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Abstract— Tracking the pose of a camera is at the core of
visual localization methods used in many applications. As the
observations of a camera are inherently affected by lighting, it
has always been a challenge for these methods to cope with
varying lighting conditions. Thus far, this issue has mainly
been approached with the intent to increase robustness by
choosing lighting invariant map representations. In contrast,
our work aims at explicitly exploiting lighting effects for camera
tracking. To achieve this, we propose a lighting adaptable map
representation for indoor environments that allows real-time
rendering of the scene illuminated by an arbitrary subset of
the lamps contained in the model. Our method for estimating
the light setting from the current camera observation enables us
to adapt the model according to the lighting conditions present
in the scene. As a result, lighting effects like cast shadows do no
longer act as disturbances that demand robustness but rather
as beneficial features when matching observations against the
map. We leverage these capabilities in a direct dense camera
tracking approach and demonstrate its performance in real-
world experiments in scenes with varying lighting conditions.

I. INTRODUCTION

Cameras are popular sensors for egomotion estimation in

various applications including autonomous driving, service

robotics, and augmented reality. Like the latter two, many of

these applications target indoor environments where lighting

conditions can change rapidly, e.g., when lights are switched

on or off. In contrast to methods that rely on other modalities,

actively project light into the scene, or operate outside

the visible spectrum, egomotion estimation with a common

camera can be significantly affected by lighting changes

as they have a direct impact on the camera observations.

How crucial this impact is for camera tracking depends on

the image gradients introduced by lighting in relation to

the gradients caused by changes in reflectance. In highly

textured parts of the environment, i.e., areas with frequently

changing reflectance, the multitude of reflectance gradients

might dominate those caused by lighting. However, shadows

cast onto texture-less areas, e.g., floors with uniform carpet

or walls with uniform paint, introduce the only and therefore

extremely valuable gradients. This even remains true when

using an RGB-D camera, which additionally relies on active

depth measurements, as the mentioned areas are often not

only texture-less but also planar and therefore do not provide

geometric features either. Especially in indoor environments,

such areas are omnipresent and lighting can provide valuable

information that we do not want to ignore but instead exploit

explicitly for visual localization.
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Fig. 1: Our method performs camera pose tracking in

varying lighting conditions. We estimate which lamps in the

scene are currently on, adapt the map accordingly, and match

the camera observation (bottom right) against the rendering

of the lighting adapted map (bottom left).

The term visual localization describes the task of using

images to estimate the camera pose w.r.t. an entire map

that has been built previously. This is in contrast to visual

odometry that only uses the most recent frame(s) as the

reference. Visual localization contains the subtasks of finding

a coarse global pose estimate, often called global localization

or relocalization, and the subtask of tracking, which means

accurately estimating the camera pose over time given an

initial estimate. While we suppose that the proposed map

representation can also be beneficial for relocalization, the

focus of this paper is to use it for camera tracking.

The proposed map representation builds on our method for

building dense reflectance maps of indoor environments [1].

In this paper we extend the reflectance map representation

to so-called lighting adaptable maps, which, in addition to

the surface reflectance model, contain the global lighting

contributions of the lamps present in the scene. The model

parameters allow to switch the contributions of individual

lamps on and off. Even though these parameters could

potentially be provided by an external system (e.g., home

automation), we propose a method to estimate them from

a single color image. Adapting the model parameters to

predict the effects of lighting in real-time can subsequently

be exploited when matching against real-world observations.

We leverage these capabilities for camera tracking in lighting

adaptable maps using a direct dense approach.



II. RELATED WORK

Methods for visual localization typically aim to achieve

robustness to changing lighting conditions by relying on

map representations that target illumination invariance. This

includes approaches using local feature descriptors which

are invariant to affine changes in illumination. A prominent

example is SIFT [2] that uses normalization and is based

on gradients, i.e., is invariant to changes which multiply or

add a constant to the image intensities. Other local features,

e.g., ORB [3], which builds on a variant of BRIEF [4], are

generally also based on intensity differences and perform

similar w.r.t. illumination changes. As they are only designed

to be invariant to affine variations, these descriptors cannot

cope with more complex lighting changes. An idea is to

improve this by learning invariances from data. Stavens

and Thrun [5] learn domain-optimized versions of SIFT

and HOG [6] whereas Carlevaris-Bianco and Eustice [7]

directly learn a descriptor embedding for varying lighting

conditions from raw pixel input. Ranganathan et al. [8] learn

a fine vocabulary [9] and model variations in lighting using

a probability distribution over descriptor space to achieve

illumination invariance for visual localization.

