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Abstract—Operating a robot in the open world requires a
high level of robustness with respect to previously unseen en-
vironments. Optimally, the robot is able to adapt by itself to
new conditions without human supervision, e.g., automatically
adjusting its perception system to changing lighting conditions.
In this work, we address the task of continual learning for
deep learning-based monocular depth estimation and panoptic
segmentation in new environments in an online manner. We
introduce CoDEPS to perform continual learning involving mul-
tiple real-world domains while mitigating catastrophic forgetting
by leveraging experience replay. In particular, we propose a
novel domain-mixing strategy to generate pseudo-labels to adapt
panoptic segmentation. Furthermore, we explicitly address the
limited storage capacity of robotic systems by proposing sampling
strategies for constructing a fixed-size replay buffer based on
rare semantic class sampling and image diversity. We perform
extensive evaluations of CoDEPS on various real-world datasets
demonstrating that it successfully adapts to unseen environments
without sacrificing performance on previous domains while
achieving state-of-the-art results. The code of our work is publicly
available at http://codeps.cs.uni-freiburg.de.

I. INTRODUCTION

Deploying robots such as autonomous cars in urban sce-
narios requires a holistic understanding of the environment
with a unified perception of semantics, instances, and depth.
The joint solution of these tasks enables vision-based meth-
ods to generate a 3D semantic reconstruction of the scene,
which can be leveraged for downstream applications such as
localization or planning. While deep learning-based state-of-
the-art approaches perform well when inference is done under
similar conditions as used for training, their performance can
drastically decrease when the new target domain differs from
the source domain, e.g., due to environmental conditions [31],
different sensor parameters [3, 6]. This domain gap poses
a great challenge for robotic platforms that are deployed in
the open world without prior knowledge about the target
domain. Additionally, unlike the source domain where ground
truth annotations are generally assumed to be known and
can be used for the initial training, such supervision is not
applicable to the target domain due to the absence of labels,
rendering classical domain adaptation methods unsuitable.
Unsupervised domain adaptation attempts to overcome these
limitations. However, the vast majority of proposed approaches
focus on sim-to-real domain adaptation mostly in an offline
manner [12, 23], i.e., a directed knowledge transfer without
the need to avoid catastrophic forgetting and with access to
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Fig. 1. Neural networks often perform poorly when deployed on a target
domain that differs from the source domain used for training. To close this
domain gap, we propose to continuously adapt the network by exploiting
online target images. To mitigate catastrophic forgetting and enhance gen-
eralizability, we leverage a fixed-size replay buffer allowing the method to
revisit data from both the source and target domains.

abundant target annotations. Additionally, such works often do
not consider limitations on a robotic platform, e.g., available
compute hardware and limited storage capacity [17, 32].

In this work, we use online continual learning to address
these challenges for depth estimation and panoptic segmenta-
tion in a multi-task setup. In particular, we leverage images
from an onboard camera to perform online continual learning
enhancing performance during inference time. While a naive
approach would result in overfitting to the current scene, our
method CoDEPS mitigates forgetting by leveraging experience
replay of both source data and previously seen target images.
We combine a classical replay buffer with generative replay
in the form of a novel cross-domain mixing strategy allowing
us to exploit supervised ideas also for unlabeled target data.
Unlike existing works, we explicitly address the aforemen-
tioned hardware limitations by using only a single GPU and
restricting the replay buffer to a fixed size. We demonstrate
that CoDEPS successfully improves on new target domains
without sacrificing performance on previous domains.

The main contributions of this work are as follows:
1) We introduce CoDEPS, the first online continual learn-

ing approach for joint monocular depth estimation and
panoptic segmentation.

2) We propose a novel cross-domain mixing strategy to
adapt panoptic segmentation to unlabeled target data.
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3) To address the memory restrictions of robotic platforms,
we develop a fixed-size replay buffer based on rare class
sampling and image diversity.

4) We extensively evaluate CoDEPS and compare it to
other methods in challenging real-to-real settings.

5) We release our code and the trained models at
http://codeps.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we provide an overview of monocular depth
estimation, panoptic segmentation, and unsupervised domain
adaptation including continual learning.

Monocular Depth Estimation: Monocular depth estimation is
the task of predicting a dense depth map from a single RGB
image. While supervised approaches exploit measurements
from range sensors to supervise the network predictions [29],
unsupervised methods leverage geometric cues from temporal
context [9, 36]. Most of the research on unsupervised learning
tackles the limitations of the so-called photometric loss func-
tion that is usually employed for unsupervised depth learning,
e.g., dynamic object handling [2, 4, 19], occlusion [10], and
abrupt illumination changes [34]. In this work, we leverage
Monodepth2 [10] for unsupervised depth learning and employ
it similarly to Guizilini et al. [12] for the purpose of domain
adaptation.

Panoptic Segmentation: Panoptic segmentation unifies the two
tasks of semantic and instance segmentation by fusing the
respective targets into a joint panoptic output. Furthermore,
semantic classes are grouped into “stuff” classes, e.g., road
or building, and “thing” classes, e.g., car or pedestrian. In
particular, the goal of vision-based panoptic segmentation is
to assign a semantic class and for “thing” classes an additional
instance label to each pixel of an image. Panoptic segmenta-
tion networks usually comprise a joint encoder and separate
decoders for each subtask, whose outputs are subsequently
merged by a panoptic fusion module. Existing works can be
categorized into bottom-up [5, 27] and top-down [11, 26]
approaches. Whereas bottom-up methods detect instances in
a proposal-free manner from the semantic prediction, top-
down methods include an additional proposal generation step.
Contradictions to the semantic predictions are then resolved
during post-processing. In this work, we build upon the
bottom-up Panoptic-Deeplab [5] with changes to the semantic
head according to [12].

Unsupervised Domain Adaptation: Domain adaptation aims
to bridge the domain gap between a source domain S used
for training and a target domain T used for inference to
mitigate a loss in performance. An important aspect is whether
the performance on the source domain must be maintained,
linking domain adaptation to continual learning (CL) [22],
where the objective of a task or the task itself can change
over time. A CL system has to adapt to the new target
objective while retaining the knowledge to solve the previous
task(s), i.e., avoiding catastrophic forgetting. Ideally, the CL
system can further achieve positive forward transfer, i.e.,

improve on future yet untrained tasks given the current task.
In many real-world scenarios ground truth annotations for the
target domain are not available, thus requiring unsupervised
domain adaptation (UDA) methodology. Offline UDA assumes
that abundant target data is accessible. However, in order to
guarantee the continuous operation of a robot in new domains,
UDA approaches have to work online without previous target
data collection.

