) A function f with arguments x and parameters θ .

∆t Sequence of relative measurements at time t.
Πt Sequence of prior measurements at time t.

Table 1: The notations adopted in the paper.

localization. The most common representation are so called
occupancy grid-maps, introduced by Elfes [1], which describe
the space in terms of probability of grid-cells of being occupied.

Inspired by the graph-based SLAM and multi-robot commu-
nities, other authors investigated localization approaches that
relaxed the assumption of using maps obtained by fusing sensor
measurements, even forgoing the need of global consistency.
They proposed the concept of relative localization. The map
is usually encoded as a set of relative pose constraints between
nodes (pose graph) where each node is associated with a mea-
surement against which the robot localizes, for instance, by
using scan-matching algorithms. The robot pose is therefore
defined only with respect to the currently matched node or set
of nodes and not with respect to a global reference frame. In the
context of LiDAR-based localization, this was extensively used
by Sprunk et al. [12], who defined maps as user-taught trajec-
tories, and further generalised to more complex pose graphs by
Mazuran et al. [13]. Noticeably, Schiotka et al. [14] proposed
a sensor model for MCL using those scan-based maps to over-
come the need of memory expensive occupancy grid-maps. In
the context of graph-based mapping, scan-based maps seem to
be firstly investigated by [15].

Architectural floor plans as aid for robot localization have
received scarce attention in research and few works have investi-
gated methods to create precise and robust localization systems
for such maps. In most cases, their usage seems to be motivated
by the infeasibility to create proper maps using the sensor on
board the robots or the devices used. Siddiqi et al. [16] presented
an extension of MCL using Wi-Fi signals to estimate its pose
on CAD floor plans. Ito et al. [17] proposed an MCL-based
sensor fusion approach to track the pose of a mobile device
on CAD drawings. The system uses an RGB-D camera and
IMU for visual-inertial odometry, while the depth information
is exploited to create a set of beams that are used as sensor
readings. The particle initialization is improved employing the
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Wi-Fi signal, which allows faster convergence to a unimodal
distribution of the particle set. A similar idea was proposed
by Winterhalter et al. [18], that presented a localization system
for a Google Tango tablet based on MCL on CAD floor plans
of indoor environments. The proposal distribution of MCL is
computed using visual-inertial odometry and, again, the depth
data of the RGB-D camera on board the device is compared
with a 3D model of the environment obtained by elevating the
walls encoded in the floor plan. Hile et al. [19] developed a
vision-based localization system on a CAD drawing by triangu-
lating landmarks extracted from the image and matched onto
the floor plan. Luo et al. [20] presented a method that uses an
architectural floor plan of a building and extracts both metrical
and topological information. More precisely, they store both
the floor plan and the room numbers and use a camera to detect
and interpret the room plates as well as an ultrasonic sensor to
match doorways and significant landmarks. The measurements
are then fused using a Bayesian filter. In the same spirit, an-
other MCL-based approach called SeDAR was presented by
Mendez et al. [21]. The authors developed a localization system
for a mobile robot that uses a floor plan and an RGB-D camera.
Their core concept is to precompute a likelihood field not only
for the beam endpoints obtained by the depth sensor, but also
for the semantics of the environment. They compute likelihood
fields for doors or windows which are detected by the robot
using the RGB-D image. A more general likelihood field model
is obtained as a mixture of the single fields and used for the
sensor model of MCL.

All above mentioned methods assume either a fully static
environment or the possibility to ignore its dynamic parts. They
rely on a static world that is exhaustively represented in the map
and use robust models that aim at reducing the disturbing effect
of measurements that cannot be explained by the static part of
the environment. An approach for localization in semi-static
environments was presented in Meyer-Delius et al. [22]. The
authors proposed an extension of MCL that uses a sensor model
based on the joint likelihood of a static map and local maps built
during operation, called temporary maps. A mapping process is
triggered whenever the current LiDAR scan does not match the
static map or the temporary map in which the robot is operating.
If the map does not sufficiently explain the current scan, the
system discards it and restarts a temporary mapping process.
An approach that accounts for changing environments during
mapping was presented in [23]. In that work the authors pro-
posed a generalization of grid-maps that encode state transitions
for every grid-cell to model changeable environments. Such
dynamic grid-maps have been coupled with MCL techniques
by Tipaldi et al. [24] for lifelong localization. The authors used
an MCL-based approach to track the robot pose and the current
state of the map according to its transition properties in order to
localize a mobile robot robustly within a heavily changing envi-
ronment. Other methods leverage temporal information about
the evolution of map features. Kraijnı́k et al. [25] proposed an
approach based on Fast Fourier Transforms that learns repetitive
patterns of changes in the environment. The learned model is
used to predict occupancy values of the map cells. Additionally,
a model for short-term persistence of observations is employed.

In the same spirit, the pose graph-based SLAM community has
investigated methods to encode dynamics and provide similar
generalizations. Biber et al. [26] proposed a mapping system
that uses different timescales to represent the changes in the
environment. Measurements are replaced or removed using an
online learned model. Another method, called Dynamic Pose
Graph, was proposed by Walcott-Bryant et al. [27]. The authors
introduced an extended version of 2D LiDAR scan-based maps
that encode additional information such as the state of a node
being active or inactive. The transition of nodes between active
and inactive is determined according to the number of active
angular bins in the related LiDAR scans. An abstract approach
for modeling changing environments was introduced by Rosen
et al. [28]. In this work, the authors presented a Bayesian filter
based on the survival analysis framework to model whether fea-
tures detected during mapping have to be considered out-of-date.
They proposed a recursive update that incorporates the results
of feature detection and time-dependent priors on the lifetime of
features.

The approach presented in this paper borrows ideas and meth-
ods from this background. It uses methods for graph-based
SLAM with priors to leverage past observations and online build
a scan-based map of the environment that is globally consis-
tent with the CAD floor plan. This has multiple advantages.
First, in contrast to [24], it benefits from storing the history of
readings and trajectory: the online estimated map can thus be
corrected during navigation, which is a well known advantage
of pose graph-based SLAM compared to particle filter-based
mapping. Second, the method presented in [24] suffers from a
high memory consumption when the map resolution is increased,
particularly if a large number of particles is used to achieve ac-
curate tracking, while our proposed method does not depend
on the resolution of the floor plan. Third, our method uses the
global consistency of the online built map to disambiguate parts
of the environment that are perceptually indistinguishable from
the floor plan, for instance when flat furniture or equipment is
covering an entire wall. This is a clear advantage in terms of
robustness compared to methods that only rely on robust sen-
sor models to match the current measurements against the floor
plan. In turn, the availability of a prior floor plan is beneficial
for the SLAM system, in particular to maintain an up-to-date
pose graph, which is a crucial aspect of our localization sys-
tem. Our method does not need to store the history of past
configurations to localize and update the map as in [26]: this
results in a highly memory and computationally efficient sys-
tem. Furthermore, in contrast to [27] (and arguably to [26]) our
approach for change detection and map updates does not rely
on the assumption that the amount of change still allows correct
scan registration. In comparison to [22], our method presents
significant enhancements. First, we use LiDAR readings for
online mapping irrespectively of how the current scan matches
the prior map. The online map is therefore already partially
built during initial detouring towards areas where the floor plan
poorly represents the environment, which avoids unnecessary
drift. Second, we leverage the global consistency of the built
map to correct possibly incorrect registrations against the floor
plan. As discussed in [24], whenever the system presented in
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[22] commits to wrong alignments of temporary maps, there
is little chance of recovering. Third, instead of relying on tem-
porary maps to cope with changing environments, we employ
a more fine-grained approach that uses a locality criterion to
choose the set of LiDAR scans to query for change detection
and selects scans individually for removal. This prevents the
system to discard parts of the online built map even if they can
later be exploited for localization. Finally, our approach does
not require any knowledge about the temporal evolution of the
environment [28] and we do not assume prior temporal models
such as periodic changes [25]. Conversely, we use a Markov-
based decay model that relies on time-independent priors on the
likelihood of changes.

