
Learning Relational Navigation Policies
Alexandru Cocora∗, Kristian Kersting∗, Christian Plagemann†, Wolfram Burgard†, Luc De Raedt∗

∗Machine Learning Lab, †Autonomous Intelligent Systems Group
Institute for Computer Science, University of Freiburg

Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany
{cocora,kersting,plagem,burgard,deraedt}@informatik.uni-freiburg.de

Abstract— Navigation is one of the fundamental tasks for a
mobile robot. The majority of path planning approaches has been
designed to entirely solve the given problem from scratch given
the current and goal configurations of the robot. Although these
approaches yield highly efficient plans, the computed policies
typically do not transfer to other, similar tasks. We propose to
learn relational decision trees as abstract navigation strategies
from example paths. Relational abstraction has several interest-
ing and important properties. First, it allows a mobile robot to
generalize navigation plans from specific examples provided by
users or exploration. Second, the navigation policy learned in
one environment can be transferred to unknown environments.
In several experiments with real robots in a real environment
and in simulated runs, we demonstrate the usefulness of our
approach.

I. INTRODUCTION

For various tasks such as delivery, guidance, rescue etc,
mobile service robots need to plan their actions. In the past,
the vast majority of approaches for computing navigation paths
have dealt with solving the given navigation problem that
the robot faces during operation from scratch. Whereas such
approaches yield highly efficient paths [1], [2], they typically
do not take into account solutions to similar problems. In addi-
tion, these navigation plans cannot easily be communicated to
humans, which makes it hard to instruct the robot about typical
navigation behaviors. In this paper, we consider the problem
of learning abstract navigation plans for mobile robots based
on a set of trajectories in the configuration space of the robot.
The key idea is to utilize labels assigned to the individual
places in the environment and to generalize sequences of these
labels corresponding to the places traversed by the robot while
performing its task.

The problem of planning trajectories of mobile robots has
been studied intensively in the past, as the capability of
effectively planning its motions is “eminently necessary since,
by definition, a robot accomplishes tasks by moving in the
real world” [3]. The different types of planning problems can
coarsely be classified according to the information provided
to the robot. The classical path planning problem is the
situation in which the robot has perfect knowledge about the
environment as well as its starting point and its goal position.
More complex problems emerge when the robot only possesses
partial knowledge. For example, when the location of the target
is unknown, the robot has to search for the target. In situations,
in which the environment is unknown but the target location
is known, D* [4] or LRTA* [5] are popular algorithms to

guide the robot to the goal location. Throughout this paper,
we consider the more complex situation in which the location
of the target point is not given a priori. Such a situation, for
example occurs, when a robot has to find the entrance hall in a
hotel or in a large office building. For such problems, different
algorithms including depth-first search and uninformed LRTA*
(see Koenig [6] for a comprehensive comparison) have been
proposed. Moreover, in most situations the actions of the robot
are non deterministic. Here, approaches based on Markov
decision processes (MDPs) [7] have been proposed [8]. MDPs
provide a sound theoretical framework to deal with uncertainty
related to the robot’s motor and perceptive actions during both
planning and plan execution phases.

Whereas these techniques provide highly elegant and often
also efficient solutions to the corresponding problems, they do
not have the ability to improve their performance by learning
from past experience within similar tasks (e.g., entrance halls
found in other office buildings). Our approach alleviates this
situation by adopting techniques from relational reinforce-
ment learning [9], [10], i.e., reinforcement learning within a
relational representation to learn general search preferences
for navigation problems. More precisely, our technique starts
from a set of specific example navigation plans, which can
either be computed by solving a relational MDP or can be
obtained from a helpful teacher, where it is assumed that a set
of labels can be assigned to each position in the configuration
space of the robot. Such labels can be obtained robustly by
analyzing sensor measurements and their temporal evolution,
see [11], [12]. The observed labels are used to form (relational)
state descriptions of a relational Markov decision process
(RMDP). We then apply relational learning techniques for
generating abstractions. As a result, we obtain a relational
decision tree, which expresses preferences about navigation
actions. These preferences can then be used by the robot to
generate navigation actions. As our experiments show, the
navigation algorithm can deal with noise in the observed labels
and gracefully degrades to random search when the noise level
increases.

