
Monocular Camera Localization in 3D LiDAR Maps

Tim Caselitz Bastian Steder Michael Ruhnke Wolfram Burgard

Abstract— Localizing a camera in a given map is essential
for vision-based navigation. In contrast to common methods
for visual localization that use maps acquired with cameras, we
propose a novel approach, which tracks the pose of monocular
camera with respect to a given 3D LiDAR map. We employ
a visual odometry system based on local bundle adjustment
to reconstruct a sparse set of 3D points from image features.
These points are continuously matched against the map to
track the camera pose in an online fashion. Our approach to
visual localization has several advantages. Since it only relies on
matching geometry, it is robust to changes in the photometric
appearance of the environment. Utilizing panoramic LiDAR
maps additionally provides viewpoint invariance. Yet low-
cost and lightweight camera sensors are used for tracking.
We present real-world experiments demonstrating that our
method accurately estimates the 6-DoF camera pose over long
trajectories and under varying conditions.

I. INTRODUCTION

Accurate localization is an important prerequisite for many
navigation tasks. For example, accurate information about
their pose in the environment enables autonomous mobile
robots or pedestrians to plan a path to a given goal location.
While GPS can provide accurate position estimates at a
global scale, it suffers from substantial errors due to multi-
path effects in urban canyons and does not provide suffi-
ciently accurate estimates indoors. This is a major drawback,
since localization is restricted in populated areas that have
a high demand for navigation services, e.g., city centers
and shopping malls. A popular approach to mobile robot
localization is to match sensor data against a previously
acquired map. Many existing methods use the same sensor
type for mapping and localization. LiDARs provide accurate
range measurements, but are typically expensive and heavy.
Cameras are low-cost, lightweight, and widely available,
but do not directly provide range information. Our method
exploits the advantages of both sensors by using a LiDAR for
mapping and a camera for localization. Today, map providers
already capture 3D LiDAR data to build large-scale maps.
Our method enables people to accurately localize themselves
in these maps without being equipped with a LiDAR. Instead,
they only require a single monocular camera, which is
favorable in many applications. In an autonomous driving
context the lower price is highly relevant, for localizing a
drone the low weight is a crucial aspect, and in pedestrian
localization cameras benefit from their enormous availability
since they are integrated in every modern smartphone.

All authors are with the Department of Computer Science, University of
Freiburg, Germany. This work has been partially supported by the European
Commission under the grant numbers ERC-AG-PE7-267686-LifeNav and
FP7-610603-EUROPA2.

Fig. 1. Our method tracks the 6-DoF camera pose by reconstructing 3D
points (blue, red) from image features (bottom, green) and matching them
against a given 3D LiDAR map (black). Blue points are estimated to lie
inside the map, while red points have no correspondence. The green line
represents the camera trajectory.

The key idea of our work is to approach visual localization
by matching geometry. Since the acquisition of a map can
date back considerably compared to the time of localization,
it is essential that maps contain time-invariant information.
Common methods typically match photometry, either in form
of feature descriptors or by directly using intensity values.
We argue that our approach is advantageous because the
geometry of the environment tends to be more stable than
its photometric appearance which can change tremendously
even over short periods. For example, during the course
of one day a place might look substantially different due
to varying illumination while its geometric structure has
not changed all. In contrast, changes in geometry always
influence the photometric appearance of the environment.

In this paper we present a method to track the 6-DoF
pose of a monocular camera in a 3D LiDAR map. Since our
approach is not intended for global localization, a coarse
estimate of the initial pose in this map is required. We
employ a visual odometry system based on local bundle
adjustment to reconstruct the camera poses relative to a
sparse set of 3D points. The main contribution of this
work is to continuously align this point set with the given
map by matching their geometry and applying an estimated
similarity transformation to indirectly localize the camera.
We formulate the estimation problem as non-linear least
squares error minimization and solve it within an iterative
closest point procedure. Fig. 1 shows a camera image and
the corresponding pose in the 3D LiDAR map.

II. RELATED WORK

The method proposed in this paper is related to approaches
developed in the computer vision and robotics community
in the last decades. While vision-based approaches rely on
passive cameras, LiDAR sensors that actively measure range
information are frequently used in robotics. Both modalities
have successfully been used for solving the Simultaneous
Localization and Mapping (SLAM) problem [15], [18]. How-
ever, the integration of both has mostly been done in the so-
called back-end of the SLAM process and not by matching
their data directly.