3. Problem Statement

In this work we address the problem of pose tracking using a
known CAD-based floor plan that misses significant information
about the environment. Formally, given an approximate initial
guess x0 ∈ SE(2) for the robot pose and a CAD drawing encoded
as a binary image I ∈ {F,O}W×H with a certain resolution, our
goal is to estimate the robot pose xt ∈ SE(2) at any time with
respect to a global reference frame F f of the floor plan, even
within an environment that might be subject to changes and
rearrangements. We assume the robot to employ a 2D LiDAR
sensor. We henceforth consider every scan S to be a sequence
of 2D Cartesian points (si)i expressed in the reference frame
of the sensor, which we assume to coincide with the one of
the robot. We note that we are not interested in solving the
global localization problem, that is, to estimate the robot pose
without any initial knowledge on the initial pose of the robot
with respect to F f . From the application perspective, this is
often not required as in many industrial and service applications
the starting pose for the operation is usually a docking station
or charging spot whose location is known upfront by the factory
floor operators or customers.

Similarly to [24] and [27], throughout this work we assume
that the environment presents low dynamic objects and features,
that is, despite changes that might occur in the environment, at
any time t all readings recorded in the LiDAR measurement
St are obtained from objects with zero velocity with respect to
the global reference frame F f . As pointed out by Walcott et
al. [27], this assumption does not affect the generality of the
approaches since several algorithms for detection and tracking
of highly dynamic objects have been proposed in literature and
successfully deployed in real-world applications, e.g. [29, 30].
To further support this assumption, we also remark that the
building block of the method proposed in this paper, namely
2D LiDAR-based Iterative Closest Point (ICP), has been proven
to be highly robust and reliable even when people are walking
nearby the robot as well as when small objects move within the
field of view of the sensor [31].

In general, we do not assume that (a part of) the floor plan
is always visible during navigation. This assumption poses
serious limitations to methods that exclusively rely on directly
matching the current observation against the floor plan (e.g.
MCL), even for robust variants that can cope with unmapped

obstacles and dynamics. Operating in areas where the floor plan
is not observable causes drift to accumulate, eventually resulting
in localization failures.

In contrast to [27, 32], we do not implicitly assume that,
over a longer period of time, scan-matching is sufficient to
solve the data association problem intrinsic in a SLAM system
and thus loop closing to be always possible when revisiting
previous locations over a longer period of time. Instead, we
allow changes in the environment that are not limited to small
features and isolated parts of rooms and therefore cannot be
handled by an outlier rejection method. More concretely, we
assume that rearrangements in the environment can significantly
reshape the landscape observed by the robot during navigation
as that is a common situation that frequently occurs in real-
world settings. As discussed in [24], this assumption makes the
localization task harder since the maintenance of an up-to-date
map becomes crucial for localization accuracy, which might be
dramatically affected by wrong data associations. Since our goal
is to localize with respect to a prior CAD floor plan, we are not
interested in storing the history of previous configurations of the
environment or generating a map that mirrors it in every detail.
This constitutes a substantial difference between our approach
and the method proposed in [27]. In particular, key for us are
the following aspects:

• High memory and computational efficiency so that the
system not only remains computationally tractable as in
[27], but also solves the mapping problem at least in near
real-time.

• In contrast to accurate and exhaustive mapping, building a
map that stores the past configurations is of lower priority to
us than having a map that encodes just enough information
to enable accurate localization. For instance, displacements
of small objects in empty rooms should not trigger any
instance of change detection or map update (as shown in
[27]) since they would unlikely result in scan-matching
failures. In fact, such circumstances can be easily treated
by either outlier rejection or association trimming during
scan registration.

In light of these goals and differently from [28], we avoid dis-
carding parts of the map according to a time-dependent decay.
Such a policy would result in removing all nodes that exceed the
expected lifetime, unless fresh observations are obtained. As a
consequence, the system could not leverage past observations
for localization, which is particularly beneficial in areas where
the environment represented in the floor plan is not observable.

Finally, we do not encode any information about ”passes” [27],
that is, we assume that changes might occur at any time during
operation and not necessarily during different navigation phases,
for instance, after the map has been fully acquired. Furthermore,
the robot does not need to start each navigation task from the
latest pose in the previous localization run. We only assume
that the very first run should start in a location where the visible
environment sufficiently matches the floor plan to ensure that an
initial pose alignment is possible just by registering the LiDAR
reading onto the CAD drawing.
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Figure 1: A pictorial example of an association set used in the GICP-based
registration of a LiDAR scan against a CAD floor plan. Associations obtained
using the distance map are reported in gray, those obtained via ray-casting in
orange. Whenever the distance map associates a pixel on the wrong side of the
wall, the association candidate is replaced with a pixel obtained by ray-casting.

4. Localization System

As mentioned in the previous sections, our goal is to esti-
mate the current robot pose xt ∈ SE(2) in the reference frame
of the floor plan, while a globally consistent scan-based map of
the environment is built online. This map aims at overcom-
ing the absence of details in the CAD drawing by creating
constraints between the map scans, thus correcting the errors
produced by inaccurate registration of LiDAR measurements
against the floor plan. Similarly to [13, 14, 15], the scan-based
map Mt , 〈x0:t ,S0: t ,F f 〉 estimated by the robot consists of a
set of trajectory poses x0: t ∈ SE(2)n+1 in the reference frame
F f of the floor plan and a collection of LiDAR measurements
S0: t obtained at those poses. Following the graph-based SLAM
formulation [33] with prior information [5], such a map can
be inferred by estimating the trajectory x̂0: t that maximizes the
posterior probability of a sequence of relative measurements
∆t , (zti,t j)i j ∈ SE(2)m between pairs of trajectory poses visited
during navigation:

x̂0: t ∈ argmax
x0: t

p(zti,t j , . . . ,ztr ,ts | x0: t)p(x0: t), (1)

that is, by maximizing the likelihood of the relative measure-
ments weighed by a trajectory prior. In the proposed system,
all relative measurements are obtained by scan-matching be-
tween selected pairs of poses. Henceforth, consistently with
the conventional naming used in the context of graph-based
SLAM, we will synonymously use scan-based map and pose
graph, trajectory poses and nodes as well as measurements and
constraints.

