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Abstract— Indoor localization is one of the crucial enablers
for deployment of service robots. Although several successful
techniques for indoor localization have been proposed, the
majority of them relies on maps generated from data gathered
with the same sensor modality used for localization. Typically,
tedious labor by experts is needed to acquire this data, thus
limiting the readiness of the system as well as its ease of
installation for inexperienced operators. In this paper, we
propose a memory and computationally efficient monocular
camera-based localization system that allows a robot to estimate
its pose given an architectural floor plan. Our method employs
a convolutional neural network to predict room layout edges
from a single camera image and estimates the robot pose using a
particle filter that matches the extracted edges to the given floor
plan. We evaluate our localization system using multiple real-
world experiments and demonstrate that it has the robustness
and accuracy required for reliable indoor navigation.

I. INTRODUCTION

Inexpensive sensors and ease of setup are widely con-
sidered as key enablers for a broad diffusion of consumer-
grade robotic applications. However, such requirements pose
technological challenges to manufacturers and developers
due to the limited quantity of sensory data and low quality
of prior information available to the robot. Particularly
in the context of robot navigation, most of the existing
localization solutions require highly accurate maps that are
built upfront with the same sensor modality used for localizing
the robot. Typically, these maps are generated by collecting
sensory measurements via teleoperation and fusing them
into a coherent representation of the environment using
Simultaneous Localization and Mapping (SLAM) algorithms.
Despite the advances in the field, maps generated by SLAM
systems can be affected by global inconsistencies when
perceptual aliasing or feature scarcity reduce the effectiveness
of loop closing approaches. In general, substantial expertise
is required to assess whether the quality of the generated
maps is sufficient for the planned deployment. For large-
scale environments such as office buildings, teleoperating the
platform through the entire navigable area can be a tedious
and time-consuming operation. In order to address these
issues, previous works [1], [2], [3] have proposed to leverage
floor plans obtained from architectural drawings for accurate
localization as they provide a representation of the stable
structures in the environment. Furthermore, floor plans are
often available from the blueprints used for the construction
of buildings. Alternatively, floor plans can also be created
with moderate effort using drawing utilities.
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Fig. 1. Our approach uses the proposed network to extract the room layout
edges from an image (top) and compares it to a layout generated from a floor
plan (bottom) to localize the robot. Our network is able to accurately predict
layout edges even under severe occlusion, enabling robust robot localization.

Recently, computationally efficient approaches based on
Convolutional Neural Networks (CNNs) have been proposed
for extracting structural information from monocular images.
This includes methods to extract room layout edges from
images [4], [5]. However, these networks occasionally predict
discontinuous layout edges, even more in the presence of
significant clutter. In addition, room layouts can be inferred
from floor plans under the assumption that buildings consist
only of orthogonal walls, also called Manhattan world
assumption [6], and have constant ceiling height.

Inspired by these factors, we propose a localization system
that uses a monocular camera and wheel odometry to estimate
the robot pose using a given floor plan. We propose a state-of-
the-art CNN architecture to predict room layout edges from
a monocular image and apply a Monte Carlo Localization
(MCL) method that compares these edges with those inferred
from a given floor plan. We evaluate our proposed method
in real-world scenarios, showing its robustness and accuracy
in challenging environments.

II. RELATED WORK

Several methods have been proposed to localize robots
or, more generally, devices, in 2D maps using RGB and
range/depth measurements. For example, the approaches
proposed by Wolf et al. [7] and Bennewitz et al. [8] use



MCL and employ a database of images recorded in an indoor
environment. Mendez et al. [9] proposed a sensor model for
MCL that leverages the semantics of the environment, namely
doors, walls and windows, obtained by processing RGB
images with a CNN. They enhance the standard likelihood
fields for the occupied space on the map with suitable
likelihood fields for doors and windows. Although such
a sensor model can be also adapted to handle range-less
measurements, it shows increased accuracy with respect to
standard MCL only when depth measurements are used.
Winteralter et al. [2] proposed a sensor model for MCL
to localize a Tango tablet in a floor plan. They extrude a full
3D model from the floor plan and use depth measurements
to estimate the current pose. More recently, Lin et al. [10]
proposed a joint estimation of the camera pose and the room
layout using prior information from floor plans. Given a set
of partial views, they combine a floor plan extraction method
with a pose refinement process to estimate the camera poses.