Approaches using LiDARs typically apply scan match-
ing techniques based on variants of the Iterative Closest
Point (ICP) algorithm [3], [19] for estimating incremental
movements and use feature-based approaches to detect loop
closures [20]. Modern methods often rely on graph-based
optimization techniques [11], [9] to estimate consistent tra-
jectories and maps. Since LiDARs provide accurate range
information and are mostly invariant to lighting conditions,
such methods have the potential to create highly accurate
maps of indoor and outdoor environments. Localizing a
LiDAR within these maps can be achieved with pure scan
matching or using filtering approaches [23].

Visual SLAM refers to the problem of using images as
only source of information [7]. In contrast to approaches
treated under the name Structure from Motion (SfM), e.g. [1],
methods signed with the keyword visual SLAM typically
target real-time applications. MonoSLAM [5] was the first
system achieving real-time performance. It is based on an
extended Kalman filter which estimates the cameras pose,
velocity and feature positions. Bundle adjustment [24], a
global optimization technique also used in SfM, was con-
sidered too expensive for real-time operation. This changed
with PTAM presented by Klein et al. [10]: their key idea was
to parallelize camera tracking and map building in order to
utilize expensive optimization techniques without forfeiting
real-time performance. Strasdat et al. [21] later showed that
keyframe-based optimization approaches outperform filtering
methods in terms of accuracy per computational cost.

Compared to visual SLAM, visual odometry [17] is only
concerned with the incremental camera motion. However,
local bundle adjustment is often performed to reduce drift. In
contrast to approaches based on stereo cameras, monocular
visual odometry suffers from the unobservability of scale.
Strasdat et al. [22] point out that scale ”is liable to drift over
time”. This is a crucial insight for our method. One of the
key contributions of Strasdat et al. [22] is the description of
the Lie group and its relation to the Lie algebra of similarity
transformations. We rely on this formulation for estimating
similarity transformations.

Our method employs visual odometry to track the camera
motion and to reconstruct a sparse set of 3D points via local
bundle adjustment. For this purpose we rely on components
of ORB-SLAM presented by Mur-Artal et al. [13]. It is a
state-of-the-art solution for monocular SLAM that stands in
a line of research with PTAM and is available open-source.

The majority of research concerning visual localization
has focused on matching photometric characteristics of the
environment. This is either done by comparing image feature
descriptors like SIFT [12] or SURF [2] or directly operating
on image intensity values. Yet, one of the main issues in
visual localization is that the environment’s photometric
appearance changes substantially over time, especially across
seasons. Churchill et al. [4] approach this problem by storing
multiple image sequences for the same place from different
times. Naseer et al. [14] tackle the problem by matching
trajectories using a similarity matrix.

In contrast to methods based on matching photometry,
approaches for camera localization in geometric maps built
from LiDAR data are less present in the literature. Wolcott et
al. [25] proposed a method to localize an autonomous vehicle
in urban environments. Using LiDAR intensity values, they
render a synthetic view of the mapped ground plane and
match it against the camera image by maximizing normalized
mutual information. While this approach only provides the
3-DoF pose, the method presented by Pascoe et al. [16]
estimates the full 6-DoF camera pose. Their appearance prior
(map) combines geometric and photometric data and is used
to render a view that is then matched against the live image
by minimizing the normalized information distance.

Both approaches perform matching in 2D space and there-
fore require expensive image rendering supported by GPU
hardware. Furthermore, their prior comprises LiDAR inten-
sities or visual texture respectively. In contrast, our method
relies on geometric information only. By directly matching
3D geometry, we also avoid the need for computations on a
GPU. However, we achieve comparable results in terms of
accuracy and frame rate.

III. PROPOSED METHOD

The objective of our method is to localize a monocular
camera in a 3D LiDAR map. The inputs are an image stream
and a map that is represented as a point cloud, the output is
a 6-DoF camera pose estimate at frame rate. Our approach
builds on a visual odometry system that uses local bundle
adjustment to reconstruct camera poses and a sparse set of 3D
points from image features. Given the camera poses relative
to these points, we indirectly localize the camera by aligning
the reconstructed points with the map.