Assuming the trajectory poses x0: t to be pairwise independent,
the relative measurements (zti,t j)i j to be conditionally indepen-
dent with respect to x0: t as well as all probability terms to be
normally distributed, Eq. 1 can be expressed as log-posterior and
formulated as the nonlinear least-squares optimization problem

x̂0: t , argmin
x0: t

∑
ti,t j

χ
2(xti ,xt j ;zti,t j)+∑

tk

χ
2(xtk ;ztk), (2)

where χ(xti ,xt j ;zti,t j), ‖J	zti,t j 	xti ⊕xt jK‖Σti ,t j
is the relative

error term for two poses with respect to the associated relative

measurement and χ(xtk ;ztk), ‖Jztk 	xtkK‖Σtk
is the error term

induced by a prior measurement ztk ∈ SE(2) for the trajectory
pose xtk . In the previous definitions, Σti,t j and Σtk are the covari-
ance terms of the underlying normal distributions of the relative
and prior constraints respectively. We henceforth refer to Πt as
the sequence of prior measurements z0:t ∈ SE(2)n+1.

In practice, the estimation above is often obtained by solving
a generalised version of the problem, which assumes that all
error terms have distributions of the form ηe−κ(χ), where κ is a
nonnegative real-valued function, typically called kernel. The
resulting problem becomes

x̂0: t = argmin
x0:t

∑
ti,t j

κr
(
χ(xti ,xt j ;zti,t j)

)
+∑

tk

κp
(
χ(xtk ;ztk)

)
,

(3)

where the kernel terms κr,κp are usually quasiconvex functions
that encode super-Gaussian distributions for the error terms in
Eq. 2. Robust kernels make the optimization problem less sensi-
tive to wrong measurements, commonly referred to as outliers.
The estimation in Eq. 3 can be efficiently solved with standard
optimization techniques such as the Levenberg-Marquardt algo-
rithm.

In the above framework, the relative measurements can there-
fore be used to generate a globally consistent map of the environ-
ment at every time t while the trajectory priors anchor it to the
floor plan. The nodes x̂0: t , and accordingly also the current pose
xt , are softly constrained to be aligned with the reference frame
F f of the CAD drawing. Thus, relative localization with respect
to the stored nodes x̂0:t results in a pose estimation that is con-
sistent with the CAD floor plan. Note that CAD floor plans can
have moderate metrical inaccuracies which might result in slight
inconsistencies between prior and relative constraints. These
inaccuracies can be averaged during the trajectory estimation
by scaling the covariance terms of the relative measurements.
A natural choice is to set Σ′t,t j

, ntΣt,t j (Ω′t,t j
, 1

nt
Ωt,t j ), where

nt ∈ N>0 is the number of relative measurements related to the
current pose xt . In the least-square optimization in Eq. 2, nt
balances of error terms related to relative measurements with
those related to prior constraints.

4.1. Floor Plan Trajectory Prior

In order to generate priors z0: t for the robot trajectory, we
adapted the Generalized-ICP framework (GICP) proposed by
Segal et al. [34] for scan-to-floor plan matching. The approach
is akin to that proposed in [35].

As mentioned in Section 3, we assume the floor plan to be
given as a 2D image I with a certain resolution. In order to com-
pute the prior zt , at every update time t we register the LiDAR
measurements St to I using an approach similar to ICP. Namely,
we iteratively compute an association set A , {〈si,mi〉}i be-
tween the LiDAR endpoints and the occupied pixels in I and
estimate the transformation that best aligns the associations by
solving the following nonlinear optimization problem:

zt , argmin
z∈SE(2)

∑
〈s,m〉∈A

κ

(
‖zs−m‖

Σ(z;s,m)

)
, (4)

5



Figure 2: Topological check for the loop closure candidates Ct . The local grid
map OCt is overlaid onto the floor plan. The gray triangle represents the current
robot pose xt . Trajectory poses are shown in black, accepted candidates in red,
and the discarded candidates in white. Nodes whose connecting segments do not
lie in the free space of the local grid map are discarded from the loop closures
set (dashed edges).

with Σ(z;s,m) being the two-dimensional variant of the GICP
covariance matrix

Σ(z;s,m),
[
zRRs

][ν 0
0 1

][
zRRs

]>
+Rm

[
η 0
0 1

]
R>m , (5)

where Rs and Rm are the 2D rotation matrices that align ı̂ to the
normal of the scan at s and the normal of the floor plan at m
respectively. Again κ is a robust kernel that limits the effect of
wrong associations and ν ,η > 0 are covariance terms that weigh
each association along the related normals [34]. For the sake
of the well-posedness, we always consider the image normal to
point from occupied to free pixels and the scan normals to be
directed towards the origin of the sensor.

The GICP error function in Eq. 4 accounts for the local geom-
etry surrounding the associations. In particular, it downweighs
those with mismatching normals. This is particularly suitable
for the application discussed in this work since CAD floor plans
typically only report the essential features of buildings, such as
walls, but not specific objects or even clutter in the environment
and wrong associations are therefore frequent. However, walls
and clutter typically have different geometrical structures and
thus the influence of such wrong associations is substantially
reduced in the optimization.

Following [33], we can use the information matrix Ωt of the
system obtained by linearizing the error terms in Eq. 4 after the
last iteration to compute the covariance matrix Σt for the prior
measurement zt . Concretely, the information matrix Ωt can be
estimated as

∑
〈s,m〉∈A

[
∂ f (zt ⊕v;s,m)

∂v

∣∣∣∣
v=0

]> [
∂ f (zt ⊕v;s,m)

∂v

∣∣∣∣
v=0

]
, (6)

where
f (z;s,m), r

(
Λ(z;s,m)> (zs−m)

)
, (7)

with r(x), ‖x‖−1x
√

κ(‖x‖) and Λ(z;s,m) is the lower triangu-
lar Cholesky factor of Ω(z;s,m).

Despite the GICP-based back-end, a robust policy for select-
ing associations is still crucial for an accurate registration of
the LiDAR measurements against the floor plan. Due to the
image-based encoding of the floor plan, the GICP error function
is ineffective or even not well-defined in cases that commonly
occur if a vanilla closest-point-based association policy is used,
namely:

• Endpoints are associated with occupied pixels in parts of the
image with zero image gradient, thus the normals are not
defined. This happens, for instance, to pixels representing
thick walls.

• Endpoints are associated with the wrong side of a wall,
sometimes referred to as see-through-walls effect [36]. As
a consequence, the resulting normal alignment is correct up
to 180° and does not cause any downweighing by Σ(z;s,m)
defined in Eq. 5.

To overcome these issues without overly depleting of the
association set, we use the following policy to select candidate
pixels. At every iteration, we require that every association
〈s,m〉 must satisfy the following three conditions:

(a) ‖ziters−m‖ ≤ δiter,

(b) The image normal n̂m of m exists.