The approaches described above rely on depth information
or previously acquired poses. Other methods only use monoc-
ular cameras to localize. Zhang and Kogadoga [11] proposed
a robot localization system based on wheel odometry and
monocular images. The system extracts edges from the image
frame and converts the floor edges into 2D world coordinates
using the extrinsic parameters of the camera. Such points are
then used as virtual endpoints for vanilla MCL. A similar
approach by Unicomb et al. [12] was proposed recently to
localize a camera in a 2D map. The authors employ a CNN
for floor segmentation from which they identify which lines
in an edge image belong to the floor plan. The detected edges
are reprojected into the 3D world using the current estimate
of the floor plane. They are then used as virtual measurement
in an extended Kalman filter. Hile and Boriello [13] proposed
a system to localize a mobile phone camera with respect to
a floor plan by triangulating suitable features. They employ
RANSAC to estimate the relative 3D pose together with the
feature correspondences. Although the system achieves high
accuracy, the features are limited to corner points at the base
of door frames and wall intersections. Therefore, the system
is not usable outside corridors, due to occlusions and the
limited camera field-of-view. Chu et al. [14] use MCL to
estimate the 3D pose of a camera in an extruded floor plan.
They proposed a sensor model that incorporates information
about the observed free-space, doors as well as structural
lines of the environment by leveraging a 3D metrical point
cloud obtained from monocular visual SLAM.

The method proposed in this work differs from the ap-
proaches above. Instead of locally reconstructing the 3D world
from camera observations and matching this reconstruction
to an extruded model of the floor plan, we project the lines
extracted from the floor plan into the camera frame. Our
approach shares similarity with the work of Chu and Chen
[15], Wang et al. [16] and Unicomb et al. [12]. In the first
two works the authors localize a camera using a 3D model
extracted from a floor plan. In order to score localization
hypotheses, both systems use a distance-transform-based cost
function that encodes the misalignment on the image plane

between the structural lines extracted from the 3D model and
the edge image obtained by edge detection. In contrast to these
approaches, we use a CNN to reliably predict room layout
edges in order to better cope with occlusion due to clutter and
furniture. Unicomb et al. [12] also employ a CNN but they
only learn to extract floor edges which is a limitation in the
case of clutter or occlusions. Furthermore, using a Kalman
Filter approach to project the measurement into the floor
plan of the map can make the system less robust to wrong
initialization as the accuracy of the virtual measurement is
dependent on the current camera pose estimation. Finally, in
contrast to [14] and [16], we model the layout edges of the
floor plan from an image and wall corners without any prior
3D model.

Most of the CNN-based approaches for estimating room
layout edges employ a encoder-decoder topology with a
standard classification network for the encoder and utilize a
series of deconvolutional layers for upsampling the feature
maps [4], [5], [17], [12]. Ren et al. [17] proposed an
architecture that employs the VGG-16 network for the encoder
followed by fully-connected layers and deconvolutional layers
that upsample to one quarter of the input resolution. The use
of fully-connected layers enables their network to have a large
receptive field but at the cost of loosing the feature localization
ability. Lin et al. [4] introduced a similar approach with
the stronger ResNet-101 backbone and model the network
in a fully-convolutional manner. Most recently, Zhang et al.
[5] proposed an architecture based on the VGG-16 backbone
for simultaneously estimating the layout edges as well as
predicting the semantic segmentation of the walls, floor
and ceiling. In contrast to these networks, we employ a
more parameter efficient encoder with dilated convolutions
and incorporate the novel eASPP [18] for capturing large
context, complemented with an iterative training strategy that
enables our network to predict thin layout edges without
discontinuities.

III. PROPOSED METHOD

In order to localize the robot in floor plans, we employ
MCL [19] with adaptive sampling. MCL applies Bayesian
recursive update

bel(xt)

∝ p(zt | xt)

∫
X

p(xt | xt−1,ut)bel(xt−1)dxt−1 (1)

to a set of weighed hypothesis (particles) for the posterior
distribution bel(xt) , p(xt | z1:t,u1:t) of the robot pose
xt ∈ SE(2), given a sequence of motion priors u1:t and
sensor measurements z1:t. Whereas a natural choice for the
proposal distribution p(xt | xt−1,ut) is to apply the odometry
motion model with Gaussian noise, a suitable measurement
model p(zt | xt) based on the floor plan layout edges has to
be used, which we outline in the reminder of this section. To
resample the particle set, we use KLD-sampling, which is a
well known sampling technique that adapts the number of
particles according to the Kullback-Leibler divergence of the



Fig. 2. Topology of our proposed architecture for extracting room layout edges that builds upon our AdapNet++ model [18]. The network takes colorized
vanishing lines overlaid on the monocular image as input and reliably predicts the room layout edges.

estimated belief and is an approximation of the true posterior
distribution [20].