In the past few years, relational representations in machine
learning and AI received a lot of attention, see. e.g. [13],
and is known under the name statistical relational learning
(SRL). This appears to be an appropriate time to apply SRL
techniques within robotics. The advantages of the SRL ap-
proach are threefold. First, the learned navigation preferences
can be directly transfered to alternative instances of the same

main entrance

horizontal passage

room emergency exit

ve
rt

ic
al

 p
as

sa
ge

ve
rt

ic
al

 p
as

sa
ge

r5

r1

r4 r2r6

r3

Fig. 1. A map of hotel h. The robot in room r5 is supposed to find its way
to the main entrance r1 of the hotel.

navigation problem (e.g., searching for another exit in the
same building). Additionally, they can directly be transferred
from one environment to another one and in this way enable a
robot to efficiently carry out similar navigation tasks in even
unknown environments. Finally, our approach can be applied
to settings in which the example plans are not generated by a
robot but are provided by a human and have no guarantees of
being optimal. This setting is often called behavioral cloning
or learning by imitation. Our experiments show that also in
such cases our approach can be beneficial.

The paper is organized as follows. We first briefly review
MDPs and RMDPs. Then, we show how to learn abstract
navigation policies in the framework of RMDPs, and how to
use them to guide the search of a mobile robot. Section IV
reports on several experiments carried out on a real robot as
well as in simulation, which shows that our approach leads to
efficient navigation plans.

II. MARKOV DECISION PROCESSES

Our running example will be the hotel world where the
task of the robot is to find its way out of an unknown hotel.
Consider hotel h in Figure 1. The mobile robot is in room
r5. At each time, the robot can go from one room to another,
say r5 to r4. The action is probabilistic, i.e., with probability
p the action succeeds and the robot will be in r4, and with
probability 1− p the action fails and the robot stays in r5.

A natural formalism to encode the hotel world are Markov
decision processes (MDPs) [14]. MDPs are tuples M =
〈S, A, T, R〉, where S is a set of states such as r1, r2, . . . , r5,
A is a set of actions such as goto(r5, r4), T : S ×A× S →
[0, 1] a transition model, and R : S×A×S → [0, 1] a reward
model. The set of actions applicable in a state s ∈ S is denoted
A(s). A transition from state i ∈ S to j ∈ S caused by
some action a ∈ A(i) occurs with probability T (i, a, j) and a
reward R(i, a, j) is received, e.g., 10, when entering r5, and
0 otherwise. T defines a proper probability distribution if for
all states i ∈ S and all actions a ∈ A(i):

∑
j∈S T (i, a, j) = 1.

A deterministic policy π : S → A for M specifies which
action a ∈ A(s) to executed when the agent is in state s ∈ S,
i.e. π(s) = a. Given a policy π for M , and a discount factor
γ ∈ [0, 1], the state value function V π : S → R represents the
value of being in a state following policy π, w.r.t. expected
rewards. A policy π∗ is optimal if V π∗

(s) ≥ V π′

(s) ∀s ∈ S
and ∀π′. The optimal value function is denoted V ∗. One of
the standard techniques for exactly solving MDPs is value
iteration (VI). The VI algorithm assumes that the state space

is represented as a table and can be stated as follows: starting
with a value function V0 over all states, we iteratively update
the value of each state according to

Vt+1(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γVt(s
′)] (1)

to get the next (t = 1, 2, 3, . . .). VI is guaranteed to converge
in the limit towards V ∗.

Traditional MDPs and VI as expressed by Equation (1) are
essentially propositional in that each state must be represented
using a separate proposition. Therefore, they are severely lim-
ited in expressiveness and do not really capture the structure of
the underlying class of problems. As a consequence, it is hard
to generalize policies across domains with similar properties.
For instance, propositional policies for the hotel in Figure 1
cannot directly be applied in other hotels.

III. LEARNING RELATIONAL NAVIGATION POLICIES

Relational MDPs (RMDPs, see below) combine relational
logic with MDPs. Using RMDPs, it becomes possible to
generalize such policies even for those cases where the hotels
may possess a varying number of objects (rooms) and relations
(connections) among them.