Offline UDA can leverage both annotated source data and
abundant unlabeled target data, enabling learning a given task
from S while simultaneously adapting the network to T . For
depth estimation, DESC [23] adapts from a synthetic source
domain containing RGB images and ground truth depth to
a real-world target domain by performing source-to-target
style transfer and using a consistency loss between depth
predictions from RGB and semantic maps. GUDA [12] tackles
UDA for semantic segmentation using depth estimation as
a proxy task. A shared encoder with task-specific heads for
depth estimation and semantic segmentation is trained via
source supervision. Simultaneously, data from T is used to
update the encoder and depth head in an unsupervised manner.
Due to the refined weights of the encoder, the semantic
predictions on T improve as well. Another common approach
for adapting semantic segmentation is cross-domain sampling
enabling partial supervision on T . DACS [30] mixes images
from S and T by copying the pixels of a source image to a
target image based on the semantic labels [28]. The semantic
prediction of the target image is updated with ground truth
source labels for the same set of pixels. The network is then
jointly trained on annotated source data and the pseudo-labeled
mixing data. Recently, ConfMix [24] proposed a simple yet
effective mixing strategy for object detection, where a target
image is divided into rectangular image regions. The region
with the most confident predictions is then copied onto a
source image and the respective ground truth annotations.
Finally, Huang et al. [15] propose a UDA method for panoptic
segmentation by regularizing complementary features from se-
mantic and instance segmentation. In this work, we extend the
aforementioned mixing strategies to instance-based sampling
and explicitly address differing camera parameters.

During online UDA, samples from T can only be accessed
in a consecutive manner resembling the image stream of a
camera. Typically, a network is trained offline via supervision
on S and then adapted to T during inference time. Such a
setup rises two main challenges: first, incoming target samples
originate from highly similar scenes and thus drastically
reduce the diversity; second, this similarity of consecutive
samples leads to a strong overfitting of the model to the
scene [35]. Initial works for online UDA focused on depth
learning [17, 35] and visual odometry [20, 32], for which
unsupervised training schemes are already well established.
Whereas Zhang et al. [35] propose novel network modules
that are adapted via a meta-learning paradigm to mitigate
forgetting, CoMoDA [17] employs a common CL strategy, i.e.,
experience replay to combine the online target sample with
previously seen samples. Continual SLAM [32] also uses un-
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supervised depth estimation as a proxy task to enhance visual
odometry during inference time. Additionally, it demonstrates
that incorporating samples from S and previous target domains
Ti prevents catastrophic forgetting when revisiting domains.
Similar settings involving multiple target domains, which are
hence closely related to classical CL, are also addressed for
semantic segmentation. CBNA [16] mixes statistics from S
and T to update the batch normalization layers and showcases
the efficacy of the approach on continually visited target
domains. CoTTA [33] adapts the entire network without using
source data but self-supervision. To tackle error accumulation,
it uses an exponential moving average filter and student-
teacher consistency when updating the network weights. Using
depth estimation as a proxy task, Kuznietsov et al. [18]
extend GUDA [12] to online UDA with experience replay
and confidence regularization on the semantic predictions. To
the best of our knowledge, we propose the first approach for
online continual UDA for joint depth estimation and panoptic
segmentation.

III. TECHNICAL APPROACH

The setting investigated in this work consists of two steps.
First, we train a neural network on the source domain S
partly using ground truth supervision. Second, to close the gap
between domains, we continuously adapt the network during
inference time on the target domain T using a replay buffer
and unsupervised training strategies.

A. Network Architecture and Source Domain Pretraining

In this section, we detail the network architecture and loss
functions that we employ during the pretraining stage on the
source domain.

Architecture: We build our network following a common
multi-task design scheme, i.e., using a single backbone fol-
lowed by task-specific heads. A high-level overview of the
network architecture is shown in Fig. 2. In detail, we use
a ResNet-101 [13] as the shared encoder for all three tasks
including depth prediction, semantic segmentation, and in-
stance segmentation. The depth head follows the design of
Monodepth2 [10] comprising five consecutive convolutional
layers with skip connections to the encoder. Additionally, we
include a separate PoseNet consisting of a ResNet-18 encoder
and a four-layer CNN to estimate the camera motion between
two image frames. For panoptic segmentation, we follow the
bottom-up method Panoptic-Deeplab [5], leveraging separate
heads for semantic segmentation and instance segmentation,
and slightly modify the semantic head [12]. Specifically, the
instance head consists of two sub-heads to predict the center
of an object and to associate each pixel of an image to the
corresponding object or the background. Combining both the
semantic and instance predictions, a panoptic fusion module
generates the overall panoptic segmentation map.

Source Domain Pretraining: During the initial training phase
on the source domain, we assume to have access to image

sequences as well as ground truth panoptic segmentation anno-
tations. In the following, we briefly describe the respective loss
functions that we employ for training the three task-specific
heads.

We train the depth estimation head using the common
methodology of unsupervised training based on the pho-
tometric error [10]. In particular, we leverage an image
triplet {It0 , It1 , It2} to predict depth Dt1 and camera motion
Mt0�t1 and Mt1�t2 . Afterwards, we compute the photo-
metric error loss Ldpe as a weighted sum of the reprojection
loss Ldpr and the image smoothness loss Ldsm :

Ldpe = λprLdpr + λsmLdsm . (1)

We train the semantic segmentation head in a supervised
manner using the bootstrapped cross-entropy loss with hard
pixel mining Lsem

bce following Panoptic-Deeplab [5].
For training the instance segmentation head, we adopt the

MSE loss Lins
center for the center head and the L1 loss Lins

offset

for the offset head. The total loss to supervise instance
segmentation is then computed as a weighted sum:

Lins
co = λcenterLins

center + λoffsetLins
offset . (2)

B. Online Adaptation

After the described network has been trained on the source
domain S using the aforementioned losses, we aim to adapt it
to the target domain T in a continuous manner. That is, unlike
other works, data from the target domain is revealed frame by
frame resembling the online stream of an onboard camera. As
depicted in Fig. 2, every adaptation iteration consists of the
following steps:

1) Construct an update batch by combining online and
replay data.