The domain of metrical visual odometry and SLAM can

be divided into feature-based (indirect) [10], [11], semi-

direct [12], and direct approaches [13], [14], [15]. The former

inherit the invariance to affine illumination changes from

the discussed local feature descriptors. In comparison, direct

approaches are by default much more sensitive to lighting

changes as they directly compare image intensities and

assume brightness constancy [16]. However, they can also

gain robustness to changes in illumination, e.g., by correcting

biases [17] or using affine illumination models [18], [19],

[20]. Park et al. [21] provide a survey of methods for

illumination invariance in direct visual SLAM. Compared to

visual odometry, visual SLAM methods can be expected to

experience more severe lighting changes as the map is built

from data that is older than the last frame(s). This applies

even more to localization in previously built maps where

illumination changes are often too complex to be modeled

with affine transformations. Clement and Kelly [22] address

this issue by learning from data and propose an approach

to direct visual localization that transforms input images

into a canonical representation using a deep convolutional

encoder-decoder network. In contrast, Corke et al. [23] adopt

a camera-based model [24] and use illumination invariant

imaging [25] for visual localization.

An approach for illumination invariant 3D reconstruction

is presented by Kerl et al. [26]. Using an RGB-D camera,

it infers color albedo (diffuse reflectance) by transfer from

the infrared domain. Our method [1] avoids the assumption

that invariance can be transfered from a different spectrum

and recovers the diffuse reflectance based on the transport of

visible light. However, directly using this lighting invariant

reflectance map representation for visual localization would

require to transform the camera images into reflectance space

as well, i.e., to perform intrinsic image decomposition [27].

Even though approaches for real-time reflectance estimation

exist [28], [29], they do not provide the spatial resolution

required for localization. More importantly, matching in

illumination invariant space ignores the effects of lighting

and is thus not our intent. Instead, we employ the reflectance

map to predict and explicitly exploit these effects. We use a

dense camera tracking approach as non-dense methods might

neglect low magnitude gradients induced by lighting.

Relighting a scene based on a recovered reflectance model

has already been described by Yu et al. [30] two decades

ago. Still, reflectance and lighting estimation remain active

research topics [31], [32], [33]. From an application point of

view, relighting has mainly been used for augmented reality.

For instance, Zhang et al. [34] relight indoor spaces for

realistic refurnishing and Meilland et al. [35] apply dense

visual SLAM to relight virtual objects. Exploiting relighting

for visual localization has received less attention in the

literature. One approach is presented by Whelan et al. [36]

who introduce a method for light source detection into their

SLAM system. They discuss the benefits for pose estimation

but eventually improve it by masking out specular reflections

instead of explicitly exploiting the lighting predictions.

Kim et al. [37] present an approach to visual localization

that builds multiple maps for various lighting conditions. The

approach recognizes the illumination level and selects an

appropriate map for localization. In contrast to our method,

it uses a sparse feature-based map representation, stores

multiple maps instead of adapting one parametric model, and

assumes that illumination causes uniform image changes, i.e.,

does not consider complex lighting effects.

III. PROPOSED METHOD

This paper proposes a method to exploit lighting effects

for camera tracking in indoor environments. The three main

contributions are described in the following subsections.

First, we present a lighting adaptable map representation

for indoor environments. Second, we propose a method to

estimate the light setting present in the scene from the current

camera observation. Third, we leverage these components

to exploit lighting effects in a direct dense camera tracking

approach. Figure 1 illustrates the principle of our method.

A. Lighting Adaptable Maps

The proposed map representation builds on our approach

for reflectance mapping [1] which reconstructs the surface

geometry of the scene as a triangular mesh defined on a set

of vertices vi ∈ V . Based on the measured radiosity B(vi)
of the scene, we compute the irradiance H(vi) and obtain

the diffuse reflectance ρ(vi) = B(vi)/H(vi). The quantities

are related by the radiosity equation [38]

B(vi) = ρ(vi)
∑

j 6=i

B(vj)F (vi, vj)G(vi, vj) (1)

where F (vi, vj) is the form factor describing the geometrical

relationship between vi and vj based on distance and surface

normals. G(vi, vj) ∈ {0, 1} determines whether the line of

sight between vi and vj is blocked (by using ray tracing).