The alignment is performed once the visual odometry,
which is based on components of ORB-SLAM [13], provides
the first local reconstruction consisting of two keyframe
poses and a minimal amount of 3D points. Since our
approach is not intended for global localization, a coarse
estimate for the transformation between this initial recon-
struction and the map is required. Subsequently, our method
aligns the local reconstruction whenever it is updated, i.e., a
new keyframe is selected by the camera tracking and added
to the local mapping. Since our method directly operates
on the map maintained by ORB-SLAM, the local mapping
needs to be paused during the alignment. Therefore, the
alignment must run sufficiently fast in order to avoid long

interruptions that can cause the camera tracking to fail since
newly explored areas are not covered by the map.

By continuously aligning the local reconstruction with
the map, we eliminate the drift accumulated by visual
odometry. Since we use a monocular camera, drift occurs
not only in translation and rotation, but also in scale. We
therefore realize the alignment with a 7-DoF similarity
transformation. In the remainder of this section we first
discuss the local reconstruction, afterwards address the data
association between local reconstruction and map, and finally
detail the optimization problem we solve to estimate the
transformation that is applied to perform the alignment. We
use homogeneous coordinates to represent rigid-body and
similarity transformations:

T =

(
R t
0 1

)
∈ SE(3), S =

(
sR t
0 1

)
∈ Sim(3) (1)

with s ∈ R+, R ∈ SO(3), t ∈ R3. A point p ∈ R3

is denoted p̃ = (p 1)
> in homogeneous coordinates. To

simplify notation we define ξ(p̃) := p.

A. Local Reconstruction

The visual odometry system reconstructs keyframe poses
and 3D points by solving a local bundle adjustment problem.
What is considered local is determined by a covisibility
graph that describes how many image features are covisible
between keyframes. All keyframes directly connected to
the current keyframe via this graph and all points that are
observed by these keyframes are the variables of the visual
odometry’s local estimation problem.

We include the same keyframes and points in our local
reconstruction which is defined by the two sets

D =
{
di | di ∈ R3, i = 1, . . . , D

}
, (2)

T = {Ti | Ti ∈ SE(3), i = 1, . . . , T} . (3)

Adhering to this choice has two reasons. First, it ensures
that we use a consistent local reconstruction because the
bundle adjustment optimization is performed right before
our alignment. Second, the alignment does not influence and
potentially corrupt the visual odometry, since we uniformly
transform its local bundle adjustment problem.

B. Data Association

To determine the alignment of local reconstructions with
the map, we search correspondences between reconstructed
points in D and points of the map

M =
{
mi |mi ∈ R3, i = 1, . . . ,M

}
. (4)

We perform this within an ICP scheme, i.e., update the
data associations based on the current similarity transfor-
mation estimate over k = 1, . . . ,K iterations. For each
reconstructed point, we find its nearest neighbor in the map,
which is stored in a kd-tree to allow for fast look-up. If the
nearest neighbor is close enough, the pair is added to the
correspondence set

Ck =
{

(di,mj) ∀di∈D | ∃ argmin
mj∈M

‖di−mj‖2<τk
}
. (5)

We reduce the distance threshold τk over the iterations k.
τmax and τmin are parameters of our method and define the
linear threshold function

τk = −τmax − τmin
K

k + τmax. (6)

As the algorithm converges, point-to-point distances are
decreasing, and we can choose the threshold more strictly
in order to retain only high-quality associations.

A major problem of finding correspondences exclusively
based on nearest neighbors is that the set of reconstructed
points typically overlaps only partially with the map. There-
fore points di might have no meaningful correspondence in
M even though their position is perfectly estimated. The
partial overlap is often caused by an incomplete mapping due
to the LiDAR’s limited vertical field of view. Reconstructed
points originating from unmapped geometric structure would
be associated with boundary points of the map and thus
lead to biased transformation estimates. Since these can
have severe consequences in terms of accuracy but also
convergence, we refine the correspondence set using the
map’s local point distribution described bellow.

1) Local Point Distribution: In order to analyze its local
point distribution, the map is voxelized with a resolution ∆
depending on its density. We perform a principal component
analysis on the covariance matrix Σ(V) ∈ R3×3 of the points
with the mean µ(V) ∈ R3 inside each voxel

Vx,y,z =
{

mi |mi ∈M, ∆
(
x
y
z

)
�mi ≺ ∆

(x+1
y+1
z+1

)}
(7)

to determine the main directions along they are distributed.
The operators � and ≺ are meant component-wise. The
eigenvectors V1,V2 ∈ R3 with the two largest eigenvalues
and the orthogonal vector V3 = V1 × V2 allow us to
describe the point distribution in a voxel εx,y,z = (T,σ, N)
with

T =

(
R t
0 1

)−1

with R = (V1V2V3), t = µ(V),

σ =
(√
a11
√
a22
√
a33

)>
with A = TΣ(V)T−1,

N = |V|.