Note that in this work, we are only interested in the pose
tracking problem, that is, at every time t > 0 we estimate
bel(xt | x0) given an initial coarse estimate x0 ∈ SE(2) of
the starting location of the robot. For real-world applications,
solving the global localization problem often not required
as users can usually provide an initial guess for the starting
pose of the robot.

A. Room Layout Edge Extraction Network

Our approach to estimate the room layout edges consists
of two steps. In the first step, we estimate the vanishing
lines in a monocular image of the scene using the approach
of Hedau et al. [21]. Briefly, we detect vanishing lines
by extracting line segments and estimating three mutually
orthogonal vanishing directions. Subsequently, we color the
detected line segments according to the vanishing point using
a voting scheme. In the second step, we overlay the estimated
colorized vanishing lines on the monocular image which is
then input to our network for feature learning and prediction.
Utilizing the vanishing lines enables us to encode prior
knowledge about the orientation of the surfaces in the scene
which accelerates the training of the network and improves
the performance in highly cluttered scenes.

The topology of our proposed architecture for learning to
predict room layout edges is shown in Figure 2. We build
upon our recently introduced AdapNet++ architecture [18]
which has four main components. It consists of an encoder
based on the full pre-activation ResNet-50 architecture [22] in
which the standard residual units are replaced with multiscale
residual units [23] encompassing parallel atrous convolutions
with different dilation rates. We add dropout on the last
two residual units to prevent overfitting. The output of the
encoder, which is 16-times downsampled with respect to the
input image, is then fed into the eASPP module. The eASPP
module has cascaded and parallel atrous convolutions to
capture long-range contexts with very large effective receptive
fields. Having large effective receptive fields is critical for
estimating room layout edges as indoor scenes are often

significantly cluttered and the network needs to be able to
capture large contexts beyond the occluded regions. In order to
illustrate this aspect, we compare the empirical receptive field
at the end of the eASPP of our network and the receptive field
at the end of the full pre-activation ResNet-50 architecture
in Figure 3. As we observe the receptive field for the pixel
annotated by the red dot, we see that the receptive field at
the end of the ResNet-50 architecture is not able to capture
context beyond the clutter that causes occlusion, whereas
the larger receptive field of our network allows to accurately
predict the room layout edges even in the presence of severe
occlusion.

In order to upsample the output of the eASPP back to
the input image resolution, we employ a decoder with three
upsampling stages. Each stage employs a deconvolution layer
that upsamples the feature maps by a factor of two, followed
by two 3×3 convolution layers. We also fuse high-resolution
encoder features into the decoder to obtain smoother edges.
We use the parameter configuration for all the layers in our
network as defined in the AdapNet++ architecture [18], except
for the last deconvolution layer in which we set the number
of filter channels to one and add a sigmoid activation function
to yield the room layout edges, which is thresholded to yield
a binary edge mask. We detail the training protocol that we
employ in Section IV-B.

B. Floor Plan Layout Edge Extraction

As in our previous work [24], we assume the floor plan to
be encoded as binary image I ∈ {O, F}H×W with resolution
σ, a reference frame F ∈ SE(2) and a set of corner points
C ⊂ R2 associated to some corner pixels and expressed
with respect to that reference frame. Corners are extracted
by preprocessing the map using standard corner detection
algorithms and clustering the resulting corners according to
the relative distances in order to remove duplicates. We embed
the above structure in the 3D world and assume the above
entities to be defined in 3D while using the same notation.

