
Perspectives on Deep Multimodel
Robot Learning

Wolfram Burgard, Abhinav Valada, Noha Radwan, Tayyab Naseer, Jingwei Zhang,
Johan Vertens, Oier Mees, Andreas Eitel and Gabriel Oliveira

Abstract In the last decade, deep learning has revolutionized various components
of the conventional robot autonomy stack including aspects of perception, naviga-
tion and manipulation. There have been numerous advances in perfecting individual
tasks such as scene understanding, visual localization, end-to-end navigation and
grasping, which has given us a critical understanding on how to create individual
architectures for a specific task. This now brings us to the question, as to whether
this disjoint learning of models for robotic tasks, effective in the real-world and
whether it is scalable? And more generally, is training task specific models on task
specific datasets beneficial to architecting robot intelligence as a whole? In this pa-
per, we argue that multimodel learning or joint multi-task learning is an effective
strategy for enabling robots to excel across multiple domains. We describe how
multimodel learning can facilitate generalization to unseen scenarios by utilizing
domain-specific cues from auxiliary tasks and discuss some of the current mecha-
nisms that can be employed to design multimodel frameworks for robot autonomy.

1 Introduction

Robots today have evolved from being able to perform only structured actions to
being able to act re-actively based on sensing their environment. Robot learning has
played a crucial role in enabling this capability. The classical paradigm involves a
pipeline containing modules for perception, world modelling, planning and control,
each of which are carefully engineered, incorporating handcrafted features and task-
specific structures. A typical modern robot control system is an ensemble of mod-
ules, which often contain learning based models, and that are designed to perform
dedicated tasks aimed at accomplishing a specific goal. In the last decade, Deep
Convolutional Neural Network (DCNN) architectures have achieved remarkable re-
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sults across several robotic problems. However, the focus has been on designing
individual networks for specific problems including perception, localization, nav-
igation and manipulation. In addition, several disjoint models have been used in
conjunction. This limits the overall learning ability of the robot as most models are
trained in a supervised fashion and independently, therefore they have no ability to
share cross-domain information using training signals from auxiliary tasks. Our vi-
sion is a unified multimodel deep learning framework that jointly learns multiple
robot tasks across multiple domains including perception, planning and control. We
propose a multimodel framework that incorporates soft parameter sharing thereby
enabling the network to decide what layers from auxiliary tasks to share and which
sub-models can benefit from representations learned by layers in other sub-models.
We believe that this will enable robots to learn tasks with limited amount of data by
leveraging transfer learning across sub-models and equipping it with the capability
to continuously learn from what it experiences and perceives in the real-world.

In the following sections, we first describe the classical pipeline that is com-
monly employed to enable robots to perform autonomous actions. We then give an
overview of deep learning approaches that have demonstrated substantial progress
in relevant basic modules for perception, localization and navigation. Finally we
discuss our perspectives on how to enable robots to more proficiency learn from the
world around them using multimodel frameworks.

2 Classical Paradigms

The classical definition of an agent is anything that can perceive its surroundings
and act upon it and in the context of robotics, autonomous agents inhabit a complex
dynamic environment. In order to achieve their predefined goals, they first need to
sense their surroundings before they can plan actions. Robots are often equipped
with multiple sensors that provide complementary information. Extracting infor-
mation from raw sensor data is in itself a challenging task which requires expert
knowledge of both the environment and characteristics of the data produced by the
sensor. Over time, several approaches have been developed for feature extraction,
some intricately handcrafted and recently even learned from sensor data. The ex-
tracted features are then used to infer information about the environment.