2) Generate pseudo-labels using the proposed cross-domain
mixing strategy.

3) Perform backpropagation to update the network weights.
4) Update the replay buffer.

In this section, we first detail the structure of the utilized replay
buffer and then propose adaptation schemes for both depth
estimation and panoptic segmentation.

Replay Buffer and Batch Generation: Upon receiving a new
image taken by the robot’s onboard camera, we construct a
batch that is used to perform backpropagation on the network
weights. In detail, a batch bt consists of the current online
image It ∈ T , previously received target images ITi ∈ BT ,
and fully annotated source samples ISi ∈ BS . Here, BT ⊆ T
and BS ⊆ S denote the respective replay buffers. Formally*,

bt = {It, IT0 , IT1 , . . . , IS0 , IS1 , . . . }. (3)

By revisiting target images from the past, we increase the
diversity in the loss signal on the target domain and hence mit-
igate overfitting to the current scene. This further accounts for
situations in which the current online image suffers from visual

*To improve readability, we omit in the notation that each image sample
includes its two previous frames enabling unsupervised depth estimation.
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Fig. 2. Overview of our proposed CoDEPS. Unlabeled RGB images from an online camera stream are combined with samples from a replay buffer
comprising both annotated source samples and previously seen target images. Cross-domain mixing enables pseudo-supervision on the target domain. The
network weights are then updated via backpropagation using the constructed data batch. The additional PoseNet required for unsupervised monocular depth
estimation is omitted in this visualization.

artifacts, e.g., overexposure. Similarly, revisiting samples from
the source domain addresses the problem of catastrophic
forgetting by ensuring that previously acquired knowledge
can be preserved. Additionally, the annotations of the source
samples enable pseudo-supervision on the target domain by
exploiting cross-domain mixing strategies. For both the target
and the source replay, we randomly draw multiple samples
from the respective replay buffer and apply augmentation to
stabilize the loss. In particular, we perform RGB histogram
matching of the source images to the online target image, and
all available source samples have to be selected once before
repetition is allowed to ensure diverse source supervision.

While previous works [17, 32] do not consider limitations
on the size of the replay buffer, we explicitly address this
challenge to closely resemble the deployment on a robotic
platform, where disk storage is an important factor. This poses
two questions: First, how to sample from S to construct
the fixed source buffer BS and, second, how to update the
dynamic target buffer BT ? To construct BS , we propose
a refined version of rare class sampling (RCS) [14]. The
frequency fc of each class c ∈ C is calculated based on the
number of pixels with class c:

fc =

∑
I∈S

∑H×W
p 1c(pc′)

|S| ·H ·W
, (4)

where H and W denote the height and width of the images
in S and pc′ ∈ I refers to a pixel with class c′. The indicator
function is 1 if c′ equals c and 0 otherwise. The probability
of sampling a class is then given by

P (c) =
e(1−fc)/T∑

c′∈C e
(1−fc′ )/T

, (5)

with temperature T controlling the smoothness of the distri-
bution, i.e., a smaller T assigns a higher probability to rare

classes. In detail, we first sample a class c ∼ P and then
retrieve all candidate images containing pixels with class c.
Instead of taking a random image from these candidates,
we sample according to the number of pixels with class c.
We repeat both steps |BS | times without selecting the same
image more than once. Using RCS ensures that BS contains
sufficiently many images with rare classes such that the perfor-
mance on these classes will further improve during adaptation.

Since T does not contain annotations and, particularly in the
beginning, predictions are not reliable, we cannot use RCS for
updating BT . Instead, we invert the common methodology of
loop closure detection for visual SLAM [32], i.e., the image It
is only added to BT if its cosine similarity with respect to all
samples within the buffer is below a threshold.

simcos(It) = max
ITi
∈BT

cos (feat(It), feat(ITi)) , (6)

where feat(·) refers to the image features extracted from the
final layer of the shared encoder, which is not adapted. If
BT is completely filled, we remove the following image to
maximize image diversity:

argmax
ITi
∈BT

∑
ITj
∈BT

cos
(
feat(ITi), feat(ITj)

)
(7)

Depth Adaptation: To adapt the monocular depth estimation
head, we exploit the fact that the photometric error loss (Eq. 1)
does not require ground truth annotations. Hence, we can
directly transfer it to the implemented continual adaptation.
In particular, we compute Ldpe for the constructed batch bt

and average the loss such that each sample contributes by the
same amount:

Ldpe(bt) =
Ldpe(It) +

∑
i Ldpe(ITi) +

∑
j Ldpe(ISj)

|bt|
. (8)
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Fig. 3. Our proposed cross-domain mixing strategy first transfers the image
style from the target to the source sample. Then it augments the target image
to match the appearance of the source camera. Finally, a random image patch
is copied from the target to the source image. The source annotations are
retained and completed by the network’s estimate on the copied image patch,
combining self-iterative learning with ground truth supervision.

Furthermore, if the predicted camera motion is below a
threshold, i.e., the robot is presumably not moving, we do
not compute the Ldpe(It) and subtract 1 from the denominator
to avoid adding a bias to the current scene.

Panoptic Adaptation: As described in Sec. III-A, panoptic
segmentation is the fused output of a semantic head and an
instance head. We observe that the decrease in performance
on samples from unseen domains can mostly be attributed to
the semantic head, while instance predictions remain stable.
Cross-domain mixing strategies allow leveraging ideas from
supervised training to an unsupervised setting, where ground
truth annotations are unknown. In CoDEPS, we bootstrap an-
notated source samples and high-confident target predictions to
artificially generate pseudo-labels for the target samples in an
online fashion to supervise the semantic head. Similar to depth
adaptation, we continue to compute Lsem

bce on {IS0 , IS1 , . . . }
to mitigate forgetting, and freeze the instance head.