Similarly to Lin et al. [10], given a pose x ∈ SE(3) on
the floor plan and the extrinsic calibration parameters for the
optical frame of the camera rTc ∈ SE(3), we can estimate
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Fig. 3. Comparison of the receptive field at the end of the encoder for
the pixel annotated by the red dot (left). Our network has a much larger
effective receptive field than the standard ResNet-50 model, which enables
us to capture large context. This results in a more exhaustive description of
the room layout edges (right).

the orthogonal projection of the camera’s frustum onto the
floor plan plane (see Figure 1). Observe that such projection
defines two half-lines `− , 〈[x ⊕ rTc]xy, θ−〉 and `+ ,
〈[x⊕ rTc]xy, θ+〉, where [x⊕ rTc]xy ∈ R2 is the orthogonal
projection of the origin of the optical frame onto the floor
plan (origin of the half-lines), and θ± ∈ (−π, π] are the
ray directions with respect to the 2D reference frame F .
Such rays define an angular range [θ−, θ+] ⊂ (−π, π] that
approximates the planar field-of-view (FoV) of the camera.
Accordingly, we can approximate the layout room edges of
the visible portion of the floor plan with a discrete set of
points Ox ⊂ R3 estimated or extruded from the floor plan
image. More specifically, we construct Ox by inserting the
points obtained by ray-casting within the camera FoV as well
as their counterparts on the ceiling, obtained by elevating
the ray-casted points by the height of the building, which
we assume to be known upfront. Moreover, to complete the
visible layout edges, we add to Ox those corners in C whose
lines of sight from [x⊕ rTc]xy fall within the 2D FoV of the
camera together with their related ceiling points as well as
the set of intermediate points sampled along the connecting
vertical line (see Figure 4). The visibility of each corner point
can be inferred, again, by ray-casting along the direction of
each line of sight. Observe that, although ray-casting might
be computationally expensive due to a high resolution σ,
speed up can be achieved by ray-casting on floor plan images
with a lower resolution.

C. Measurement Model

Given an input image and the related layout edge mask z,
we define the observation model of each pose hypotheses as
follows: for any pose x ∈ SE(2) on the floor plan, we set

log p(z | x) = − 1

2|Ox|σ2
z

∑
o∈Ox

min {d(π(o), z), δ}2 (2)

where δ > 0 (in pixel) is a saturation term used to
avoid excessive down-weighing of particles whenever a
measurement cannot be explained by the floor plan model,
σz > 0 (in pixel) is a tolerance term that encodes the expected

Fig. 4. Example of layout Ox extracted from the floor plan (blue) from a
pose hypothesis x. The floor points are obtained via ray-casting, the ceiling
lines by projecting up the floor points and the wall edge is obtained from the
corner point. The floorplan (light blue) is overlayed for illustration purposes.
The measurement model compares Ox with the edge mask (red).

pixel noise in the layout edge mask z, π(o) is the perspective
camera transformation that projects 3D world points into the
image plane, and d(p, z) is the distance of pixel p to the
closest pixel in edge layout mask.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our proposed method, we
recorded three datasets in two buildings of the University of
Freiburg (building 078 and 080). We will henceforth refer
to them as Fr078-1 (113m long), Fr078-2 (179m long) and
Fr080 (108m long). Fr078-1 and Fr078-2 aim to emulate an
apartment-like structure while Fr080 was obtained obtained
in a standard office building. For all the experiments, we
used a Festo Robotino omnidirectional platform and the RGB
images obtained from a Microsoft Kinect V2 mounted on
board the robot. The robot moved with an average speed of
approximately 0.2m/s and 15 °/s and maximum of 0.5m/s
and 50 °/s. Since no ground-truth was available for these
experiments, we employed the localization system proposed
in [24] using an Hokuyo UTM-30LX laser rangefinder also
mounted on the robot to provide a reference trajectory for
the evaluation. Since the trajectories estimated by [24] are
highly accurate, we will henceforth consider them to be
the (approximate) ground-truth. For each dataset, we run
25 experiments to account for the randomness of MCL and
consider the estimated pose at each time to be the average
pose over the runs.

In addition, we benchmark the performance of our room
layout edge estimation network on the challenging LSUN
Room Layout Estimation dataset [25] consisting of 4,000
images for training, 394 images for validation and 1,000
images for testing. We employ augmentation strategies such
as horizontal flipping, cropping and color jittering to increase
the number of training samples. We report results in terms of
edge error, which can be computed as the Euclidean distance
between the estimated layout edges and the ground-truth edge
map, normalized by the number of pixel in each mask. In
order to facilitate comparison with previous approaches [5],
we also report the fixed contour threshold (ODS) and the
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Fig. 5. Accuracy of the localization system for Fr078-1 (left) and Fr080 (right). Top: the estimated mean trajectory (red) compared to the approximate
ground-truth (gray). The red shadowed area represents the translational standard deviation of each pose estimate. Middle and bottom: The linear and angular
RMSE (red) and the error produced by drifting odometry (black). The The red areas delimit the errors for the worst and best pose estimation.

per-image best threshold (OIS) [26] metrics.