A. Relational Logic

The hotel world can elegantly be represented using
relational logic. Reconsider hotel h in Figure 1: there
are rooms ro(r1), ro(r2), . . . , ro(r5) which are con-
nected: con(r1, r2), con(r1, r6), con(r2, r3), con(r2, r4),
con(r4, r5), con(r4, r6) together with the symmetric facts.
There are several types of rooms such as horizontal,
hPass(r4), and vertical passages, vPass(r2) and vPass(r6).
Furthermore, there are emergency exits, eExit(r3), and en-
trance halls, main(r1). At each time the robot is in a room,
in(r5), there are several actions the robot can take. One typical
such action is going from a room R into a horizontal passage
H, goto RHP(R, H). With some probability actions might fail,
i.e., the robot stays in the current room. The task for the robot
is to find its way out of a hotel, i.e., to “enter” main(r1).

In relational logic, expressions of the form p(t1, . . .tm),
where a relation symbol p followed by a bracketed m-tuple
of terms ti, are called atoms. A term is either a variable R

or a constant r1. We follow the convention that variables start
with an upper case and constants with a lower case character.

The main idea underlying RMDPs is to replace the propo-
sitional symbols used in MDPs by abstract states. An ab-
stract state is a conjunction Z of logical atoms, i.e., a
logical query and represents a set of states. Consider, e.g.,
the abstract state Z ≡ in(R), con(R, R′), ro(R), ro(R′). It
summarizes situations in which a robot is in a room connected
to another room. An instance z of Z is for example z ≡
in(r5), con(r4, r5), hPass(r4), ro(r4), ro(r5); there exists a
substitution θ such that Zθ ⊆ z. A substitution θ is an
assignment of terms to variables {X1/t1, . . . Xn/tn} where Xi
are variables and all ti are terms. A term, atom or conjunction
is called ground if it contains no variables. Conjunctions are

implicitly assumed to be existentially quantified. A conjunction
A is said to be subsumed by a conjunction B, denoted by
A �θ B, if there exists a substitution θ such that Bθ ⊆ A.

B. Relational Markov Decision Processes

Using these notions from relational logic, we now briefly
review the key ingredients of RMDPs: abstract actions and
abstract rewards. For more details, we refer to [15].

An abstract action1 is a rule H
p:A
←−− B where A is an atom

representing the name and the arguments of the action and
B is an abstract state denoting the preconditions of A. H is
an abstract state and represents the successful outcome of A.
The value p is the probability that the action succeeds. The
semantics of an abstract action are: If the current state b is
subsumed by B, i.e., b �θ B, then taking action A will result
in [b \Bθ]∪Hθ with probability p. With probability 1−p the
action fails, i.e., we stay in b. As an illustration, consider

in(R′), con(R, R′),
hPass(R′), ro(R)
ro(R′), R 6= R

′

0.9:goto RHP(R,R′)
←−−−−−−−−−−

in(R), con(R, R′),
hPassl(R′), ro(R)
ro(R′), R 6= R

′

which describes that a robot is going from room R into a
horizontal passage R′ with probability 0.9. Applied to the
above state z the action goto RHP(r, r′) will yield z′ ≡
in(r4), con(r4, r5), hPass(r4), ro(r4), ro(r5) with probabil-
ity 0.9 and z with probability 0.1.

The abstract reward model specifies the rewards generated
by entering abstract states. It is specified as a finite list of
value rules of the form c ← B were B is an abstract state
and c ∈ R. To any abstract state Z, V assigns the maximal
value c of all matching value rules c ← B to Z as value.
A rule matches if Z �θ B. Consider e.g. 10 ← in(r′) and
0 ← true. It assigns 0 to z but 10 to z′. Using true in the
last value rule assures that all states are assigned a value. This
simple reward model is expressive enough for the hotel world,
which is basically a shortest-path problem: the goal to reach is
main. When main is entered, the process ends. Such episodic
tasks are encoded using so-called absorbing states, which can
be specified by a set of queries, e.g., main(R). In our example,
z is not absorbing but z′ is. In addition, integrity constraints
can be employed to exclude impossible states, cf. [15].