We further design a mixing strategy combining pixels of
images from both S and T , that considers multiple factors,
which are unique to the online continual learning scenario:
(1) the robust pretraining on a dedicated source dataset, which
may result in significant performance degradation on the target
dataset if the pre-trained weights are strongly adapted; (2) the
existence of different cameras leading to significant changes in
the field-of-view, geometric appearance of objects, resolution,
and aspect ratio of the images; and (3) the continuously evolv-
ing visual appearance of street scenes during adaptation. To
address these challenges, our cross-domain mixing approach
employs a three-step method to generate the adaptation signal.
First, we perform style transfer from the target image ITi to
the source image ISj by aligning their pixel value histograms,
as depicted in Fig. 3. This allows supervision with ground
truth labels on images that are of similar visual appearance as
the target image. Second, we apply a geometric transformation
on ITi based on the camera intrinsics of the source and target
domains denoted by KS and KT , respectively. To this end,
we assume a constant depth distribution over ISj , lift the pixel
values into Euclidean space via inverse camera projection, and
project the lifted points back into the camera view of ITi as
follows:

I′T = IT 〈KTK−1S IS〉, (9)

where 〈·〉 denotes the bilinear sampling operator. Eq. 9 results

in an adapted target image I′T with an adjusted field of view,
resolution, and a geometric appearance of the scene similar to
that of IS . The final step in the process involves separating I′T
into multiple segments and randomly selecting one of them to
be inserted into the style-transferred source image, see Fig. 3.
To avoid providing a flawed supervision signal caused by
geometrically unrealistic images, we only insert a single path.
Similarly, the ground truth labels of the pixels from IS are
retained, and the semantic labels estimated by the network are
used to label the inserted patch after intrinsics transformation.
The generated image is then fed into the network and training
is performed using the cross-entropy loss and the generated
pseudo-labels of the mixed image. To mitigate the decline in
performance commonly associated with self-iterative training
on predicted pseudo-labels, often resulting in class collapse,
we utilize an exponentially moving average (EMA) filter for
updating the network weights. In detail, we create a duplicate
with network weights wEMA of the initial model with weights
w and use this so-called EMA model to generate the semantic
predictions. During continual learning, the weights w are
updated via backpropagation on bt. Then, the EMA model
is updated as follows:

wEMA ← α · wEMA + (1− α) · w, (10)

where α denotes the contribution of the EMA model.

IV. EXPERIMENTAL EVALUATION

In the following sections, we provide further details on the
pretraining step and the datasets that we evaluate on. We
present extensive experimental results on the efficiency and
efficacy of our proposed approach and include ablation studies
on important design choices. Finally, we expand the experi-
mental setup to multi-domain adaptation closely resembling
classical continual learning settings.

We follow the evaluation protocol of Zhang et al. [35]. In
detail, we compute the evaluation metrics on the frame of the
current timestamp before using the same frame to perform
backpropagation and update the model weights. Once 70%
of a sequence is processed, we calculate the average of the
accumulated metrics. Additionally, we report the scores on the
remaining 30% of the same sequence without further weight
updates to analyze the performance of the adapted model. In
the tables, we refer to these types of evaluation by protocol 1
and protocol 2, respectively. We further denote the respective
parts of a sequence by adapt and eval. Unlike Zhang et al.
[35], we define our task in the context of continual learning. To
measure knowledge retention and hence mitigate catastrophic
forgetting, we introduce protocol 3 as evaluating the adapted
model on the val split of the source dataset.

A. Datasets

To simulate data from a variety of domains, we employ
our method on three datasets, namely Cityscapes [7], KITTI-
360 [21], and SemKITTI-DVPS [1]. In particular, we utilize
Cityscapes for pre-training and sequences of both KITTI-360
and SemKITTI-DVPS for adaptation.



TABLE I
EFFICACY OF THE NETWORK

Method Dataset mIoU ↑ RMSE ↓ Abs Rel ↓ δ1 ↑

GUDA KITTI — 4.42 0.11 0.88
CoDEPS 62.8 3.52 0.09 0.90

GUDA Cityscapes 72.9 — — —
CoDEPS 72.9 10.16 0.19 0.78

Our utilized network is able to reproduce the performance
of the baseline method GUDA [12]. Performance of GUDA
is reported by the authors. To evaluate CoDEPS on KITTI,
we use sequence 08 eval of SemKITTI-DVPS.

Cityscapes: The Cityscapes Dataset [7] is a large-scale au-
tonomous driving dataset that was recorded in 50 cities in Ger-
many and bordering regions. It includes RGB images, panoptic
annotations, and vehicle metadata. In this work, we utilize the
fine panoptic labels to train the semantic and instance heads in
a supervised manner. Additionally, we leverage the sequence
image data of the left camera to train the depth prediction in
an unsupervised fashion. Finally, we compute the depth error
metrics using the provided disparity maps.
KITTI-360: The KITTI-360 Dataset [21] is a relatively recently
released public dataset for the domain of autonomous driving,
which was recorded in the city of Karlsruhe, Germany. It
includes both 2D and 3D panoptic annotations for RGB images
and LiDAR data. In this work, we predominantly utilize the
RGB images to simulate an online image stream of an onboard
camera. In particular, we use these images to adapt our
network in a self-supervised manner. To compute evaluation
metrics, we compare our predictions with the ground truth
measurements and annotations of the dataset.
SemKITTI-DVPS: The SemKITTI-DVPS [29] is based on the
odometry benchmark of the KITTI Dataset [8], which was
recorded in Karlsruhe, Germany. We utilize the RGB images
to simulate an onboard camera and to adapt our network
to the new domain. Furthermore, we compute depth metrics
based on the provided projected LiDAR points and the seman-
tic/panoptic metrics using the extension SemanticKITTI [1].
Semantic Labels: As the aforementioned datasets use different
labeling policies for the semantic annotations, we use the 19
classes of Cityscapes as the reference definition and remap
classes of the other datasets. However, certain classes do
not exist in the adaptation datasets (wall, traffic light, bus,
train). For consistency across the datasets, we merge wall with
building and remove the other three classes. Additionally, we
merge motorcycle and bicycle into two-wheeler to increase
the number of annotated pixels. Consequently, we consider
nine “stuff” classes and five “thing” classes, listed in Table V.
Note that sky is not included in SemKITTI-DVPS due to using
LiDAR annotations and hence excluded in the evaluation on
this dataset.