(c) n̂>mzR
itern̂s > 0, where n̂s is the scan normal of s.

Condition (c) enforces the relative angle between the floor plan
normal n̂m and the transformed scan normal zR

itern̂s to not exceed
90°. For every endpoint s, we first select the closest occupied
pixel to ziters as candidate pixel on I . If this pixel satisfies the
above conditions, the association is added to the association set,
otherwise another candidate is selected by ray-tracing along the
beam direction and the same acceptance criteria are applied. An
example of an association set is shown in Figure 1.

Observe that, while the first candidate can be computed in
constant time by caching the distance transform of the image
I , ray-tracing might result in a computational overhead that
depends on the amount of free space in the floor plan and the
selected resolution. However, the distance transform can be
leveraged to dramatically speed-up ray-casting by setting the
distance step used to search along the ray equal to the value
of the distance transform at the currently visited pixel, often
referred to as sphere-tracing [37, 38]. Owing to the definition
of distance transform, the number of steps is substantially re-
duced while rays are prevented to overshoot obstacles and the
ray-tracing algorithm becomes independent from the floor plan
resolution. Therefore, the total computational overhead intro-
duced by the robust association policy is negligible with respect
to the optimization step.

4.2. Long-term Mapping
During long-term operation, the proposed system must pre-

vent the scan-based map Mt and the collection of relative mea-
surements (zti,t j)i j to grow indefinitely, thus exhausting memory
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and computational resources. Several methods for pose graph
compression and sparsification have been proposed in literature
and provide offline approaches to reduce the number of nodes
and constraints without compromising the quality of the result-
ing map [39, 40, 41, 42]. Conversely, we prevent the number of
nodes and relative constraints to increase by using an approach
which neither requires any post-processing nor additional com-
putational cost.

More specifically, following common approaches for loop
closing in two-dimensional SLAM [43, 44], at every time step
t a set of loop closure candidate nodes Ct is selected by using
a threshold distance ρt > 0 with respect to the current robot
pose and excluding the most lately added nodes. In addition,
a local occupancy grid map OCt is generated from the LiDAR
measurements associated with the nodes in Ct using the log-odd
approach described in [36]. The local map is used to discard
candidates that are not topologically consistent with the local
environment surrounding the robot. We do this by ray-tracing
along the line segments connecting the current robot pose and
the candidates (see Figure 2). As further checks, we validate
candidate nodes by evaluating the amount of overlapping field-
of-view via re-projection as well as by estimating the cross-
visibility of LiDAR beams as discussed in [45]. Whenever the
number of resulting valid loop closures exceeds a threshold
value Nloc, we estimate the current robot pose by using the local
maximum a posteriori optimization

x̂t0:t , argmin
xt

∑
t j

κr
(
χ(xt ,xt j ;zt,t j)

)
+κp (χ(xt ;zt)) ,

∈ argmax
xt

p(zt,tp , . . . ,zt,tq | xt)p(xt)
(8)

without performing the full trajectory estimation in Eq. 2 and
without storing the latest LiDAR measurement and trajectory
pose in Mt as well as relative and prior measurements in ∆t
and Πt respectively. Note that this approach might result in
under-mapped areas for only two specific configurations of the
pose graph which can be easily treated as special cases:

• At time t∗, the vehicle drives into a newly visited area which
is bounded by the range ρt (t > t∗) and remains in that area
for a certain time. The local optimization in Eq. 8 might
be triggered before relative measurements have corrected
the poses xt∗:τ (τ ≤ t). However, such a situation can be
easily detected as the robot would try to localize against a
set of candidates that are solely connected by incremental
measurements.

• The robot enters an unmapped part of the environment after
a local estimation was performed. In this case, the candi-
date set Ct might be empty due to a doorway or narrow
passage that causes all candidates to be discarded by the
topological validation. Consequently, the resulting pose
graph would be disconnected. Although the prior measure-
ment zt prevents the estimated pose x̂t to be decoupled from
the floor plan in principle, in case of severe occlusions the
resulting wrong prior measurements would not be coun-
tered by correct relative constraints. Again, such a case can

Algorithm 1 Connectivity-preserving map pruning.
1: procedure MAPPRUNING(M ; p∗)
2: x̂t , x̂t // earliest and latest pose in the trajectory
3: for x̂τ in x̂t:t do
4: if odds [x̂τ ]< odd(p∗) then
5: T ← DFT(Mt ; x̂τ ) // depth-first search tree
6: if #CHILDREN(x̂τ ;T ) = 1 then // not an articulation
7: St:t ← St:t \ sτ

8: ∆t ← ∆t \{〈zτ,t j ,Στ,t j 〉 | t ≤ t j ≤ t}
9: Πt ←Πt \{〈zτ ,Στ 〉}

be easily detected by observing that there are no relative
constraints connected to the current node xt . The connectiv-
ity can then be restored by adding the latest trajectory pose
x̂t−1 including the related LiDAR measurement St−1 to the
map Mt and storing the relative constraints associated with
the latest candidates Ct−1 together with the prior constraint
in ∆t and Πt respectively.

4.3. Changing Environments

Long-term operation often involves substantial changes in
the environment. In order to keep the robot localized in such
scenarios, it is crucial to maintain an up-to-date map. Signif-
icant changes in the environment dramatically affect the data
association for loop closures and can cause wrong relative mea-
surements, which eventually compromise localization accuracy.
Even if the selection method for loop closure candidates de-
scribed in Section 4.2 correctly filters scans that are not usable
for loop closing, a mapping process would be triggered, caus-
ing the number of nodes and LiDAR scans in the map Mt to
increase, which results in a substantial computational overhead.
In order to overcome these problems, we propose an efficient
method to detect significant changes and maintain only nodes
that store LiDAR measurements that are consistent with the lat-
est observations obtained by the robot. The method does not
rely on the assumption that loops can be closed consistently
by matching the current scan against scans stored in Mt . We
leverage the validity of ICP-based scan-matching to estimate the
likelihood whether a LiDAR scan related to a trajectory pose is
consistent with the currently observable environment or not. We
then use this likelihood to prune the past nodes and to robustify
the trajectory estimation.