C. Relational Navigation Policies

Let us now discuss how to compute (navigation) policies
from RMDPs. The key observation is that each RMDP induces
a traditional MDP [15], which can be obtained by starting
in some initial ground state and then applying each abstract
transition until no more new ground states can be computed.
Thus, the existence of an optimal policy π for each (resulting)
ground MDP is guaranteed. In the hotel world, a navigation
pattern might be

goto RHP(r5, r4)←
in(r4), hPass(r4), ro(r4)
con(r4, r5), ro(r5), r4 6= r5

(2)

1For the sake of simplicity, we will consider only actions which succeed
or fail and which do not cause any costs. The more general cases are
straightforward.

lowestconnected(R, R′)goto RR(R, R′)goto RHP(R, R′)

background knowledge

vPass(R)

in(R), ro(R)

con(R, R′), hPass(R′)

goto HPVP(R, R′)

goto VPHP(R, R′)goto VPLC(R, R′)

Fig. 2. A relational decision tree representing a relational navigation policy
for the hotel world.

which states that the robot will go to the horizontal passage r4
when it is in room r5. Of course, such policies are extensional
or propositional in the sense that they specify for each ground
state separately which action to execute. Instead, we would
like to learn an abstract policy, which intentionally specifies
the action to take for an abstract state, i.e., for the set of ground
states it makes abstraction from. More formally, an abstract,
i.e., relational navigation policy, is a finite set of relational
navigation rules of the form A ← Z where A is an abstract
action and Z is an abstract state. For instance, the relational
navigation rule

goto RHP(R, R′)←
in(R), con(R, R′), hPass(R′)
ro(R), ro(R′), R 6= R′

(3)

generalizes (2) over any rooms R and R′.
To learn a relational navigation policy, we start from a set

of traces ti, i.e., ground situation-action sequences that lead to
a goal state. These specific situation-action sequences can be
optimal (for instance, if they were obtained by computing the
optimal policy for a fully known map of the environment) or
not (for instance, if they are provided by a human that shows
the robot how to proceed from a particular initial goal to a goal
state). Whereas the first case could correspond to the situation
where the model is known, the second one corresponds to
a model-free case, and also allows to learn from imitation or
perform what is called behavioral cloning. The key idea is that
each trace ti describes a situation-action sequence, for instance
for leaving a hotel. More precisely, each ti consists of ground
navigation rules such as (2). Each rule describes an interpreta-
tion, in(r5), con(r4, r5), hPass(r4), ro(r4), ro(r5), r4 6= r5,
i.e, a simple enumeration of all ground facts the robot needs to
know – the rooms, the connections among the rooms, the types
of the rooms, i.e., room, horizontal passage, vertical passage,
elevator, etc. – in order to take the associated optimal actions
goto RHP(r5, r4). The task then is to induce a relational nav-
igation policy based on these situation-action pairs that makes
abstraction of the experience provided to the agent. This can be
realized using the learning from interpretations settings well
studied in the field of inductive logic programming [16] where
relational programs are induced from interpretation-class pairs.
One standard approach to employ during generalization are
relational decision trees.

A relational decision tree [17] (see Figure 2) is a binary
decision tree in which each node contains a conjunction such
as in(R), ro(R). Each node captures a logical test, which
either succeeds or fails when applied to a particular state. If

it succeeds, the left subtree is considered; otherwise the right
one. Moreover, nodes may share variables with their ancestor
nodes such con(R, R′), hPass(R′). The test to be performed at
each node consists of its conjunction together with the con-
junctions on the succeeding path from the root to the node for
instance in(R), ro(R), con(R, R′), hPass(R′). Leafs represent
the action to be taken in the abstract state consisting of the
conjunctions along the path to the leaf. For instance, the tree
essentially encodes the relational navigation rule (3) in its left-
most path and also suggests to take action goto RHP(r5, r4) in
state z. To induce the tree, we essentially employ Quinlan’s
well-known C4.5 [18] scheme with the information gain as
splitting criterion, for more details see [17]. To summarize,
our approach works as follows:

1) Observe a number of successful ground state-action
sequences

2) Induce a relational navigation policy in the form of a
relational decision tree from this experience.

The resulting abstract navigation policy typically – as in our
experiments – uses local information only, i.e., the environ-
ment does not need to be completely known.