B. Pretraining Protocol

The initial state of the network weights before adaptation is
obtained by initializing the encoders using pretrained weights
from the ImageNet dataset, followed by training the entire

TABLE II
ADAPTATION PERFORMANCE

Method Sequence mIoU PQ SQ RQ RMSE Abs Rel

Protocol 1

Only target KITTI-360
seq. 09

68.60 51.00 82.00 59.04 3.49 0.11
Only source 50.59 37.26 74.06 47.38 6.03 0.36
CoDEPS 52.29 38.02 74.88 48.21 4.74 0.19

Only target KITTI-360
seq. 10

64.65 41.91 76.68 51.48 6.13 0.15
Only source 51.94 32.60 71.27 32.60 8.06 0.35
CoDEPS 53.02 33.50 71.53 33.50 7.19 0.22

Protocol 2

Only target KITTI-360
seq. 09

69.90 48.84 79.36 57.49 3.18 0.10
Only source 50.78 36.57 72.22 46.75 5.60 0.35
CoDEPS 51.53 37.56 72.87 47.99 4.56 0.16

Only target KITTI-360
seq. 10

55.12 36.58 67.41 46.15 4.78 0.12
Only source 45.74 30.62 69.56 39.49 7.90 0.33
CoDEPS 49.91 31.91 70.68 40.95 5.57 0.15

Comparison with baselines without adaptation evaluated on the adapt
part (protocol 1) and on the eval part (protocol 2) of the specified
sequences. “Only target” and “only source” refer to the domain used
for training.

model on the Cityscapes dataset. In detail, we use the Adam
optimizer with a constant learning rate lr = 0.0001 and train
the entire network for 250 epochs. In our experiments, we
compare the performance of our approach to directly training
on the target dataset, which can be considered as a theoretical
upper limit having full target knowledge. Due to the unbal-
anced class distribution of KITTI-360, we train the network
in two steps, using the Adam optimizer with lr = 0.0001 on
sequences 00-07. We train for 45 epochs while ignoring the
most common classes road, sidewalk, building, and vegetation,
followed by 55 epochs including all classes. Similarly, for
SemKITTI-DVPS, we train the network on sequences 00-06,
09, and 10 for 30 epochs without the aforementioned classes
plus terrain and sky, which is not included in the dataset,
followed by 30 epochs including all classes. In Table I, we
demonstrate that our implemented network is able to reproduce
the performance of the baseline method GUDA [12].

C. Online Adaptation

In this section, we extensively evaluate our proposed
CoDEPS with respect to both adapting to a new domain and
retaining knowledge to mitigate forgetting. In detail, for all
presented experiments, we freeze the shared encoder following
the study by McCraith et al. [25]. Based on the ablation study
in Sec. IV-D, we use a buffer size of 300. For RCS, we follow
Hoyer et al. [14] and set T = 0.01. Updating the EMA model
is done with α = 0.9.

In Table II, we assess the performance of CoDEPS on
sequences 09 and 10 of KITTI-360 and rank it against (theoret-
ical) supervision from either the source or target domain. First,
we directly train CoDEPS using available ground truth labels
on T (only target). Although this approach is not feasible
for real-world deployment, it serves as an upper bound on
the potential performance of the network if target knowledge
was available. The second experiment involves inference of
CoDEPS on T without adaptation (only source) to set the



TABLE III
CONTINUAL LEARNING FOR MONOCULAR DEPTH ESTIMATION

Method Batch Protocol 1 Protocol 2 Protocol 3
current/target/source RMSE Abs Rel δ1 δ2 δ3 RMSE Abs Rel δ1 δ2 δ3 RMSE Abs Rel δ1 δ2 δ3

Only source 0 / 0 / 0 8.06 0.35 0.43 0.77 0.91 7.90 0.33 0.44 0.77 0.93 10.16 0.19 0.78 0.93 0.97

Online image 1 / 0 / 0 8.33 0.27 0.64 0.84 0.93 6.06 0.33 0.46 0.73 0.90 13.72 0.57 0.30 0.50 0.68
Target replay 1 / 2 / 0 6.35 0.19 0.77 0.91 0.96 5.34 0.15 0.81 0.93 0.97 12.48 0.44 0.34 0.68 0.88
CoDEPS 1 / 2 / 2 7.19 0.22 0.73 0.89 0.94 5.57 0.15 0.81 0.93 0.97 11.38 0.21 0.75 0.91 0.96

The root mean squared error (RMSE), absolute relative error (Abs Rel) as well as accuracies δ1 = δ < 1.25, δ2 = δ < 1.252, and
δ3 = δ < 1.253, obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Best results in each category are in bold;
second best are underlined.

TABLE IV
CONTINUAL LEARNING FOR PANOPTIC SEGMENTATION

Method Protocol 1 Protocol 2 Protocol 3
mIoU PQ SQ RQ mIoU PQ SQ RQ mIoU PQ SQ RQ

Only source 51.94 32.60 71.27 42.44 45.74 30.62 69.56 39.49 72.87 49.19 77.45 60.40

GUDA [12] 45.56 29.70 70.67 39.05 47.62 31.03 64.00 40.49 66.57 44.39 75.95 55.32
DACS [30] 51.14 32.09 71.12 42.23 45.24 29.05 69.47 38.11 72.66 49.27 77.33 60.60

CoDEPS (online image) 53.22 33.46 71.63 43.46 49.51 31.49 64.17 40.71 72.81 49.83 77.25 61.49
CoDEPS (random sampling) 52.36 33.24 71.60 43.25 48.78 31.50 68.83 40.56 72.05 49.11 77.18 60.52

CoDEPS 53.02 33.50 71.53 43.62 49.91 31.91 70.68 40.95 72.90 49.76 77.49 61.22

The mean intersection over union (mIoU), panoptic quality (PQ), semantic quality (SQ), and recognition quality
(RQ) are obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Best results in each category
are in bold; second best are underlined.

lower performance bound. Finally, the third experiment refers
to adapting the network using our proposed CoDEPS with the
online stream of unlabeled data from T . We demonstrate the
key performance metrics of both protocols 1 and 2. Table II
shows that CoDEPS achieves a significant performance boost,
as measured by the mIoU metric and all depth metrics. We
attribute this improvement to the additional supervision signals
incorporated into the segmentation head through our mixing
strategy and the self-supervised reconstruction loss for depth
adaptation. The improvement in semantic segmentation further
enhances the panoptic segmentation metrics.