Lighting adaptable maps represent the global illumination

contributions of the lamps in the scene. To segment and index

the lamps l ∈ L = {0, 1, . . . , L−1}, we employ the method

proposed in [1] which clusters subsets of vertices Vl ⊂ V
with high radiosity. Therefore, a lamp must be on during data

acquisition to be segmented. However, as we assume static

geometry, lamp positions do not change and missing lamps

can be added to the map when switched on later.

The essential capability of our map representation is to

predict the scene radiosity B̂Lon
(vi) for a given light setting

Lon ⊆ L that defines which lamps are on. We precompute

the radiosity contributions of individual lamps B̂l(vi), store

them in the map, and exploit the linearity of the radiosity

equation to later compose them in real-time:

B̂Lon
(vi) =

∑

l∈Lon

B̂l(vi) (2)

The individual lamp contribution B̂l(vi) can be computed

by solving Equation 1 using ρ(vi) from the reflectance map

and the measured radiosity B(vi) for vertices of lamp l.
Although it is theoretically possible to solve the remaining

linear equation system analytically, it is infeasible in practice

due to the high number of vertices. Therefore, we compute

an approximate solution by iteratively evaluating Equation 1

B̂k+1

l (vi) = ρ(vi)
∑

j 6=i

B̂k
l (vj)F (vi, vj)G(vi, vj) (3)

where B̂k
l (vi) is the radiosity after k iterations (bounces).

We initialize this iterative evaluation with

B̂0
l (vi) =

{

B(vi) vi ∈ Vl

0 otherwise.

In our experiments we found that K = 10 iterations provide

a sufficiently accurate approximation. To simplify notation,

we imply k = K if the dependency on k is omitted.

Figure 2 illustrates how the predicted radiosity for different

light settings B̂k
Lon

depends on the number of bounces and

compares to the measured reference radiosity BLon
.

In order to point out the benefits of our map representation,

consider a naive approach to lighting adaptable mapping

that creates a new radiosity map for each encountered light

setting. For L lamps, such an approach would require to

store 2L radiosity values for each vertex and need at least the

same number of mapping runs to observe all light settings.

In contrast, we store only L radiosity components per vertex

and just need a single mapping run if all lamps are on.

B. Light Setting Estimation

A lighting adaptable map is a parametric model that allows

to predict the scene radiosity depending on its parameters

called a light setting. To compare observations of the real-

world to the map, it is required to determine whether lamps

are on or off in reality and to adapt the map accordingly.

In the following we propose a method for light setting

estimation based on a single color image.

Fig. 2: Predicted radiosity B̂k
Lon

for k = 0, 1, 10 bounces

compared to the measured radiosity BLon
(left to right) for

the light settings LS03, LS48, LS63 (top to bottom) rendered

with a virtual exposure of 30ms, 300ms, 30ms, respectively.

As all parameters of our model are binary variables, a light

setting Lon can also be expressed as a vector x ∈ {0, 1}L

with

xl =

{

1 l ∈ Lon

0 otherwise.

To find the light setting x∗ that best explains the current color

image IC , we want to exploit the superposition in Equation 2

and thus transform IC to its corresponding radiosity image

IB = f−1(IC)/(c · ∆t) using the inverse camera response

function f−1 obtained by radiometric calibration [39], [40]

as well as the gain c and exposure time ∆t used to capture

the image. Given the current camera pose estimate, we can

obtain a rendering of the map ÎB̂x

illuminated by an arbitrary

light setting x and compare it with the real image IB . More

specifically, we find the light setting x that minimizes the

sum of squared errors between the measured radiosity B
and its predicted counterpart B̂x normalized on the map

reflectance ρ over all pixels u in the image domain Ω:

x
∗ = argmin

x

∑

u∈Ω

‖
(

IB(u)− ÎB̂x

(u)
)

/Îρ(u)‖2 (4)

The error for a specific x can be written as

ex = x
T
A

T
Ax− 2xT

A
T
b+ b

T
b

A =
[

stack(ÎB̂0
) . . . stack(ÎB̂L−1

)
]

∗w

b = stack(IB) ∗w

w = 1/stack(Îρ)

(5)

where the stack() operator stacks all image pixels, in this

case for each color channel, into a vector. The multiplication

of w is meant row-wise, the devision component-wise. We

efficiently build the components ATA (L×L), AT b (L×1),

and bT b (1×1) in parallel on the GPU and only perform the

evaluation of ex on the CPU. As this evaluation is extremely

fast (approximately 1 ns), we can afford to solve Equation 4

brute-force. For up to L = 20 lamps (2L ≈ 106) the required

computation time is less than 1ms and dominated by the time

needed to build the components.