Indeed, this is akin to explanation-based learning (EBL)
[19], [20], where subsequent to a successful problem solving
session a proof is constructed that explains the success. The
proof is then generalized to a description of states which
can be solved in the same way. In state-space problems
– as we are investigating – proofs correspond to showing
that a sequence of actions achieves a goal and EBL cor-
responds to goal regression over an state-action sequence.
Therefore, it is not surprising that EBL has been used as
generalization algorithm within the Prodigy system [21] to
learn general control rules from specific examples of problem
solving episodes. Later, Dietterich and Flann [22] combined
this idea with reinforcement learning by associating these
generalized state descriptions with values obtained from value
iteration. Subsequently, Boutilier et al. [23] and Kersting et
al. [15] generalized Dietterich and Flann’s approach to rela-
tional domains, i.e., RMDPs. Recently, Mausam and Weld [10]
suggested to approximate the value function by inducing a
relational regression tree from observed traces. Unfortunately,
the relational description of states that share a value becomes
increasingly complex as these states get farther and farther
from the goal while the number of states covered by an abstract
state reduces dramatically. This results in a large number of
value rules. Indeed this has been observed to be the case in
early EBL systems and has been called the utility problem [22].
To avoid this problem, our approach works directly with
state-action sequences and inductively generalizes them into
relational policy trees. At the same time, this has the advantage
that – in contrast to EBL – no model is required, which allows
to apply our techniques onto behavioral cloning.

One particularly interesting case, on which we will focus
in the experiments, is concerned with learning from optimal
state-action sequences. These can actually be generated if the
model, i.e., the RMDP R is fully known. To obtain an optimal

Fig. 3. Map of the real office environment in which the experiments with
our robot were carried out. When the robot was in room ”C”, only three node
labels were observable (black). All other labels as well as the overall topology
of the environment were unknown (gray). The used navigation policies were
learned from different real buildings.

state-action sequence one has to ground the RMDP and then
compute an optimal navigation policy for the resulting MDP
using any MDP solver. Thus, our approach does not face
the utility problem and, thus, typically learn more compact
policies than approaches approximating the value function.

IV. EXPERIMENTS

Our algorithm has been evaluated in experiments carried out
with a real ActivMedia Pioneer 2-DX8 robot equipped with
two SICK laser range finders as well as in simulation. The goal
of the experiments is to demonstrate that the abstract naviga-
tion plans can be used to effectively control a mobile robot to
reach its target location even in unknown environments.

A. Implementation Details

In our current system, we use the system SPUDD [24] to
solve the MDPs and to generate example navigation plans. To
execute the navigation plans on the robot and in simulation
runs, we used the Robot Navigation Toolkit CARMEN [25].
We assume that the robot can identify the type of place at
its current location as well as the type of place a door leads
to [11], [12]. We do not require this information to be free of
noise as one of our experiments demonstrates.

Under these assumptions, we perform a forward search
guided by the learned navigation policy. That is, we start
in some state and then determine which action to perform
next by evaluating the relational decision tree on the current
state. We perform the action, observe the next state, and repeat
the overall process. Since relational (navigation) policies are
not deterministic, the system needs to choose among several
equally likely actions. We choose uniformally among all possi-
bilities and put the ones not chosen in a list AltS. Whenever the
robot encounters a loop or a dead end, it calculates the shortest
path from its current state to every state in AltS and chooses
the one with the shortest distance to the current location. In
case AltS is empty, we put every state connected to an already
visited state into AltS.

B. Navigation in an Office Environment

The first experiments are designed to demonstrate that our
approach results in effective navigation behaviors in real-
world scenarios. The experiments have been carried out with
a real mobile robot in a typical office environment (see
Figure 3). The task of the robot was to find the entrance

Fig. 4. Application of an abstract policy for finding the entrance hall of a
building. The robot first leaves the room and enters the corridor (left image).
Then it samples randomly and moves to the corridor further down (middle
image). At the same step in a different experiment, it chose the upper corridor
directly (right image).

hall of the building using a navigation policy that was learned
by abstracting from optimal trajectories calculated given the
floor plans of two other buildings. The actual map of the
environment was unknown to the robot and just the labels
of neighboring rooms could be observed.

In the two experiments described here, the robot started
in the upper seminar room, labeled S. According to the
navigation policy, the first action of the robot was to leave
the room and to enter the corridor labeled F . The situation
after carrying out this action together with the part of the
environment observed by the robot thus far is depicted in the
left image of Figure 4. At this point, the navigation policy
outputs two equally likely alternatives: corridor C and hallway
H . In the first experiment, it chose to turn right and enter the
corridor labeled C. Since the place labeled O is not a corridor,
the robot decided to return to F and to choose the alternative
corridor adjacent to F , which was corridor H . From there it
proceeded to the area labeled E, which corresponds to the
entrance hall. The resulting trajectory of the robot is depicted
in the middle image of Figure 4. The rightmost image of
Figure 4 shows the resulting trajectory in case the optimal
corridor H is sampled directly when the robot is in F .