(8)

The transformation T defines the principal components
aligned basis of a voxel, the term σ represents the standard
deviation of the points along these axes, and N denotes
the amount of points inside a voxel. Since the local point
distribution

E =
{
εx,y,z = (T,σ, N) | T∈SE(3),σ∈R3, N ∈N,(
x
y
z

)
∈Z3, min

mi∈M
mi �

(
x
y
z

)
/∆ ≺ max

mi∈M
mi

} (9)

is constructed offline, its computation does not affect the
online performance of our method.

2) Correspondence Refinement: We determine a refined
subset of correspondences C′k ⊂ Ck based on the map’s local
point distribution. The objective is to filter out correspon-
dences associating points di that are located in areas not
covered by or on the boundaries of the map. To ensure proper

Fig. 2. Top view of the 3D LiDAR maps used in the evaluation (ground removed for visualization). Map points are shown in black, trajectories in blue.
Left: KITTI odometry dataset, sequence 00. Red numbers indicate the percentage of the trajectory. Right: Freiburg campus dataset.

coverage, we check if the amount of points in a voxel is
sufficient. This criterion is not suited, if points are distributed
extremely non-uniformly along a principal component axis,
e.g., at map boundaries. Therefore we additionally verify that
the point lies inside a multiple standard deviation along the
voxel’s principle component axes. To smooth discretization
effects, we also allow neighboring voxels to fulfill these
criteria. This yields the refined correspondence set

C′k =
{

(di,mj) ∈ Ck | ∆
(
x
y
z

)
� di ≺ ∆

(x+1
y+1
z+1

)
,∨

−1�(x,y,z)>�+1

εx,y,z, N≥Nmin, ξ(Td̃i)≺Nσσ
} (10)

where
∨

is meant as or operator used to describe the
neighborhood of a voxel.

C. Alignment

Given a set of correspondences, we estimate a similarity
transformation that aligns the local reconstruction with the
map. The set of refined correspondences C′k is updated
iteratively. In each iteration k we estimate

S∗k = argmin
S∈Sim(3)

FData(S, C′k) (11)

by solving a non-linear least squares minimization problem
with g2o [11] using the Levenberg-Marquardt algorithm.

We estimate the transformation S∗k in the reference frame
of the current keyframe Tc. This is advantageous compared
to a parametrization in the reference frame of the map
because the optimization variables better correspond to the
dimensions of drift which we want to compensate with S∗k.
Therefore we transform the refined correspondence set and
get

C′′k =
{(
ξ(Tcd̃i), ξ(Tcm̃j)

)
| (di,mj) ∈ C′k

}
. (12)

Our error function is the squared Euclidean distance between
corresponding points:

FData(S, C′′k) =
∑
C′′k

ρ
(
e>DataeData

)
, (13)

eData(S,di,mj) = ξ(Sd̃i)−mj . (14)

ρ(r) =

{
r2 r < r∆

2r∆|r| − r2
∆ otherwise

(15)

We use a Huber cost function to be more robust against
outliers in the data association. As shown by Fitzgibbon [6]
this leads to better convergence properties of the objective
function. We choose the kernel size r∆ = τmin to retain the
quadratic error range over all iterations k.

Once we estimated S∗k for all iterations, we compute a
joint similarity transformation

S∗ =

K−1∏
k=0

S∗K−k. (16)

To align the local reconstruction with the map, we transform
all point positions di and keyframe poses Ti (as defined
in III-A) with S∗. Since it is in the reference frame of
the current keyframe it has to be transformed back into the
reference frame of the map before it is applied:

D′ = {d′i = ξ(T−1
c S∗Tcd̃i) ∀ di ∈ D}, (17)

T ′ = {T′i = T−1
c S∗TcTi ∀ Ti ∈ T }. (18)

IV. EXPERIMENTAL EVALUATION

We evaluated our method in two different real-world
experiments. First, we investigated the accuracy of our
method on the publicly available KITTI odometry dataset [8].
Second, we performed experiments under varying conditions
to support the claimed advantages of our approach.