C. Camera Tracking

Camera tracking is the problem of estimating the camera

pose T ∈ SE(3) for every time t the camera provides a

frame It. Using the terms from [41], frame-to-frame tracking

yields an odometry solution prone to drift for the global

pose Tt,0 = Tt,t−1 . . .T1,0, while frame-to-model tracking,

at least in a previously built model, does not suffer from these

effects due to its reference to the global map. As the names

suggest, the former finds Tt,t−1 by comparing It to It−1

whereas the latter compares It to a rendering of the model

Î . Given two input frames, there is no difference between

both tracking variants, so in the following we only describe

the terms for frame-to-model tracking as the ones for frame-

to-frame tracking can easily be obtained by replacing the

rendered quantities with the ones from the last frame.

Our direct dense camera tracking approach can work on

color (or gray-scale) images by utilizing the depth from the

model to apply projective data association

ũ = π(KTt,t−1V̂ (u)) (6)

where π is the perspective projection function, K the camera

matrix, and V̂ the vertex map created using the depth image

ÎD rendered from the model. As proposed by [41], we embed

the data association optimization loop in a coarse-to-fine

approach using three image pyramid levels.

In case a measured depth image ID is provided, we can

use its geometric information in addition to the radiometric

information contained in the color image IC . We estimate

the camera pose

T
∗
t,t−1 = argmin

Tt,t−1

EC + wGEG (7)

with wG = 0 if only the color error is used and wG = 10
if the geometric error is added. The weighting is realized as

described by [36], which we also follow to efficiently solve

the pose estimation problem on the GPU. The geometric

error term

EG =
∑

u∈Ω

‖
(

Tt−1,tV (ũ)− V̂ (u)
)T

N̂(u)‖2 (8)

uses a point-to-plane metric. Its Jacobians are left out for

brevity here as they can be found in [41]. The color error

term

EC =
∑

u∈Ω

‖IC(ũ)− ÎĈ(u)‖2 (9)

uses image warping as described by [42].

The core idea to leverage our map representation and

light setting estimation for direct dense camera tracking is

to adapt the rendered color image ÎĈ = f(ÎB̂
x
∗

· c · ∆t)
to the lighting conditions currently present in the scene. We

perform a single frame-to-frame tracking step and use the

previous global pose to obtain an approximate pose estimate

T≈
t,0 = Tt,t−1Tt−1,0 for the light setting estimation and as

initial estimate for the model tracking of the global pose Tt,0.
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Fig. 3: Maps for the datasets DS1 (left) and DS2 (right) used

in the experimental evaluation. The black indices and red

segmentations illustrate the lamps contained in the models.

Decimal Binary (LSB = x0, MSB = x5) Set

LS x0 x1 x2 x3 x4 x5 Lon

00 0 0 0 0 0 0 {}
01 1 0 0 0 0 0 {0}
02 0 1 0 0 0 0 {1}
03 1 1 0 0 0 0 {0, 1}
· · · · · · · · ·
12 0 0 1 1 0 0 {2, 3}
15 1 1 1 1 0 0 {0, 1, 2, 3}
16 0 0 0 0 1 0 {4}
28 0 0 1 1 1 0 {2, 3, 4}
32 0 0 0 0 0 1 {5}
35 1 1 0 0 0 1 {0, 1, 5}
48 0 0 0 0 1 1 {4, 5}
51 1 1 0 0 1 1 {0, 1, 4, 5}
60 0 0 1 1 1 1 {2, 3, 4, 5}
· · · · · · · · ·
63 1 1 1 1 1 1 {0, 1, 2, 3, 4, 5}

TABLE I: Light Setting Notations

IV. EXPERIMENTAL EVALUATION

In this section we present experiments to evaluate the

three main contributions of this paper. After introducing the

datasets, we show the lighting prediction capabilities of the

proposed map representation, discuss the accuracy of our

light setting estimation method, and finally investigate the

benefits of those for a direct dense camera tracking approach.

A. Datasets

We recorded two datasets in a conference room of our

lab.1 As can be seen in Figure 3, the geometry in the room

(4.8m × 4.5m × 2.9m) alters only slightly between the

datasets but DS1 has significantly more texture than DS2.