C. Simulation Experiments

To quantitatively evaluate the performance of our approach,
we compared it with the optimal paths as well as real-time
search methods, which interleave planning (via local searches)
and plan execution. A popular real-time search method for
robot navigation in unknown terrain is uninformed LRTA*
with maximum lookahead [5].

We ran several simulation experiments on maps of real
buildings such as the ones depicted in Figure 5. From the
outlines of these buildings we manually generated an anno-
tated topological map which then was used for calculating
paths. To evaluate the performance, we randomly chose the
starting locations. These starting locations are indicated by
yellow/gray labels in Figure 5. The goal of the robot in all
tasks was to find the exit of the building as indicated in the

Fig. 5. Maps used for the second set of experiments. The upper two maps
were used for learning and the lower one for testing.

figure. On average, the optimal plan length was 3.1 ± 0.99
(mean ± standard deviation). Our method achieved 4.9±2.18,
whereas uninformed LRT∗ performed 30.7 ± 18.25 steps to
reach the exit. Thus, our approach required substantially fewer
steps than uninformed LRTA*. Note that in these experiments
we count each room visited as a step. More over, LRTA*
performed in no case superior to our approach. This illustrates,
that our approach substantially increases the efficiency of the
resulting navigation plans. At the same time the plans are only
1.8 ± 1.55 steps longer than the optimal plans. In additional
experiments not reported here, a two-sampled t-test revealed
that the improvement obtained by the abstract policy search is
significant on the α = 0.05 level.

D. Behavioral Cloning

One important aspect of our approach is that the training
instances do not need to be the optimal paths. Rather, they can
also be generated by manually sketching possible trajectories.
The final experiment described here has been carried out
to analyze the degradation of the performance in the case
the system has to learn from sub-optimal training instances.
To evaluate this, we performed an experiment in which we
used 20 maps of hotels where each hotel had 15-20 different
areas. In a leave-one-out cross-validation we tested how the
performance of our approach compares to that of the optimal
policy and the real-time search algorithm. The general policy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

no
rm

al
iz

ed
 s

uc
ce

ss
 ra

te

steps allowed to find the goal

leave one out cross validation

abstract policy
sub-optimal training
uninformed LRTA*

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
no

rm
al

iz
ed

 s
uc

ce
ss

 ra
te

noise level

noise experiment

strategy 0
strategy 1

uninformed LRTA*

Fig. 6. Normalized success rates (see text) for different maximal steps
allowed to reach the goal (left). Normalized success rates for a varying level
of noise in the observed labels (right).

was learned on 19 maps and than evaluated on the one left
out. We performed 5 restarts and started randomly in one of
the areas. Figure 6 shows the normalized success rate of the
different approaches which is defined as 1/N

∑N

i=1
l∗/li · r

j
i

where N = 20 · 5 is the number of runs, l∗ is the length
of the optimal path, li the length of the path in the i-th run,
and rj

i indicates whether the goal has been reached within
j steps. All differences are significant (two-sampled t-test,
α = 0.05). Again, our approach is substantially better than
uninformed LRTA*. Additionally, the policy learned from sub-
optimal and hand-drawn trajectories is only 10% worse than
the policy learned from optimal trajectories. Note that we also
found that the policy abstracted from hand-drawn trajectories
still yields better paths than manually generated paths, which
where almost 1.8 times longer than the optimal ones whereas
those generated by our algorithm showed only 25% overhead.

E. Observation noise

A robots perception of the world is never perfect. Our
algorithm is able to cope with noisy label observations and
gracefully degrades to uninformed LRTA* when the noise
level increases. We implemented two strategies for dealing
with situations where the belief about place labels has to
be revised. Whereas Strategy 0 always returns to the pre-
vious place when an inconsistent place label was detected,
Strategy 1 stays in the new room, updates the faulty label
information, and continues navigating from there. The right
diagram of Figure 6 shows how the navigation performance
changes with a varying level of observation noise. The results
were obtained from 1470 simulated runs in five hotels. The
noise level specifies the probability with which a label is
observed as a different one. It can be seen in the diagram that
Strategy 1 outperforms Strategy 0 for all noise levels and that
its performance smoothly degrades to the one of uninformed
LRTA* when the noise level approaches 1.