Complementary to the perception module, the robot also needs accumulated
knowledge about the world in which it is placed. Accordingly, a world module needs
to be carefully designed such that static persistent landmarks in the environment,
for example walls, poles and trees, are well represented. Furthermore, it defines the
possible set of actions for the agent along with the state transition function which
defines the state of the world after each action. Instead of providing the world model
to the agent, we let the system built its own model using information gathered from
the perception module. However, relying solely on the perception module to build
the model is a challenging task as the entire environment is not visible in one sensor
observation. Hence to build a complete model, the agent needs to explore the en-
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vironment over time and correct any inconsistencies occurring during observation.
For the agent to achieve its goal, it relies on the output of the perception module
along with the world model to formulate a plan. The planning module is responsible
to provide a plan that can be executed in the current state space and successfully
complete the required task. To this end, the planning module needs to not only for-
mulate the plan but also have the ability to recover from failure and replan in the
event of an unexpected situation. The control module is responsible for providing
the proper control commands to the actuators of the robot in a way that follows the
plan provided to perform a predefined action.

3 Emergence of Deep Models

In the last few years, convolutional neural networks has revolutionized several core
components that constitute an autonomous robotic system. They have brought about
a significant change in the traditional pipelines employed. We briefly discuss some
of these advances in the following sections.

Scene Understanding Scene understanding is an essential component of any
robotic system as robots need to first know what and where the elements of the scene
are before they can act on them. The advent of DCNNs have brought about several
state-of-the-art models for a variety of perception tasks including object recogni-
tion [3, 4], detection [4, 10, 14] and semantic segmentation [11, 21, 26]. However,
robotic perception models have different requisites than those in computer vision.
Robots are often equipped with multiple sensors such as cameras, lidars and radars
to perceive their surroundings. Therefore, deep architectures need to efficiently learn
a combined representation of the world utilizing these sensors. To this end, multi-
stream networks are often used to train each stream on specific modality and fuse
them towards the end of the network [3, 24]. Alternatively, architectures have also
been designed that fuse feature maps from modality specific streams at interme-
diate points in the network and converge to a single stream towards the end [8].
As sensor noise is a major hindrance in the real-world, noise augmentation strate-
gies can be employed, either before feeding data to the network [3] or while train-
ing [25]. One of the major challenges in real-world robot perception is the ability
of models to adapt to changes in appearance due to weather and seasons. In such
conditions, incorporating adaptive fusion strategies such as mixture of deep experts
has substantially improved the performance and robustness of models for seman-
tic segmentation [26] and pedestrian detection [14]. DCNNs have also been used
for specialized classification tasks such of terrains and with unconventional sensors
including microphones [25]. Advances such as new pooling strategies that learn
statistics of temporal features in the signal enable these approaches to outperform
classifiers learned on traditional audio features.

The introduction of fully convolutional neural networks [11] has brought about
several state-of-the-art architectures for various robotic applications from segment-
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ing roads [19] to human body parts [21]. Incorporating advances such as residual
learning and dilated convolutions to learn deep multi-scale features have further
pushed the boundaries of achievable performance while maintaining fast inference
times [26]. Often in robotics it is also necessary to estimate motion of objects in
order to plan future actions. Complementary tasks such as segmentation and mo-
tion estimation can be learned using a joint formulation in a unified deep framework
[27]. Such networks not only reduce the model complexity but also enable interac-
tive frame rates.

Localization and Odometry Robust place recognition and visual localization of
autonomous systems is of paramount importance for relevant robotic applications.
Visual localization largely depends on robust and repeatable feature descriptions
over large variety of environmental changes. The feature descriptions from deep net-
works have outperformed the traditional hand-crafted features in this domain due to
their ability to learn feature correspondences under different appearances. A model
designed for visual localization can also leverage vital information from a model
trained on a different task e. g. segmentation [18] or visual similarity. This aspect
of joint learning of different tasks enables us to learn a heterogeneous model where
subtasks benefit from each other’s data. Recently, deep architectures for metric lo-
calization have emerged that provide an efficient map representation in addition to
demonstrating considerable robustness in challenging perceptual conditions [9, 28].
In contrast to traditional methods, deep models provide a fixed map size and a con-
stant time complexity for camera-based metric localization.