Concretely, similarly to e.g. [23, 25, 28], we introduce binary
time-dependent random variables Ht

ti ∈ {A,O} associated with
the trajectory poses xti and LiDAR measurement Sti that encode
whether, at time t, Sti matches the latest robot observation St . For
the sake of clarity, in such a case we will say that the node xti is
actual (A) or old (O) otherwise. Additionally, we define binary
random variables V t

ti ∈ {>,⊥} that encode whether ICP was
able to estimate a relative measurement zt,ti during loop-closing
(>) or St and Sti are not comparable (⊥), for instance, due to an
insufficient number of associations. We define the belief of Ht

ti as
bel(Ht

ti), p(Ht
ti |V

1:t
ti ). The observability of Ht

ti depends upon
V t

ti since it is only possible to compare the current observation St
with the past observation Sti if they could be validly registered.
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Algorithm 2 Localization in prior floor plans.
1: procedure LOCALIZE(St ,ut ; d,α,ρ,h,Nloc, p∗, pO|A,γ)
2: x̂t , x̂t // earliest and latest pose in the trajectory
3: Dt ← /0 // the set of current relative measurements
4:
5: 〈zt−1,t ,Σt−1,t〉 ← ICP(St−1,St ,ut) // incremental motion
6: if ‖ztr

t,t−1‖< d∧|zφ

t,t−1|< α then
7: skip
8:
9: xt ← x̂t−1⊕ zt−1,t

10: 〈zt ,Σt〉 ← GICP(St ,xt ;I ) // floor plan prior
11:
12: Ct ← /0
13: for xτ ∈ x̂t:t do // find loop-closures candidates
14: if ‖xtr

t −xtr
τ ‖< ρ ∧|t− τ|> h then

15: Ct ← Ct ∪{τ}
16:
17: Ot ← OCCUPANCYGRIDMAP(Ct)
18:
19: for τ ∈ Ct do // filter loop closure candidates
20: if odds [x̂τ ]< odd(p∗) then
21: Ct ← Ct \{τ}
22: if FIELDOFVIEWOVERLAP(xt ,St ,xτ ,Sτ )< β then
23: Ct ← Ct \{τ}
24: if ¬LINECANCONNECT(xt ,xτ ;Ot) then
25: Ct ← Ct \{τ}
26:
27: for τ ∈ Ct do // compute loop-closures and beliefs
28: if 〈zt,τ ,Σt,τ ,ε〉 ← ICP(St ,Sτ ,	xt ⊕xτ ) then
29: odds [x̂τ ]← φ(ε;θ)
30: if odds [x̂τ ]> odd(p∗) then
31: Dt ←Dt ∪{〈zt,τ ,Σt,τ 〉}
32: else
33: odds [x̂τ ]← γ

1−pO|A odds [x̂τ ]+odd
(

pO|A
)

34:
35: if t = t−1 then // add incremental measurement
36: Dt ←Dt ∪{〈zt−1,t ,Σt−1,t〉}
37:
38: if #Dt < Nloc then // full trajectory optimisation
39: xt:t ← (x̂t:t ,xt)
40: St:t ← (St:t ,St)
41: ∆t ← ∆t ∪Dt
42: Πt ←Πt ∪{〈zt ,Σt〉}
43: MAPPRUNING(Mt ; p∗)
44: x̂t:t ← OPTIMIZE(∆t ,Πt ,xt:t)
45: else // pose optimisation
46: MAPPRUNING(Mt ; p∗)
47: x̂t ← OPTIMIZE(Dt ,〈zt ,Σt〉,xt)

In this case, the belief of Ht
ti can be obtained by scoring the

average squared misalignment error ε between associations after
the last iteration of ICP. That is, if V t

ti =>, the belief simplifies
to

bel(Ht
ti = A) = p(Ht

ti = A |V t
ti =>)

, φ(ε;θ),
(9)

where φ : R≥0→ [0,1] is a monotonically decreasing function

with shape parameters θ and such that φ(0) = 1. The first
equality in Eq. 9 holds since Ht

ti is independent from V 1:t−1
ti

whenever ICP can estimate a relative measurement at time t.
On the contrary, if V t

ti =⊥, the variable Ht
ti cannot be observed

directly. However, applying Bayes rule as in [23], the following
filter equation holds:

bel(Ht
ti) = η p(V t

ti =⊥| H
t
ti) ∑

Ht−1
ti

p(Ht
ti | H

t−1
ti )bel(Ht−1

ti ), (10)

where the summation is intended to be over the binary values
assumed by Ht−1

ti . Setting pt
ti(X|Y), p(Ht

ti = X |Ht−1
ti = Y) for

X,Y ∈ {A,O}, under the assumption that a node cannot return
actual after becoming old, that is pt

ti(A | O) = 0, we can express
Eq. 10 in terms of odds as the following non-homogeneous
recursive update:

ot
ti =

γti

pA|A
ti

ot−1
ti +odd

(
pt

ti(O|A)
)

=
γti

1− pt
ti(O|A)

ot−1
ti +odd

(
pt

ti(O|A)
)
,

(11)

with γti ,
p(V t

ti
=⊥|Ht

ti
=O)

p(V t
ti
=⊥|Ht

ti
=A)

and with ot
ti , odd

(
bel(Ht

ti = O)
)

and

odd(p), (1− p)−1 p. Accordingly, the evolution of the belief
of a node only depends on prior probabilities pt

ti(O|A) of nodes
to become outdated and the ratio γti of the probabilities of scan-
matching failures given the actuality of nodes.

Since we assume that a node can only degrade to an old node,
as discussed in [28], we can use the estimated belief bel(Ht

ti) to
further prune the map Mt by removing nodes that are consid-
ered outdated, that is, whenever the belief bel(Ht

ti = A) drops
below a tolerance value. Although this might sometimes result
in discarding some nodes that are falsely considered outdated, it
does not adversely affect the localization system since the map
is newly enriched with the most recent measurements. Note that
preserving the connectivity of the graph is crucial to remove
the gauge freedom during the full-trajectory optimization when
the robot accesses areas in which priors measurements cannot
be obtained. In order to keep the pose graph connected at any
time, we selectively avoid to remove the nodes that would result
in disconnecting the graph, so called articulation points, as de-
scribed in Algorithm 1. Checking whether a trajectory pose is
an articulation point for the map Mt can be done efficiently with
linear complexity O(#∆t + #xt:t) [46], where xt is the earliest
node added to the map, that is, with a negligible runtime over-
head. Note that even though articulations points are preserved,
they are not used for loop closing once they are considered to
be outdated. This pruning method bounds the size of the map
and the amount of relative measurements zt,τ that need to be
computed at every update step, thus limiting the computational
and memory requirements of the system. The loop closure can-
didates resulting after map pruning are then used in the in the
localization update (see Algorithm 2).

In order to incorporate the information of bel(Ht
ti) into the

estimations of Eq. 2 and Eq. 8, we employ Dynamic Covariance
Scaling (DCS) [47]. DCS models the presence of unreliable
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relative measurements by means of a specific kernel κdcs. Essen-
tially, DCS translates the Switchable Constraints method (SC)
[48] into the robust kernel-based optimization framework. In
SC the error terms χ(xti ,xt j ;zti,t j) are weighed by coefficients
sti,t j ∈ [0,1] that toggle the related constraints on or off. The best
values ŝti,t j together with the optimal trajectory x̂0:t are obtained
by optimizing the resulting joint error function

hsc(s,x0:t), ∑
i, j

s2
ti,t j

χ
2(xti ,xt j ;zti,t j)+∑

i, j
ωti,t j(1− sti,t j)

2

+∑
k

κp
(
χ(xtk ;ztk)

)
,

(12)

where the switching priors ωti,t j ≥ 0 are weights that can be
interpreted as a prior confidence that the constraints zti,t j are
not outliers. As shown in [47], the error function in Eq. 12 is
equivalent to

hdcs(x0:t), ∑
i, j

κdcs
(
χ(xti ,xt j ;zti,t j)

)
+∑

k
κp
(
χ(xtk ;ztk)

)
,

(13)
where the DCS kernel is defined as κdcs(χ;ω), σ(ω)2χ2, with
the adaptive scaling factor σ(ω) , min{1,(ω + χ2)−1ω} for
the switching prior ω .