V. CONCLUSIONS

This paper presents a new approach for generating abstract
navigation policies using relational learning. The key idea is
to learn a relational decision tree from sequences of places

traversed by a robot while it carries out its task. The resulting
tree can then be used to guide the search of the robot for the
same and similar tasks. The advantages of our approach are
that relational abstraction allows to generalize from previously
planned paths and to transfer policies across tasks in even
previously unseen environments.

Our algorithm has been evaluated in experiments with real
robots as well as in simulation runs. The results demonstrate
that the learned policies are highly efficient and outperform
uninformed LRTA* with maximum lookahead. Additionally,
we have presented an experiment in which we learn trajectories
from sketched examples provided by users.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[2] S. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[3] J. Latombe, Robot Motion Planning. Kluwer Acad. Publ., 1991.
[4] A. Stentz, “The focused D* algorithm for real-time replanning,” in Proc.

of IJCAI-95, 1995.
[5] R. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no.

2-3, pp. 189–211, 1990.
[6] S. Koenig, “Agent-centered search.” AI Magazine, vol. 22, no. 4, pp.

109–132, 2001.
[7] D. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.
[8] S. Koenig and R. Simmons, “Xavier: A Robot Navigation Architecture

Based on Partially Observable Markov Decision Process Models,” in
Artificial Intelligence Based Mobile Robotics: Case Studies of Successful
Robot Systems. MIT Press, 1998, pp. 91 – 122.

[9] S. Džeroski, L. De Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning, vol. 43, pp. 7–52, 2001.

[10] Mausam and D. Weld, “Solving Relational MDPs with First-Order
Machine Learning,” in Proc. ICAPS Workshop on Planning under
Uncertainty and Incomplete Information, 2003.

[11] A. Rottmann, O. Martı́nez Mozos, C. Stachniss, and W. Burgard, “Se-
mantic place classification of indoor environments with mobile robots
using boosting,” in Proc. of AAAI-05, 2005, pp. 1306–11.

[12] O. M. Mozos, C. Stachniss, and W. Burgard, “Supervised learning of
places from range data using Adaboost,” in Proc. of ICRA-05, 2005.

[13] L. De Raedt, T. Dietterich, L. Getoor, and S. Muggleton, Eds., Working
Notes of the Dagstuhl-Seminar 5051 on Probabilistic, Logical and
Relational Learning - Towards a Synthesis, 2005.

[14] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[15] K. Kersting, M. Van Otterlo, and L. De Raedt, “Bellman goes Rela-
tional,” in Proc. of ICML-04, 2004, pp. 465 – 472.

[16] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory
and methods,” J. of Logic Progr., vol. 19, no. 20, pp. 629–679, 1994.

[17] H. Blockeel and L. De Raedt, “Top-down induction of first order logical
decision trees,” Artificial Intelligence, vol. 101, pp. 285–297, 1998.

[18] J. Quinlan, “C4.5: Programs for machine learning,” Morgan Kaufmann
series in machine learning, 1993.

[19] T. Ellman, “Explanation-based Learning: A Survey of Programs and
Perspectives,” ACM Comp. Surveys, vol. 21, no. 2, pp. 163–221, 1989.

[20] M. Lent and J. Laird, “Learning procedural knowledge through obser-
vation,” in Proc. of the First International Conference on Knowledge
Capture (K-CAP), Canada, 2001, pp. 179–186.

[21] S. Minton, J. Carbonell, C. Knoblock, D. Kuokka, O. Etzioni, and
Y. Gil, “Explanation-Based Learning: A Problem Solving Perspective,”
Artificial Intelligence, vol. 40, pp. 63–118, 1989.

[22] T. G. Dietterich and N. S. Flann, “Explanation-based learning and
reinforcement learning: a unified view,” Machine Learning, vol. 28, pp.
169–210, 1997.

[23] C. Boutilier, R. Reiter, and B. Price, “Symbolic dynamic programming
for first-order MDP’s,” in Proc. of IJCAI’01, 2001, pp. 690–697.

[24] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “Spudd: Stochastic
planning using decision diagrams,” in Proc. UAI-99, 1999.

[25] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming,” in Proc. of IROS-03, 2003.