For the following experiments, we consider the case of
using Cityscapes as the source domain and sequence 10 of
KITTI-360 as the target domain. In Fig. 5, we illustrate
the adaptation progress using unseen validation samples and
compare the results to the ground truth. For depth, we visualize
predictions generated by the network if it was only trained on
S and T , respectively. For panoptic segmentation, the progres-
sive adaptation on the target domain is particularly visible on
the sidewalk and terrain image regions. Furthermore, instances
become more pronounced, e.g., the car in the center of the
right sample. Nonetheless, CoDEPS successfully maintains
its performance on the source domain with only minimum
decreases in depth estimationl

Depth Adaptation: We present the results for monocular depth
estimation in Table III. The first row shows the performance
on T (protocols 1 and 2) without adaptation. Comparing the
absolute relative error as well as the accuracies δ1, δ2, and
δ3 to the performance on S reveals the domain gap. While
continual learning using the current online sample increases
the accuracy of protocol 1, it also overfits to the current scene.

That is, generalizability to the entire target domain is not
achieved as shown by protocol 2. Introducing replay samples
from the target buffer overcomes this issue and accounts
for online samples of poor quality, improving protocols 1
and 2. However, both of the above result in catastrophic
forgetting with respect to S (protocol 3). The final CoDEPS
adds additional source replay yielding low errors and high
accuracy by compromising on both S and T .

Panoptic Adaptation: We further evaluate CoDEPS by com-
paring it with two competitive baselines that perform domain
adaptation on segmentation tasks: GUDA [12], which com-
bines semantic segmentation and depth estimation, rendering
their task comparable to ours, and DACS [30], which employs
a class-mix strategy for offline domain adaptation of semantic
segmentation. To ensure a fair comparison, both baselines
are evaluated using the same settings as CoDEPS, including
diversity sampling-based experience replay. The results in
Table IV indicate that both approaches lead to a significant per-
formance decrease across all three protocols. GUDA’s reliance
on self-supervised feature alignment using depth training is
not effective in the continual learning setting, as shown in
the results. DACS also suffers from a decline in performance,
likely due to the strong intervention of its mixing strategy into
the pretrained network, which can already produce reasonable
predictions on the target domain without adaptation.

These results imply that traditional approaches from offline
sim-to-real adaptation may not perform well in the online
continual learning scenario. To further assess the impact of
target replay and our diversity-based buffer sampling, we
selectively deactivate both components. Applying the proposed
cross-domain mixing strategy results in an improvement in



TABLE V
CLASSWISE EVALUATION

Class Only target Only source CoDEPS
St

uf
f

Road 93 89 91
Sidewalk 40 32 37
Building 88 85 85
Fence 43 14 22
Pole 35 29 32
Traffic sign 40 35 38
Vegetation 78 73 75
Terrain 54 21 39
Sky 82 79 81

T
hi

ng

Person 47 38 38
Rider 47 29 36
Car 91 83 84
Truck 1 4 2
Two-wheeler 33 27 38

Mean 55.1 45.7 49.9

The classwise mIoU is based on protocol 2 in Table IV.
We compare CoDEPS against two baselines that were trained
using source (“only source”) or target data (“only target””),
respectively. CoDEPS provides a significant performance boost
of 4.2% in terms of the mIoU metric.

protocol 1. However, similar to depth adaptation, the results
are not fully generalizable to the entire target domain, e.g.,
SQ of protocol 2. Instead of diversity-based sampling, we
use random sampling when both creating the source buffer
and when updating the target buffer. Compared to CoDEPS,
the performance heavily degrades demonstrating the efficacy
of the sampling method. Finally, we present the classwise
evaluation of the segmentation performance in Table V, which
demonstrates improvements of CoDEPS in the IoU metrics for
most classes. In particular, we observe significant enhance-
ments of the two-wheeler and terrain classes. The latter can
also be observed in Fig. 5. In fact, CoDEPS outperforms even
the model trained directly on the target domain using ground
truth supervision for the latter class.

D. Ablation Study of the Replay Buffer

We extensively study different sizes of the replay buffer and
the effect of diversity sampling as explained in Sec. III-B.
We list our results in Table VI. Note that an infinite replay
buffer contains 2,975 source and a maximum of 2,683 target
samples in the employed setting, i.e., adapting from Cityscapes
train to KITTI-360 using sequence 10 adapt. Generally, a
larger replay buffer yields higher performance with respect to
both adaptation capability and avoiding catastrophic forgetting.
Additionally, the proposed diversity sampling using semantic
classes for the source and image features for the target samples
increases the performance throughout the experiments. How-
ever, a greater buffer size increases the required storage posing
a challenge for real-world deployment. Based on the presented
results, we select a buffer size of 300 with active diversity
sampling as for smaller sizes the performance of semantic
segmentation on the target domain degrades.

E. Continual Adaptation

Finally, we evaluate the performance of CoDEPS in the
context of multi-domain adaptation, i.e., S → T1 → T2.
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Fig. 4. Evolution of performance metrics on SemKITTI-DVPS sequence 08
during adaptation (protocol 1). The metrics are averaged until the given
frame number. The target domains T1 and T2 refer to SemKITTI-DVPS and
KITTI-360, respectively. It can be seen that there is positive forward transfer
when first adapting on T2.

In particular, we first adapt to sequence 10 of KITTI-360
followed by sequence 08 of SemKITTI-DVPS, then we invert
the adaptation order. To analyze forward and backward transfer
as defined for continual learning [22], we compute the metrics
on the val split of the source and the adapt parts of the
respective target domains. We report the results in Table VII.
Note that we use αS�T1 = 0.9 and αT1�T2 = 0.7 for
updating the EMA model according to Eq. 10 since the
network should adapt more strongly when deployed to T2 due
to the larger amount of previously seen data. As shown in
the first row of both adaptation orders, CoDEPS is able to
mitigate catastrophic forgetting with respect to S maintaining
its performance. We make a similar observation when re-
evaluating T1 after the second adaptation step to T2. In
particular, CoDEPS achieves positive backward transfer on
SemKITTI-DVPS when adapting to KITTI-360. On the same
adaptation order, we observe positive forward transfer for
KITTI-360, i.e., the performance increases although CoDEPS
was only adapted to SemKITTI-DVPS.