We leverage the estimated beliefs of nodes to be up-to-date
by setting ωt,t j , bel(Ht

t j
= A) as parameters for the DCS kernel

κr , κdcs in Eq. 2 and Eq. 8. This is correct if loop closure
outliers are only caused by the presence of outdated nodes. It is
reasonable to assume this for the proposed system as it substan-
tially reduces other sources for wrong data association in loop
closing

• by localizing on a floor plan that prevents the robot to
drift even if no relative measurements are available, thus
reducing the need of a large search range for loop closure
candidates,

• by filtering the candidates using the topological check and
further comparing the related LiDAR measurements as
described in Section 4.2.

5. Experimental Evaluation

We tested our system in several real-world scenarios in order
to assess its robustness, accuracy as well as the runtime and
memory requirements. We compared our method with MCL
by using CAD drawings as binary occupancy grid-maps. All
data was collected by teleoperating a Pioneer 3-DX® differen-
tial drive robot and a KUKA omniRob® omnidirectional drive
robot, both equipped with a 30 m range SICK S300 Profes-
sional® laser rangefinder on board with 270° of field-of-view
and 541 beams. All computations have been performed on
an 8-core 4.00 GHz Intel® Core™ i7-4790K CPU. In all ex-
periments, we drove the Pioneer 3-DX® with constant linear
and angular velocity of approximately 0.5 m/s and 0.6 rad/s,
while the KUKA omniRob® was commanded at approximately

10m

5m

6m

2m 2m

Figure 3: The CAD drawings used in the experiments with scales. From
top to bottom: Building078 (Fr003, Fr078), Building079 (Fr079), Building080
(Fr080), Fr001 (bottom-left) and Fr002 (bottom-right).

1.0 m/s and 1.0 rad/s. A summary of the experimental settings
as well as the quantitative analysis are reported in Table 2.

The implementation of our system relies on the g2o frame-
work [49] for the scan-based map implementation as well as the
optimization in Eq. 3, Eq. 8, and Eq. 4, which are all solved
via Levenberg-Marquardt method. We use the point-to-line
ICP implementation provided by the C(anonical) Scan Matcher
[50, 51] to compute the relative measurements 〈zti,t j ,Σti,t j〉 as
well as the misalignment error ε in Eq. 9. For all experiments
we used a common set of parameters that were manually se-
lected. In particular, referring to Algorithm 2, we set d = 0.75m,
α = 0.5rad, ρ = 2m, h = 5, Nloc = 5, λ = 0.1, p∗ = 50%,
and pO|A = 15%. For the likelihood estimation in Eq. 9, we
used φ(ε;θ) , N (max{ε,µ∗}; µ∗,σ∗), where N (x; µ∗,σ∗)
is a Gaussian probability density function and µ∗ ≈ 20mm is the
95th percentile of the empirical distribution function of the aver-
age misalignment errors (εk)k measured in a separate dataset of
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Fr078-day-1 Fr078-day-2

Fr078-day-3 Fr078-day-4

Figure 4: In the top row the configuration of Fr078-day-4. In the third and forth rows, the scan-based map built online for dataset Fr078 at the end of each day.
Different days are reported from top-left (day-1) to bottom right (day-4). The gray/red scale encodes the ratio between older and newly added scans: in red only
LiDAR scans obtained during the current day, in light gray only the scans inherited from previous days. Observe that in day-2 a new room was explored (top-right part
of the CAD drawing) and the navigation covered all the accessible areas (same as in day-1). The unchanged areas are correctly detected. Conversely, In day-3 and
day-4 only the wide hall was used for the navigation. Note the car have slightly moved. In all cases, the pose graphs have been correctly updated.

a static environment. The standard deviation term σ∗ = 100mm
has been chosen to be conservative. For all experiments, the
CAD images were exported with a resolution of 10 mm/px and
we computed the normal fields using a 3×3 Scharr convolution
[52]. To compute the trajectory prior we used Huber kernels,
δiter =

15mm√
iter

, η = 0.05 and ν = 0.05.

5.1. Datasets

In order to evaluate our system we recorded six datasets with
the aim of reproducing the circumstances and challenges that
occur during a continuous long-term operation. Each dataset is
composed of multiple chunks (days) that have been recorded
during different days. The scenarios were subject to changes
ranging from minimal displacements of objects to complete
rearrangements, while within each day no substantial changes
occurred. The robot was provided with an initial pose estimate
for each day, which did generally not coincide with the final
pose of the previous day. However, at the initial location it was
always possible to register the current scan against the latest
scan-based map built during the previous day. This poses no

loss of generality to the assumptions described in Section 3. The
floor plans used in the experiments are reported in Figure 3. The
datasets are grouped as follows:

• Ground-truth datasets: Three datasets (Fr001, Fr002, and
Fr003) composed of multiple days recorded in the robot hall
of the University of Freiburg (Building078). For each day,
the scenario was set up by placing and rearranging panels
and objects. During teleoperation we tracked the ground-
truth pose of the robot using an external motion capture
system with ten Raptor-E cameras. Fr001 and Fr002 were
obtained by concatenating the chunks used for the accuracy
evaluation presented in [4]. In order to obtain floor plans
for these two datasets, we put reflective markers on the
panels and measured their positions with the same motion
capture system. To avoid biases, the cluttered scenario was
in one case prepended to the uncluttered one and appended
in the other case. Fr003 uses the floor plan of the building.

• Long-term datasets: Three long datasets (Fr078, Fr079,
and Fr080) recorded in three different buildings of the Uni-
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Dataset Robot Ground-tr. Chunk Duration [min] Distance [m] Area [m2]
RMSE [mm | °] Runtime [ms]

Ours MCL Ours MCL

Fr001 Pioneer 3-DX® Mocap day-1*
day-2*

10
11

129
142 50 15

23
0.62
1.87

25
31

1.64
2.61

31±8
35±12

23±6
24±5

Fr002 Pioneer 3-DX® Mocap day-1*
day-2*

10
11

159
166 50 52

26
3.43
0.82

55
27

3.73
1.53

30±10
38±11

28±9
28±8

Fr003 KUKA omniRob® Mocap

day-1
day-2
day-3
day-4

10
10
10
11

294
365
388
365

60

52
48
51
65

0.96
1.17
1.31
0.98

310
275
285
698

2.28
3.20
4.46
10.77

15±8
21±11
20±13
21±8

46±6
46±6
46±6
46±6

Fr078 Pioneer 3-DX® Manual

day-1
day-2
day-3
day-4

52
65
32
22

1501
1687
902
567

1900

209
163
166
127

1.22
1.16
1.20
1.44

562
502
693
521

1.55
2.09
2.75
3.25

29±15
50±18
43±16
54±21

54±18
55±18
56±14
50±14

Fr079 Pioneer 3-DX® Manual day-1* 34 804 570 95 1.34 113 1.41 24±14 10±2

Fr080 Pioneer 3-DX® Manual day-1*
day-2

60
59

1405
1473 724 87

63
1.38
1.43

98
65

1.23
1.57

37±26
53±30

8±2
8±2

Table 2: A summary of the experimental settings and results of the quantitative evaluation. Errors are reported as linear and angular deviation from the ground-truth.
MCL reports the best results with respect of the runs as well as the sensor model as discussed in Section 5.5. The days marked with an asterisk are the dataset used for
the evaluation proposed in [4].