A. Implementation

In all the experiments we used the same set of parameters.
To extract the room layout of the floor plans we removed
single pixel lines as well as close any doors gaps and narrow
passages by using an erosion/dilation and dilation/erosion
pass respectively on floor plans with resolution σ = 1 cm/px.
Similarly, the Harris corner detector implementation of
OpenCV was utilized to extract the corner pixels on the
floor plan image. In our implementation of MCL we set
σz = 10 px and δ = 25 px. To compute the predicted layout
Ox, we subsampled the 2D camera FoV with 150 rays and
approximated the vertical edges of the layout with 100 points.
Localization updates occurred whenever the motion prior from
wheel odometry reported a linear or angular relative motion
exceeding 25 cm or approximately 15° (0.25 rad) respectively
and used 1,500 and 5,000 as minimum/maximum number of
particles to approximate the robot belief.

B. Network Training

We used the TensorFlow deep learning library for the
network implementation and we trained our model on images
resized to a resolution of 320 × 320 pixels. The output of
our network has the same resolution as the input image. To
generate the ground-truth data for training, we first converted
the LSUN room layout ground-truth to a binary edge map
where the edge lines have a width of 6 pixels. We dilated
the edges with a 5 × 5 kernel for de number of iterations,
where e is the number of epochs for which we trained using
this dilation factor. We then applied Gaussian blur with a

kernel of 21× 21 pixels and σ = 6 for smoothing the edge
boundaries. We employed a four stage training procedure
and began training with the ground-truth edges dilated with
d6 = 5 and in subsequent stages reduced the amount of
edge dilation to d14 = 3, d20 = 1 and d26 = 0. Intuitively
this process can be described as starting the training with
thick layout edges and gradually thinning the edge thickness
as the training progresses. Employing this gradual thinning
approach improves convergence and enables the network to
predict precise thin edges, as opposed to training only with
a fixed edge width. Lin et al. [4] employ a similar training
strategy that adaptively changes the edge thickness according
to the gradient, however our training strategy resulted in a
better performance.

We used the He initialization [27] for all the layers of
our network and the cross-entropy loss function for training.
For optimization, we used Adam solver with β1 = 0.9,
β2 = 0.999 and ε = 10−10. Additionally, we suppressed
the gradients of non-edge pixels by multiplying them with a
factor of 0.2 in order to prevent the network from converging
to zero, which often occurs due to the imbalance between
edge and non-edge pixels. We trained our model for a total
of 66 epochs with an initial learning rate of λ0 = 10−4 and
a mini-batch size of 16, which takes about 18 hours on an
NVIDIA TITAN X GPU.

C. Evaluation of Layout Edge Estimation

In order to empirically evaluate the performance of our
room layout edge extraction network, we performed evalu-
ations on the LSUN benchmark in comparison to state-of-
the-art approaches [5], [4], [22]. The results are reported in



Input Image Lin et al. [4] Zhang et al. [5] Ours

Fig. 6. Qualitative room layout edge estimation results on the LSUN
validation set (first two rows) and on Fr080 (last two rows). Compared to
the other methods, our network reliably predicts continuous layout edges
even under substantial occlusion.

Table I. Our network achieved an edge error of 8.33 which
corresponds to an improvement of 2.91 over the previous
state-of-the-art. We also observe higher ODS as well as OIS
scores, thereby setting the new state-of-the-art on the LSUN
benchmark for room layout edge estimation. The improvement
achieved by our network can be attributed to its large effective
receptive field, which enables it to capture more global context.
Moreover, our iterative training strategy allows for estimation
of thin layout edges without significant discontinuities.

Qualitative comparisons of room layout edge estimation
are reported in Figure 6. The first two and last two rows
show prediction results on the LSUN validation set and Fr080
dataset respectively. Note that we only trained our network
on the LSUN training set. We can see that the previous
state-of-the-art networks are less effective in predicting the
layout edges in the presence of large objects in the scene
that cause significant occlusions, whereas our network is able
to leverage its large receptive field to more reliably capture
the layout edges. We can also observe that the prediction of
the other networks are more irregular and sometimes either
too thin, thus resulting in discontinuous layouts, or too thick,
reducing the effectiveness of the sensor model described
in Section III-C. In these scenarios our network is able to
accurately predict the layout edges without discontinuities
and generalize effectively to previously unseen environments.