The reconstructed meshes have a resolution of 5mm, which

results in 3,786,298 vertices and 7,570,727 faces for DS1 and

4,287,363 vertices and 8,568,480 faces for DS2. For a fair

comparison in the pose tracking experiments, we intended

to use poses from ORB-SLAM2 [11] to build these maps.

However, due to its performance, this was only feasible for

the feature-rich dataset DS1 and we had to use ground-truth

poses for DS2. To obtain ground-truth poses, we employed

a VIVE tracking system with four base stations placed in

the room ceiling corners and rigidly attached an extrinsically

calibrated VIVE tracker to our ASUS Xtion Pro Live RGB-D

camera using a 3D-printed mounting.

1The datasets used for the experimental evaluation of our method are
available at: http://tracklam.informatik.uni-freiburg.de

http://tracklam.informatik.uni-freiburg.de


Fig. 4: Fraction of poses as a function of the translational [m] (top) and the rotational [◦] (bottom) tracking error for the

trajectories DS1.T1, DS1.T2, and DS1.T3 (left to right). All methods show similar performance on the texture-rich DS1.

The conference room contains four area ceiling lights by

default and we added two additional light bulbs to increase

the complexity of the datasets. Figure 3 shows how these

lamps got segmented and indexed in our lighting adaptable

map representation. In reality, the ceiling lamps 0 and 1 as

well as 2 and 3 can only be switched on and off as pairs

while the light bulbs 4 and 5 can be controlled individually.

As we do not provide this information to our method, it

has to consider 2L = 64 possible light settings even though

not all are actually contained in the datasets. Light setting

notations are provided for convenient look-up in Table I.

For both datasets we recorded three trajectories under

varying lighting conditions as can be seen in Table II.

All sequences use fixed camera exposure times and gains

suited for the light settings contained in the trajectory. Equal

trajectory numbers contain similar lighting in both datasets.

To provide ground-truth light settings, we noted down lamp

switching events during recording and later labeled the exact

point in time by looking at the trajectories frame by frame.

Trajectory Frames c ∆t Light Settings

DS1.T1 5248 3 25ms 12, 15, 03, 15, 12
DS1.T2 3078 4 25ms 12, 28, 60, 48
DS1.T3 3595 10 30ms 48, 32, 48, 16, 48, 32, 48, 16, 48

DS2.T1 4541 2 20ms 60, 28, 12, 15, 03, 35, 51
DS2.T2 6458 4 25ms 51, 48, 60, 28, 12, 28, 60, 48, 51
DS2.T3 6058 10 30ms 48, 16, 48, 32, 48, 16

TABLE II: Trajectories with Varying Lighting Conditions

B. Lighting Adaptable Maps

To demonstrate the advantages of our map representation,

we recorded the maps when all lamps in the scene were

on (LS63). In this case, we can directly build a lighting

adaptable map that allows to predict the scene radiosity for

arbitrary light settings Lon. To evaluate the accuracy of this

prediction, we additionally captured radiosity maps of DS1

for the light settings LS03 and LS48 as a reference. We

compare the radiosity predicted by our model B̂Lon
with the

Fig. 5: Radiosity error Ek
Lon

as a function of the number of

bounces k evaluated for different light settings Lon on DS1.

measured reference BLon
and compute the error

Ek
Lon

=
1

|V |

∑

vi∈V

|B̂k
Lon

(vi)−BLon
(vi)| (10)

depending on the number of bounces k. As the measured

reference map might slightly vary from our model, we do not

use vertex samples that differ more than 10% in reflectance.

As can be seen in Figure 5, k = 10 bounces are sufficient

to propagate the light in the scene. Figure 2 illustrates the

dependency on the bounces and shows how well the radiosity

is predicted by our map representation compared to the

measured reference.

C. Light Setting Estimation

The light setting estimation is a crucial part of our method

if no other means to obtain this information are available. As

light setting estimation is a binary classification problem for

each lamp, we evaluate it using the accuracy

ACC =
TP + TN

TP + TN + FP + FN
(11)

and report results in Table III. In order to obtain independent

light setting estimates for this evaluation, we do not use the

estimates for camera tracking and instead obtain the required

poses using the ground-truth light settings (C+D,GT).