versity of Freiburg (Building078, Building079, and Build-
ing080). Since the official CAD drawings present metrical
inaccuracies, we could not consistently compare the poses
estimated by our localization system with any ground-truth.
Consequently, we mainly used these datasets to assess the
long-term performance of our system in terms of compu-
tational and memory efficiency as well as its qualitative
robustness. Nonetheless, in order to provide some quantita-
tive analysis of the accuracy, we estimated an approximate
ground-truth trajectory as follows:

1. We used a graph-based SLAM system to obtain an
accurate trajectory and map.

2. We manually overlapped this SLAM map with
the CAD drawing and horizontally/vertically
stretched/compressed the map using constant scaling
factors to compensate for the inconsistencies. More
precisely, given a point m ∈ R2 on the SLAM map
(e.g. the translation components of a trajectory pose
or a LiDAR endpoint), we fit the following linear
model[

m′x
m′y

]
,

[
px
py

]
+

[
sx 0
0 sy

][
(tm)x− px
(tm)y− py

]
, (14)

where t ∈ SE(2) is the transformation that aligns the
SLAM map to the CAD drawing, sx,sy > 0 are cor-
rection scales, and px, py are fixed pivots representing
the coordinates of some reference landmarks on the
CAD floor plan that can be clearly matched to the
SLAM map, such as the end of a corridor or a clearly
distinguishable wall.

3. We transformed the SLAM trajectory to be consistent
with the CAD drawing by applying the same scaling
transformation. The resulting trajectory is considered
the ground-truth trajectory on the floor plan.

We linearly interpolated the ground-truth poses to obtain
a continuous ground-truth trajectory. In order to reduce

the error introduced by interpolation, the SLAM trajec-
tory was computed updating the SLAM system with high
frequency, namely whenever relative cumulative motion
exceeded 100 mm or 10°. Only the CAD drawing for Build-
ing080 is metrically accurate (sx,sy ≈ 1), while the SLAM
maps of Building078 and Building079 required a compres-
sion of 1.7% (sx = 0.983) and 2.3% (sx = 0.977) of its
longitudinal dimension respectively, which corresponds
to a mismatch of 825 mm and 834 mm. In all cases the
transversal inconsistencies are negligible (sy ≈ 1±10−5).

In accordance with the discussion in Section 3, none of the
datasets contain highly dynamic objects except for few peo-
ple occasionally walking within the field of view of the sensor.
However, all algorithms used in this work are robust to a lim-
ited amount of outliers and spurious readings. Thus, the made
assumptions are not violated since the effect of people walking
around the robot is negligible. This also applies to MCL [24, 36],
which we use as benchmark algorithm.

5.2. Robustness

Even in challenging scenarios, where the environment repre-
sented in the floor plan is hardly distinguishable from occluding
objects, such as large furniture covering a wall, the proposed
system was able to cope with the inconsistencies caused by in-
accurate prior measurements. This is achieved by leveraging
the relative constraints to build a globally consistent map that
resolves ambiguities in data associations during scan-to-floor
plan registration and, consequently, improves the trajectory prior
estimation over time. In certain situations observed in Fr078 and
Fr079, the robot failed to properly register the LiDAR readings
against walls almost fully occluded by cupboards. As the robot
revisited these areas, the correct alignment was recovered.

Substantial changes in the environment pose another chal-
lenge as wrong data associations cause inaccurate loop closure
measurements. Our system is not substantially affected as we
explicitly handle this situation. In Fr080 the reconfiguration
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Figure 5: The maps at the end of Fr078-day-4 with the system proposed in [4],
that is, without pose graph pruning and adapting the kernel parameters based on
bel(Ht

ti ). The reconfiguration of the environment results in accumulating wrong
relative constraints that eventually produce severe failures of the system.

consists of displacement of furniture and introduction of clutter
while the visibility of walls is mainly preserved. Even though
artificially created, Fr001, Fr002 and Fr003 reproduce a similar
scenario. In these datasets, the robot remained robustly local-
ized and no qualitative effects were visible during operation. In
Fr078, areas are totally rearranged and new configurations do
not maintain any similarity. The system successfully detected
the changes and remapped the areas to reliably localize the robot
(see Figure 4). Figure 5 shows the map for Fr078-day-4 obtained
by the localization system we proposed in [4], which assumes
a static environment. The inconsistency of the maps is caused
by incorrect loop closure measurements obtained by registering
LiDAR scans recorded in different environment configurations.
This shows that loop closing using scan-matching is not always
feasible, which is consistent with the assumptions in Section 3.
In contrast to [4], the map obtained by the proposed system
remains globally consistent over time as can be seen in Figure 4.
The robustness of the proposed method is also demonstrated
in Fr080-day-2, where our method provides accurate pose esti-
mates while [4] suffers from major failures caused by incorrect
scan-matching due to significant changes. The system presented
in [4] delivered a linear RMSE of 171 mm compared to 63 mm
(see Table 2) and a maximum linear error of 1868 mm compared
to 461 mm of the proposed system.

5.3. Accuracy
According to the results of the experiments reported in Ta-

ble 2, the system was consistently able to provide accurate pose
estimates. The average RMSE over all ground-truth datasets
is (41±18)mm in position and (1.39±0.90)° in orientation.
Consistently with the results reported in [4], in both Fr001 and
Fr002, the localization accuracy was higher in the uncluttered
scenarios due to the presence of objects occluding the panels
represented by the floor plan. Such circumstances lead to wrong
data associations during registration against the floor plan since
parts of the objects are hardly distinguishable from the panels.
Furthermore, our system achieves a performance comparable
to [4], namely 15mm|0.62° vs. 12mm|0.52° in Fr001-day-1
and 52mm|3.43° vs. 42mm|2.90° in Fr002-day-1, which shows
that the proposed generalization to changing environments does

not substantially affect its accuracy in static environments. In
Fr003, the accuracy slightly dropped with respect to Fr001 and
Fr002. We attribute this to three major reasons that make Fr003
a more challenging dataset. First, minor or even no parts of the
floor plan are visible during navigation. Second, the environ-
ment is extensively rearranged between different days. Third,
the sensor on board the robot moves at a significantly higher
velocity (higher angular speed, larger distance from the center
of rotation).