D. Ablation Study of Layout Edge Estimation Network

We evaluated the performance of our network through the
different stages of the upsampling. Referring to Table II, the
M1 model upsamples the eASPP output to one quarter the

TABLE I
BENCHMARKING EDGE LAYOUT ESTIMATION ON THE LSUN DATASET.

Network Edge Error ODS OIS Parameters

ResNet50-FCN [22] 18.36 0.213 0.227 23.57 M
Lin et al. [4] 10.72 0.279 0.284 42.29 M
Zhang et al. [5] 11.24 0.257 0.263 138.24 M

Ours 8.33 0.310 0.316 30.19 M

TABLE II
LAYOUT EDGE ESTIMATION NETWORK CONFIGURATION.

Model Output Background Vanishing Edge
Resolution Weight Lines Error

M1 1/4 0.0 - 10.99
M2 1/4 0.2 - 10.61
M3 1/2 0.2 - 10.13
M4 Full 0.2 - 9.46
M5 Full 0.2 X 8.33

resolution of the input image and achieves an edge error of
10.99. In the subsequent M2 and M3 models, we suppress
the gradients of the non-edge pixels with a factor of 0.2
and upsample the eASPP output to half the resolution of the
input image, which reduces the edge error by 0.86. Finally,
in the M4 model, we upsample back to the full input image
resolution and in the M5 model we overlay the colorized
vanishing lines by adding these channels to the RGB image.
Our final M5 model achieves a reduction of 2.66 in the edge
error compared to base AdapNet++ model.

E. Localization Robustness and Accuracy

In all the experiments, the robot was initialized within
10 cm and 15° from the ground-truth pose. As shown in
Figure 5, the robot was always able to estimate its current
pose and non negligible errors were reported only in a
specific situation. As shown in Figure 5, in Fr078-1, the robot
failed temporarily to track its current pose while traversing a
doorway (scattered trajectory at the bottom of the map). The
error was due to the camera image capturing both the next
room (predominant view) and the current room (limited view).
This caused the network to only predict the layout edges for
largest room view, before having entered the next room. The
linear RMSE of the mean trajectory reached approximately
1m. Nonetheless, the robot was subsequently able to localize
itself with an accuracy similar to the average accuracy over the
entire experiment whenever new observations were collected.

Overall, the proposed method delivered an average linear
RMSE of (227± 137)mm and (245± 137)mm as well as
an average angular RMSE of (2.5± 2.5)° and (2.5± 2.3)°
in Fr078-1 and Fr078-2 respectively. Similar results were
recorded for Fr080, with an average linear and angular RMSE
of (223± 126)mm and (2.3± 2.0)° respectively.

F. Runtime

We used a 8-core 4.0 GHz Intel Core i7 CPU and a NVIDIA
GeForce 980M GPU in all experiments. On average, the
system required (30± 14)ms for the MCL update, while
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Fig. 7. Total runtime in milliseconds (blue line) for the network processing
and the localization update in Fr078-1 (top) and Fr080 (bottom). The gray
line represents the available runtime between two consecutive localization
updates. Each runtime is computed as average runtime over the runs.

the inference time for the proposed network was 39ms. In
addition, the Manhattan line extraction took (80± 116)ms.
The high peaks in Figure 7 are due to the Manhattan lines
extraction step, which runs on an external Matlab script and
therefore it can be further optimized. As shown in Figure 7,
our proposed approach runs in real-time on consumer grade
hardware.

V. CONCLUSIONS

In this work, we presented a robot localization system that
uses wheel odometry and images from a monocular camera
to estimate the pose of a robot in a floor plan. We utilize
a novel convolutional neural network tailored to predict the
room layout edges and employ Monte Carlo Localization
with a sensor model that scores the overlap of the predicted
layout edge mask and the expected layout edges generated
from a floor plan image. Experiments in complex real-
world environments demonstrate that our proposed system
is able to robustly estimate the pose of the robot even in
challenging conditions such as severe occlusion. In addition,
our network for room layout edge estimation achieves state-
of-the-art performance on the challenging LSUN benchmark
and generalize effectively to previously unseen environments
with complex room layouts.
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