When interpreting the results, it should be considered that

the estimation problem might not be sufficiently constrained

in certain situations. The results show that the accuracies



Fig. 6: Fraction of poses as a function of the translational [m] (top) and the rotational [◦] (bottom) tracking error for the

trajectories DS2.T1, DS2.T2, and DS2.T3 (left to right). On the texture-poor DS2, exploiting gradients caused by lighting

improves camera tracking as shown by the superior performance of C+D,GT and C+D,DT compared to C+D,NO.

Lamp 0 Lamp 1 Lamp 2 Lamp 3 Lamp 4 Lamp 5 All

DS1.T1 97.80% 97.25% 93.08% 94.93% 64.67% 32.40% 76.47%

DS1.T2 91.90% 94.08% 93.40% 93.33% 97.46% 62.59% 88.17%

DS1.T3 100.00% 100.00% 100.00% 99.33% 99.36% 94.38% 98.61%

DS2.T1 71.41% 71.88% 83.61% 81.51% 60.34% 70.85% 73.64%

DS2.T2 87.33% 87.78% 91.31% 87.75% 85.96% 62.45% 83.05%

DS2.T3 99.30% 99.50% 99.92% 99.59% 97.34% 90.80% 97.43%

All 91.32% 91.67% 93.54% 92.59% 83.39% 68.21% 85.88%

TABLE III: Accuracy of Light Setting Estimation

for the brighter ceiling lamps 0 to 3 are significantly higher

than those for the medium bright light bulb 4 and the even

less bright light bulb 5. This is not surprising, as the color

images are dominated by the illumination of the ceiling

lamps, especially in the trajectories T1 and to a lesser extent

in T2. In contrast, the accuracy for the bulbs is comparatively

high in the T3 trajectories where the ceiling lamps remain

off. On the bright side, estimation errors due to missing

constraints will likely not cause severe problems for camera

tracking, as the falsely predicted light setting will still result

in a rendering that is close to the one for the correct setting.

We claim that the achieved accuracy is sufficient to employ

our light setting estimation for camera tracking.

D. Camera Tracking

As the goal is to evaluate camera tracking performance

and our approach does not include any means for camera

relocalization, we (re)initialize the camera with ground-truth

poses. To compute the tracking errors we align poses to

the respective map coordinate system using the method of

Horn [43] as proposed by [44]. We evaluate the translational

and rotational tracking errors for variants of our method

that use the color error term only (C) and variants that

additionally use the geometric error term (C+D). Moreover,

we distinguish between variants that use ground-truth light

settings (GT), estimate the light settings (DT), and do no

lighting adaption (NO). NO uses a rendered color image for

LS63 whose mean radiosity is equalized to fit the one of

the measured color image. We also provide a comparison to

the RGB-D ORB-SLAM2 localization mode (ORB) which

performs pose tracking on a map built using LS63.

Figure 4 shows the tracking errors for dataset DS1. All

methods perform well since the map is rich in reflectance-

based gradients. ORB slightly outperforms our approaches

in terms of robustness, i.e., reaches closer to 1 as it tracks

more poses successfully as does C+D compared to C. There

is also a tendency that methods that do no lighting adaption

(NO and ORB) perform better on lower trajectory numbers

which contain light settings more similar to LS63.

Figure 6 reports the results for DS2. We do not use all

variants on this dataset as it is too challenging for color only

tracking as can be seen from the poor performances of C,GT.

Also ORB performs significantly worse than on DS1 as it has

to rely on fewer reflectance gradients that can provide robust

features. One of the interesting insights from Figure 6 is the

similar performance of C+D,GT and C+D,DT which shows

that using our light setting estimation method leads to camera

tracking results comparable to those when using ground-

truth labels. Even more importantly, they clearly outperform

C+D,NO showing that exploiting lighting-based gradients is

beneficial for accurate and robust camera tracking.

E. Runtime Performance

We implemented our method efficiently to achieve real-

time performance on modern hardware. Camera tracking

including light setting estimation runs with approximately

60 fps using an i7-4790K CPU and a GTX 2080Ti GPU.

V. CONCLUSIONS

In this paper, we presented a lighting adaptable map

representation for indoor environments and a light setting

estimation method that uses a single color image to determine

which lamps in the scene are currently on. We leverage these

capabilities in a direct dense camera tracking approach by

matching the camera observations against renderings of the

correspondingly adapted map. We evaluated the proposed

approach in real-world experiments in scenes with varying

lighting conditions and showed that our method exploits the

effects of lighting, which is especially beneficial for camera

tracking in environments with few texture-based gradients.
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