In Fig. 4, we illustrate the evolution of the performance
metrics on SemKITTI-DVPS sequence 08 during adaptation
(protocol 1). We compare the error without adaptation to
directly adapting to SemKITTI-DVPS versus first adapting to
KITTI-360. For both semantic segmentation and depth estima-
tion, it can be clearly observed that the performance improves
if more images have been seen. Additionally, adapting first to
KITTI-360 results in a large performance increase for both
semantic and panoptic segmentation. We account this to the
fact that KITTI-360 sequence 10 leads to strongly improved
performance, shown in Table VII, that can be transferred to
the SemKITTI-DVPS domain.
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Fig. 5. Qualitative results for Cityscapes to KITTI-360 adaptation after pretraining on the source, i.e., 0 steps, and after having seen 1,000 and 2,500 frames.
As shown in the left column, CoDEPS is able to avoid catastrophic forgetting on the source domain. The progressive adaptation on the target domain is
particularly visible on the sidewalk (left) and terrain (right) image regions. Furthermore, instances become more pronounced, e.g., see the car in the center
of the right sample.



TABLE VI
ABLATION STUDY ON THE REPLAY BUFFER

Size Div. Protocol 2 Protocol 3
mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel

∞ 49.15 31.95 69.08 40.96 4.94 0.15 73.25 50.37 77.77 61.87 10.76 0.21

1000 49.11±0.69 31.85±0.25 66.82±3.06 40.93±0.06 5.04±0.01 0.14±0.00 72.84±0.33 49.93±0.20 77.51±0.05 61.39±0.28 11.35±0.39 0.22±0.01
1000 3 49.36 31.83 68.89 41.01 5.30 0.15 73.50 50.05 77.67 61.48 12.06 0.23
500 48.77±0.39 31.54±0.39 67.39±2.16 40.66±0.54 5.20±0.20 0.15±0.00 72.38±0.26 49.48±0.14 77.45±0.16 60.90±0.23 11.14±0.54 0.22±0.01
500 3 49.56 31.83 70.11 40.96 5.55 0.16 72.78 49.68 77.39 61.10 11.30 0.22
300 48.78±0.05 31.50±0.19 68.83±2.31 40.56±0.15 5.27±0.16 0.15±0.00 72.05±0.25 49.11±0.30 77.18±0.07 60.52±0.35 11.14±0.22 0.22±0.01
300 3 49.91 31.91 70.68 40.95 5.57 0.15 72.90 49.76 77.49 61.22 11.38 0.21
100 48.27±0.84 30.71±0.41 63.95±0.41 39.79±0.38 5.83±0.15 0.16±0.00 69.75±1.77 47.94±0.95 76.66±0.25 59.39±1.16 10.86±0.56 0.22±0.02
100 3 48.40 30.85 64.07 39.95 5.31 0.16 72.35 48.81 77.16 60.25 11.71 0.22
25 46.03±1.03 29.62±0.37 66.10±2.26 38.48±0.45 5.25±0.26 0.14±0.01 67.23±0.85 45.90±0.66 75.69±0.38 57.21±0.76 11.81±0.22 0.22±0.01
25 3 46.35 29.73 63.35 38.58 5.62 0.17 68.84 46.34 76.06 57.78 12.51 0.24

The numbers above are obtained by adapting Cityscapes to sequence 10 of the KITTI-360 dataset. Here, an infinite buffer size equals 2,975 source samples
and a maximum of 2,683 target samples. Note that the effective size is two times the shown value as it refers to both source and target replay. The term
“Div.” refers to diversity sampling. Where diversity sampling is not used, the same experiment is repeated three times with different random seeds to
ensure a statistically reliable measure of performance. The results of these experiments are presented as the mean and standard deviation. Best results in
each category are in bold; second best are underlined.

TABLE VII
CONTINUAL LEARNING ON MULTIPLE DOMAINS

Domain mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel mIoU PQ SQ RQ RMSE Abs Rel

−−−→ Pretraining on Cityscapes −−−−−−−−−−−−→ Adaptation on KITTI-360 −−−−−−−−−−→ Adaptation on SemKITTI-DVPS −−−→
Cityscapes 72.87 49.19 77.45 60.40 10.16 0.19 72.90 49.76 77.49 61.22 11.38 0.21 72.42 48.74 77.08 60.20 10.65 0.21
KITTI-360 seq. 10 45.74 30.62 69.56 39.49 7.90 0.33 49.91 31.91 70.68 40.95 5.57 0.15 49.26 32.32 64.08 40.95 5.23 0.15
SemKITTI-DVPS seq. 08 51.95 45.24 76.07 57.20 6.17 0.34 49.48 43.26 74.24 57.26 5.60 0.21 53.70 46.50 76.53 59.43 4.32 0.16

−−−→ Pretraining on Cityscapes −−−−−−−−−−→ Adaptation on SemKITTI-DVPS −−−−−−−−−−→ Adaptation on KITTI-360 −−−−−→
Cityscapes 72.87 49.19 77.45 60.40 10.16 0.19 72.75 49.01 77.36 60.35 10.82 0.22 72.51 48.87 76.98 60.28 11.41 0.21
KITTI-360 seq. 10 45.74 30.62 69.56 39.49 7.90 0.33 49.26 31.66 70.26 41.40 6.30 0.17 50.05 31.92 70.50 41.48 5.47 0.16
SemKITTI-DVPS seq. 08 51.95 45.24 76.07 57.20 6.17 0.34 52.31 44.29 75.58 56.87 4.56 0.16 53.83 47.29 76.55 60.01 4.25 0.16

CoDEPS is continually applied to three domains using Cityscapes as the initial source domain and then adapting to KITTI-360 and SemKITTI-DVPS.
The listed numbers on the target domains are based on protocol 2.