Table 2 reports substantially higher localization errors for
the long-term datasets compared to the ground-truth datasets,
except for Fr080. As discussed in Section 5.1, only the CAD
drawing of Building080 is metrically accurate, thus, it allows
results that are comparable to those of the ground-truth datasets.
Conversely, in Fr078 and Fr079, the metrical inconsistency of
the floor plans with the real-world led to errors in estimating
the trajectory prior, which in turn caused the lower accuracy.
Registering a scan against an inconsistent floor plan can produce
inaccurate priors, as a proper rigid transformation may not be
sufficient to achieve a consistent alignment even if perfect data
associations are given. The average RMSE over all long-term
datasets is (130±52)mm and (1.31±0.11)° in position and
orientation respectively.

5.4. Runtime and Memory Requirements

The experiments reported in Figure 6 show that the system has
a bounded runtime, in particular there is no substantial increase
even over longer periods of time. For a localization update,
our system required an average of (26±12)ms on the ground-
truth datasets and (41±12)ms on the long-term datasets. The
highest peak of approximately 157 ms occurred during Fr080-
day-2. Observe that the average runtime is always lower for the
first days since the full pose graph optimization is computation-
ally more expensive on the following days as the map contains
substantially more nodes on average. This effect is visible in
Figure 6. In order to reduce the dependence of the computational
efficiency on the size of the map, in the experiments the full
trajectory optimization in Eq. 1 is restricted to a local submap ,
which we selected as the closed k-th neighborhood of the node
xt in 〈Mt ,∆t〉 (k = 20) . In all experiments, the system ran on
average in real-time with respect to the frequency of the sensor
on-board the robot (12Hz≈ 83ms).

As expected, the system runtime is highly correlated to the
number of trajectory poses, which defines the memory require-
ments of the system. As clearly shown in Figure 7, the amount
of poses is bounded by the mapping method described in Sec-
tion 4.2, in particular compared to a standard system without
pose graph sparsification. The number of poses remained ap-
proximately stationary after sufficient exploration. In Fr079
new areas were discovered throughout the day. In general,
given a dataset, the number of nodes mainly depends on the
perception range ρ used for loop closures and the minimum
number of loop closures required to run a local optimization
Nloc (see Algorithm 2). The choice of these parameters results
in a trade-off between accuracy (small ρ and large Nloc) and
computational/memory requirements (large ρ and small Nloc).
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Figure 6: Runtime of the localization method. In gray the system runtime, in red the moving average over a 5 min and 10 min window for the ground-truth and
long-term datasets respectively. In blue the available time between two consecutive localization updates. The runtime remains bounded over time.
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Figure 7: Memory requirements of the localization method. The number of trajectory poses using the proposed mapping and pruning methods (in red) are compared
to the number of trajectory poses obtained without pose graph sparsification (in gray). The size of the pose graph remains approximately stationary over time.
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5.5. Comparison with Monte Carlo Localization
We compare our method against two different implementa-

tions of MCL that are robust to unmapped obstacles and low
dynamics. For our tests we used a beam-based model (MCL-
BBM) [36] and a likelihood field model with distance saturation
(MCL-SLF) [13] as measurement model p(St | xt). Applying
kernels on particle weighing increases localization robustness
against unmapped obstacles as they prevent particles from being
excessively downweighed by LiDAR readings obtained from ob-
stacles not represented in the map. To further improve the MCL
baseline, we corrected the odometry-based proposal distribu-
tion p(xt | ut ,xt−1) by incremental scan-matching. We executed
multiple localization runs for every dataset using both sensor
models. Table 2 reports the results with the highest linear accu-
racy without specifying which model performed better as it is
irrelevant in the scope of this evaluation. Henceforth MCL will
denote the better performing model. Since it was not possible
to find a common parameter set that achieved consistent perfor-
mance in all datasets, we tuned the most significant parameters
for each dataset. We kept the number of particles constant and
used the same distance thresholds for filter updates as for our
method. We used 5000 particles for MCL-SLF and 2500 parti-
cles for MCL-BBM due to its higher computational cost. We
chose a large number of particles to enable MCL to recover from
localization failures and to reduce the dependence of the exper-
imental results on the randomicity in the algorithm. We tuned
the saturation distance and the noise magnitude for MCL-SLF,
the mixing coefficients for MCL-BBM and the noise parameters
for the proposal distribution. MCL-BBM used sphere-tracing to
improve the runtime performance.

The experiments show that our method is comparable with
MCL whenever the floor plan is at least partially observable
during operation. Table 2 reports higher accuracy of the pro-
posed system for the ground-truth datasets Fr001 and Fr002,
however, the improvement is below the resolution of the floor
plan and only comparable performance can be claimed. This
is confirmed by the results on the long-term datasets Fr079
and Fr080, where clutter rarely covered significant parts of the
environment represented by the floor plans. In contrast, our
method significantly outperformed MCL on Fr003 since it con-
tains situations where the LiDAR measurements only capture
large structures and movable panels that are not represented by
the floor plan. This is a frequent situation in real-world scenar-
ios, for instance in industrial applications. Here, our method
achieved a substantial improvement in accuracy, namely an av-
erage of (338±197)mm and (4.07±3.88)°. An improvement
in accuracy is also confirmed by the results of Fr078. On this
dataset MCL-SLF performed substantially worse that MCL-
BBM, failing in 75 % of the days with a linear error reaching
up to more than 6m. Both required a dramatic reduction in the
noise terms of the sample distribution in order to prevent wrong
data associations, compromising the capability of the system to
promptly recover from inaccurate pose estimates. In Fr078 our
method outperformed MCL on average by (403±85)mm and
(1.15±0.70)°. Overall, the experiments show that the proposed
system has a similar runtime, is more robust, and is substantially
less sensitive to the choice of parameters compared to MCL.

6. Conclusions

In this work we presented a system that uses CAD floor plans
for robust and accurate long-term localization. The proposed
method employs a graph-based SLAM approach that uses priors
from architectural drawings to generate a scan-based map that
is aligned with the floor plan and usable for relative localiza-
tion. This map improves the robustness of the system against
unmapped obstacles and significant occlusion caused by large
structures or clutter in the environment. In order to cope with
long-term applications and to handle changing environments,
we equipped our system with a robust front-end that estimates
the probability for each node in the pose graph to store a LiDAR
scan that is consistent with the scenario observable by the robot.
Together with an efficient online pose graph pruning technique
that bounds the memory requirements of the system, this allows
the proposed method to run efficiently even over long periods.

The experimental evaluation shows that the proposed system
works robustly in many real-world scenarios. Moreover, its local-
ization accuracy is higher than state-of-the-art MCL algorithms
even when these use sensor models that are robust to unmapped
obstacles and clutter. In contrast to other approaches, the pro-
posed method is capable of maintaining a consistent scan-map-
based representation of the environment even when substantial
reconfigurations prevent consistent loop closure measurements
to be obtained using standard scan-matching techniques. Finally,
the memory consumption of the system remains bounded and
real-time performance is achieved on average with commonly
used sensors and platforms, which proves the usability of the
system for long-term operation.
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