Recently, end-to-end DCNN approaches that estimate visual odometry have also
been proposed [29, 15]. Most of these approaches employ a Siamese-type network
architecture that take two consecutive images as input and regress the relative trans-
formation between them. In [29], the authors use a AlexNet-based Siamese archi-
tecture and an L2-loss layer with equal weights for the translational and rotational
components, while in [15] the authors propose a weighting term to balance these
components. In order to exploit the advantages of both metric and topological local-
ization, while concurrently reducing the error caused by the accumulation of drift in
visual odometry, an optimization technique was proposed that fuses the output of a
odometry and topological DCNN [20]. Utilizing the topological information helps
in bounding the accumulated drift within consecutive topological nodes, thereby
improving the accuracies of such systems by an order of magnitude.

Navigation In the area of navigation, reinforcement learning has been used to in-
vestigate the possibility of enabling intelligent agents to learn to navigate through
environments without the need for labelled data and without the requirement for ex-
plicit localization, mapping or planning procedures as in traditional methods [32].
Deep reinforcement learning methods [17],[7] which originated from solving con-
trol problems for playing Atari games are utilized along with deep neural nets as
function approximators to represent the Q-value function. In order to ensure that
the learned navigation policy can be effectively transferred to new navigation goals
and environments, the problem can be framed as a sequence of related reinforce-
ment learning tasks and successor feature based reinforcement learning procedures
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are embedded into the network architecture. Unlike the original deep reinforcement
learning algorithms that usually result in a black-box function approximator, the
successor feature representation of the Q-value function gives us a natural way to
transfer learned task solutions to new task instances, while making sure that the so-
lutions to old tasks are preserved after the transfer. Results have demonstrated that
the agent is able to learn successful navigation strategies even with sparse supervi-
sion from the reward signal it receives and more importantly without any need for
human intervention.

4 Towards Predictive Multimodel Learning

While we have seen tremendous amount of progress in robot learning these recent
years, robots are still far away from being able to self sufficiently learn and ex-
ecute tasks as efficiently as humans. This is perhaps because research thus far has
been focused on learning models for small subtasks without considering that each of
these subtasks might have complex interactions that our conjoint supervised system
fails to capture. For example, consider the task of semantic segmentation and vi-
sual localization, the model trained for segmentation has strong priors about objects
and structures in the scene, which can provide an inductive bias to the model being
trained for visual localization. Thereby enabling the localization model to generalize
better due to the inductive transfer. If these models are trained in a disjoint fashion,
it not only affects the scalability but also restricts the transfer of cues and param-
eter sharing that could potentially occur. Each of these subtasks have been studied
for several decades and numerous deep learning architectures have emerged after
months of crafting and tuning. Often this effort is reiterated for different subtasks,
limiting the overall learning capability of a robotic system as a whole. While this
modular paradigm may be effective in accomplishing a task, it will often break down
in unforeseen scenarios that occur in this complex real-world. Moreover, in terms of
feasibility, individual models require a large amount of specialized labelled training
data, deploying a robot with multiple models demands a substantial amount of GPU
hardware and the inability of these models to interact and update their weights on-
line based on current observations, make this impractical to use over longer periods.
In contrast, a complete end-to-end approach to a multitask problem such as robot
autonomy, forces the model to squeeze enormous amount of information about dis-
joint tasks into the same parameter space, which is infeasible.