Our method requires a reasonably good initialization. If a
ground truth trajectory is available, we use it to interpolate

-200

0

200

400

600

-600 -300 0 300 600

[m
]

[m]

Fig. 3. Trajectories on sequence 00 of the KITTI odometry dataset. The
visual odometry (dashed blue line) accumulates drift over time. Our method
(solid red line) corrects this drift and provides a consistent trajectory.

the poses of the first two keyframes. Two poses are necessary
to infer the initial scale. For datasets without ground truth, a
coarse initial pose and scale estimate must be determined in
another way. We do this by manually aligning a reconstructed
set of points with the 3D LiDAR map.

The same set of parameters was used throughout the
evaluation. The visual odometry extracts 2500 features per
image and keeps the ORB-SLAM default values for other
parameters. The number of iterations used for estimating the
alignment is K = 10, the parameters for the correspondence
distance threshold are τmax = 2m and τmin = 1m. The local
point distribution is voxelized at a resolution of ∆ = 1m,
thresholds for the refinement are Nmin = 10 and Nσ = 3.
All experiments were carried out on a i7-4790K CPU without
support of GPU hardware. Given this configuration, our
method runs at approximately 10 fps.

A. Evaluation of Accuracy

In order to evaluate the accuracy of our method and to
allow for easy comparison, we tested it on sequence 00 of
the KITTI odometry dataset. Since the provided poses lack
consistency in loop closure areas, the ground truth trajectory
was obtained by a LiDAR-based SLAM system. We used
the resulting trajectory and the provided 3D LiDAR data to
build a map at a resolution of 20 cm (see Fig. 1 and Fig. 2
left). We employed this map to track the pose of camera 0 on
the vehicle. Since the relative transformation between camera
and LiDAR is known by calibration, the ground truth camera
trajectory is given as an output of the SLAM system. We can
therefore compute 6-DoF localization errors for all camera
poses. The camera images have a resolution of 1241 × 376
and are captured at 10 Hz.

Fig. 3 shows a localization result of our method compared
to the estimates of the visual odometry. It is clearly visible
that the accumulated drift is corrected. The camera was
tracked successfully along the whole trajectory in all 10
localization runs. Fig. 4 shows how the averaged error
is distributed along the trajectory. Peaks in the error are
often caused by turns of the car which introduce substantial

0

0.2

0.4

0.6

0.8

1
Translational Error [m]

0

2

4

6 Rotational Error [◦]

0

5

10

15 Scale Error [%]

Fig. 4. Mean errors of our method averaged over 10 runs on sequence 00
of the KITTI odometry dataset. The x-axis represents the percentage of the
trajectory as shown in Fig. 2 (left).

drift that is subsequently corrected through our alignment.
Averaging over all runs and the entire trajectory yielded a
translational error of 0.30± 0.11 m and a rotational error of
1.65± 0.91 ◦. Since our method runs at 10 fps, we achieved
online tracking in this experiment.

B. Evaluation under Varying Conditions

To evaluate our approach under varying conditions, we
captured a dataset with one of our robots equipped with a
Velodyne HDL-32E LiDAR. We built a 3D LiDAR map of
the Freiburg campus at a resolution of 10 cm (see Fig. 2
right). In addition, we collected images with two different
hand-held cameras at two days with varying weather condi-
tions (see Fig. 5 top). Both, a Canon S100 compact camera
and an Apple iPhone 5S front camera, were calibrated using
standard OpenCV methods. We down-sampled the images to
a resolution of 1024×576 and 900×506 and recorded them
at 25 Hz and 30 Hz respectively. Since we tracked the camera
pose for every frame, online processing was not feasible.

For both camera trajectories we performed 10 successful
localization runs. The standard deviation was 0.06 m / 0.46 ◦

for the Canon camera trajectory and 0.12 m / 0.35 ◦ for
the iPhone trajectory. Since we do not have ground truth
trajectories for these camera poses, we cannot provide errors.
Yet, given the camera pose with respect to the map, we can
post-colorize the map points to visualize the quality of the
estimates. Fig. 5 (bottom) and Fig. 6 show the post-colorized
map of the Freiburg campus.