V. CONCLUSION

In this paper, we present CoDEPS as the first approach for
online continual learning for joint monocular depth estimation
and panoptic segmentation. CoDEPS enables the vision system
of a robotic platform to continually enhance its performance
in an online fashion. In particular, we propose a new cross-
domain mixing strategy to adapt panoptic segmentation com-
bining annotated source data with unlabeled images from a
target domain. To mitigate catastrophic forgetting, CoDEPS
leverages experience replay using a buffer composed of source
and target samples. Unlike prior works, we explicitly address
the limited memory capacity of robotic platforms by setting
a fixed size for the replay buffer. To ensure distinct replay
samples, we use rare class sampling on the source set and
employ image-based diversity sampling when updating the
target buffer. Using extensive evaluations, we demonstrate that
CoDEPS outperforms competitive baselines while avoiding
catastrophic forgetting in the online continual learning setting.
Future work will explore cross-task synergies and the use of
pretext tasks for domain adaptation.
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[3] Borna Bešić, Nikhil Gosala, Daniele Cattaneo, and Abhi-
nav Valada. Unsupervised domain adaptation for LiDAR
panoptic segmentation. IEEE Robotics and Automation
Letters, 7(2):3404–3411, 2022.

[4] Vincent Casser, Soeren Pirk, Reza Mahjourian, and
Anelia Angelova. Unsupervised monocular depth and
ego-motion learning with structure and semantics. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[5] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting
Liu, Thomas S. Huang, Hartwig Adam, and Liang-
Chieh Chen. Panoptic-DeepLab: A simple, strong, and
fast baseline for bottom-up panoptic segmentation. In



IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 12472–12482, 2020.

[6] Gong Cheng and James H. Elder. VCSeg: Virtual camera
adaptation for road segmentation. In IEEE/CVF Winter
Conference on Applications of Computer Vision, pages
1969–1978, 2022.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
Cityscapes dataset for semantic urban scene understand-
ing. In IEEE/CVF Conference Computer Vision and
Pattern Recognition, pages 3213–3223, 2016.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, pages 3354–3361, 2012.

[9] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In IEEE/CVF Conference Computer
Vision and Pattern Recognition, pages 270–279, 2017.

[10] Clement Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel Brostow. Digging into self-supervised monocular
depth estimation. In International Conference on Com-
puter Vision, pages 3827–3837, 2019.

[11] Nikhil Gosala and Abhinav Valada. Bird’s-eye-view
panoptic segmentation using monocular frontal view im-
ages. IEEE Robotics and Automation Letters, 7(2):1968–
1975, 2022.

[12] Vitor Guizilini, Jie Li, Rares, Ambrus, , and Adrien
Gaidon. Geometric unsupervised domain adaptation for
semantic segmentation. In International Conference on
Computer Vision, pages 8537–8547, 2021.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[14] Lukas Hoyer, Dengxin Dai, and Luc Van Gool.
DAFormer: Improving network architectures and training
strategies for domain-adaptive semantic segmentation.
In IEEE/CVF Conference Computer Vision and Pattern
Recognition, pages 9924–9935, 2022.

[15] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.
Cross-view regularization for domain adaptive panoptic
segmentation. In IEEE/CVF Conference Computer Vision
and Pattern Recognition, pages 10133–10144, 2021.

[16] Marvin Klingner, Mouadh Ayache, and Tim Fingscheidt.
Continual batchnorm adaptation (CBNA) for semantic
segmentation. IEEE Transactions on Intelligent Trans-
portation Systems, 23(11):20899–20911, 2022.

[17] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
CoMoDA: Continuous monocular depth adaptation us-
ing past experiences. In IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2907–2917,
2021.

[18] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool.
Towards unsupervised online domain adaptation for se-

mantic segmentation. In European Conference on Com-
puter Vision, pages 261–271, 2022.

[19] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser,
and Anelia Angelova. Unsupervised monocular depth
learning in dynamic scenes. In Conference on Robot
Learning, pages 1908–1917. PMLR, 2021.

[20] Shunkai Li, Xin Wang, Yingdian Cao, Fei Xue, Zike Yan,
and Hongbin Zha. Self-supervised deep visual odometry
with online adaptation. In IEEE/CVF Conference Com-
puter Vision and Pattern Recognition, pages 6339–6348,
2020.

[21] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360:
A novel dataset and benchmarks for urban scene under-
standing in 2d and 3d. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2022.

[22] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient
episodic memory for continual learning. In Conference
on Neural Information Processing Systems, volume 30,
2017.

[23] Adrian Lopez-Rodriguez and Krystian Mikolajczyk.
DESC: Domain adaptation for depth estimation via se-
mantic consistency. arXiv preprint arXiv:2009.01579,
2020.

[24] Giulio Mattolin, Luca Zanella, Elisa Ricci, and Yim-
ing Wang. ConfMix: Unsupervised domain adaptation
for object detection via confidence-based mixing. In
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 423–433, January 2023.

[25] Robert McCraith, Lukas Neumann, Andrew Zisserman,
and Andrea Vedaldi. Monocular depth estimation with
self-supervised instance adaptation. arXiv preprint
arXiv:2004.05821, 2020.

[26] Rohit Mohan and Abhinav Valada. Amodal panoptic
segmentation. In IEEE/CVF Conference Computer Vision
and Pattern Recognition, pages 20991–21000, 2022.

[27] Rohit Mohan and Abhinav Valada. Perceiving the invis-
ible: Proposal-free amodal panoptic segmentation. IEEE
Robotics and Automation Letters, 7(4):9302–9309, 2022.

[28] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and
Lennart Svensson. ClassMix: Segmentation-based data
augmentation for semi-supervised learning. In IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 1368–1377, 2021.

[29] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille,
and Liang-Chieh Chen. ViP-DeepLab: Learning visual
perception with depth-aware video panoptic segmenta-
tion. In IEEE/CVF Conference Computer Vision and
Pattern Recognition, pages 3996–4007, 2021.

[30] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and
Lennart Svensson. DACS: Domain adaptation via cross-
domain mixed sampling. In IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1378–
1388, 2021.

[31] Abhinav Valada, Gabriel Oliveira, Thomas Brox, and
Wolfram Burgard. Towards robust semantic segmentation
using deep fusion. In Robotics: Science and Systems (RSS



2016) Workshop, Are the Sceptics Right, 2016.
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