In order for robots to be able to effectively learn, they should be able to perceive
the states of the world, plan and perform actions based on these observed states, re-
member outcomes and be able to make predictions based on these for future actions.
At present, robots have some of these components in them but they are disjoint and
are not learned in a coherent framework. We think that in a multitask learning sce-
nario, models can not only benefit from the transfer of inductive bias from models
in multiple domains but in addition, models trained for tasks with a large amount
of examples can self supervise training of models with a small number of train-
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ing examples. Multitask learning can be defined as a transfer learning mechanism
that improves generalization by using domain specific information contained in the
training signals of related tasks [1]. Specifically in convolutional neural networks,
multitask learning is generally achieved using either hard or soft parameter sharing.
In hard parameter sharing, the hidden layers are shared between all the subtasks,
while having task-specific output layers. Hard parameter sharing has recently been
used for several tasks including facial landmark detection [23, 34], grasping [22]
and face recognition [31]. In the aforementioned works, a core DCNN architec-
ture is employed, followed by task-specific inner-product layers. The advantage of
incorporating hard parameter sharing is the reduced risk of overfitting, while the
disadvantage being the potential corruption of low-level features in the core archi-
tecture due to noise from a related subtask. Soft parameter sharing on the other hand,
overcomes this drawback by having task-specific sub-networks with separate hidden
layers, while using a sharing mechanism such as regularizing the distance between
the parameters of the sub-networks using the l2 norm [2], trace norm [30] or tensor
normal priors [12]. However, the main challenge in soft parameter sharing is devel-
oping an appropriate sharing mechanism for the tasks at hand. Recently, Misra et.
al. proposed cross-stitch units [16] for multitask networks that are in soft parameter
sharing configuration. These units learn a combination of shared and task-specific
representations from multiple sub-networks and has demonstrated improved perfor-
mance for tasks with limited training data. However, the placement of these cross-
stitch units still remains on open research problem. Some of the mechanisms that
enable the aforementioned multitask networks to generalize better include regular-
ization, representation bias, eavesdropping, attribute selection and data augmenta-
tion. The effect of these mechanisms in multitask networks are discussed in detail
in the work of Caruna et. al. [1].

Multimodality is another important characteristic that can enable models to learn
the most comprehensive information about the scene or situation which can in turn
help them reason more effectively. Multimodal learning can be defined as learning
from multiple sensory modes such as cameras, lasers, sound and etc. Learning from
multimodal sensory data can help robots enhance their perception of the environ-
ment and reduce perceptual ambiguity in challenging conditions. Consider a robot
that has to grasp an object; if equipped with only a monocular camera, the robot will
have to perform millions of grasps to identify the properties of the object and the
right strategy, but if the robot is also equipped with a tactile sensor then robot can
more efficiently learn the properties and thus correlate this tactile sense to visual
features and use it for future inference, even in a different domain. Moreover, by
utilizing multimodal data in a multimodel framework, we also enable better repre-
sentational learning, as task specific sub-models learn a particular noise pattern with
respect to a modality and by inductive transfer, all the sub-models implicitly learn a
combined representation of several noise patterns.

What we envision is a unified neural network architecture that is able to perform
perception, localization, planning and control, not in a completely end-to-end fash-
ion going from visual input to action, but having individual learnable sub-models in
a soft parameter sharing configuration for each of these tasks that enable continuous
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update of their weights from each others experiences. This requires each of the sub-
models to have a network memory, for example, neural turing machines [5] or dif-
ferential neural computers [6] so that they can quickly store information and reason
from it when required. By joint learning of tasks across these multiple domains, we
can not only improve the performance of models by more coherent understanding
but also in domains with limited amount of data. In our work of Neural SLAM [33],
we give intelligent agents long-term memory capabilities, through the integration
of an external memory architercure with a deep reinforcement learning framework.
Identifying that cognitive mapping is essential for agents to make comprehensive
navigation and exploration decisions, we embed the procedures mimicing that of
traditional SLAM algorithms, into a completely differentiable deep neural network.
The proposed agent is able to learn to map into its external memory and perform
effective exploration behaviors. Finally, a critical trait that is important to our pro-
posed multimodel framework is for models to be able to predict future states. Recent
work with adversarial training enables models to predict intermediate actions or fu-
ture frames of a video sequence using unsupervised learning [13]. While this is only
the initial stages of being able to create models that can predict what is unknown,
instilling this into the multimodel framework will enable us to create robots that can
self-sufficiently learn across domains with limited amount of labelled data.
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