The varying conditions under which these images were
captured support the hypothesis that our approach to match
geometry provides robustness to changes in the photometric
appearance of the environment, e.g., caused by different
illumination due to time of day or weather. To highlight the
viewpoint invariance of our method, the localization runs
were performed in the opposite direction compared to the
map acquisition. For visual localization approaches relying
on non-omnidirectional cameras, this can be extremely dif-
ficult as the photometric appearance of the environment can
tremendously depend on the viewing direction.

Fig. 5. Top: images from the Canon camera (left) and iPhone (right)
datasets captured on the Freiburg campus. Notice the different weather con-
ditions. Bottom: Post-colorized 3D LiDAR map from a similar perspective.

V. CONCLUSIONS

In this paper, we presented a novel approach to localize a
monocular camera with respect to a given 3D LiDAR map.
Our method employs visual odometry to track the 6-DoF
camera pose and to reconstruct a sparse set of 3D points via
bundle adjustment. We align the reconstructed points with
the map by continuously applying an estimated similarity
transformation to indirectly localize the camera. Using a
LiDAR for mapping and cameras for localization combines
the advantages of both sensors. Experiments carried out on
a publicly available and large-scale dataset demonstrate that
the accuracy and frame rate of our method are comparable
to state-of-the-art approaches even though it does not rely
on any additional information or GPU hardware support.
Further experiments carried out under varying conditions
indicate that approaching visual localization by matching
geometry yields the benefit of being robust to changes in the
photometric appearance of the environment. They suggest
that localizing a camera in panoramic 3D LiDAR maps
additionally provides view-point invariance.

ACKNOWLEDGMENT

The authors would like to thank Mur-Artal et al. for
providing the ORB-SLAM source code and Geiger et al. for
providing the KITTI dataset.

REFERENCES

[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” in Proc. of the IEEE Int. Conf. on Computer
Vision (ICCV), 2009.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Proc. of the European Conf. on Computer Vision (ECCV),
2006.

[3] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[4] W. Churchill and P. Newman, “Experience-based navigation for long-
term localisation,” International Journal of Robotics Research, vol. 32,
no. 14, pp. 1645–1661, 2013.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[6] A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image
and Vision Computing, vol. 21, no. 13, pp. 1145–1153, 2003.

[7] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual simultaneous localization and mapping: a survey,” Artificial
Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015.

Fig. 6. 3D LiDAR map of the Freiburg campus post-colorized based on
the pose estimates of the Canon camera trajectory. Very fine structures like
thin tree branches tend to be colorized incorrectly (with sky texture). This
is related to the localization accuracy but also caused by map inaccuracies.

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

[9] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “isam2: Incremental smoothing and mapping using
the bayes tree,” International Journal of Robotics Research, p.
0278364911430419, 2011.

[10] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Proc. of the IEEE/ACM Int. Symposium on Mixed and
Augmented Reality (ISMAR), 2007.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

[12] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[13] R. Mur-Artal, J. Montiel, and J. D. Tardos, “Orb-slam: a versatile and
accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[14] T. Naseer, M. Ruhnke, C. Stachniss, L. Spinello, and W. Burgard, “Ro-
bust visual slam across seasons,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2015.

[15] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d slam3d
mapping outdoor environments,” Journal of Field Robotics, vol. 24,
no. 8-9, pp. 699–722, 2007.

[16] G. Pascoe, W. Maddern, and P. Newman, “Direct visual localisation
and calibration for road vehicles in changing city environments,” in
Proc. of the IEEE Int. Conf. on Computer Vision (ICCV) Workshops,
2015.

[17] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

[18] S. Se, D. G. Lowe, and J. J. Little, “Vision-based global localization
and mapping for mobile robots,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 364–375, 2005.

[19] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Proc. of
Robotics: Science and Systems (RSS), 2009.

[20] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard, “Place recognition
in 3d scans using a combination of bag of words and point feature
based relative pose estimation,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2011.

[21] H. Strasdat, J. Montiel, and A. J. Davison, “Real-time monocular
slam: Why filter?” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2010.

[22] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large
scale monocular slam,” in Proc. of Robotics: Science and Systems
(RSS), 2010.

[23] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial intelligence, vol. 128, no. 1,
pp. 99–141, 2001.

[24] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment — a modern synthesis,” in Vision Algorithms:
Theory and Practice. Springer, 1999, pp. 298–372.

[25] R. W. Wolcott and R. M. Eustice, “Visual localization within li-
dar maps for automated urban driving,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

