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Abstract—This paper presents the research objectives and
current state of the FP7 project RADHAR (www.radhar.eu).
RADHAR proposes a framework to fuse the inherently uncertain
information from both environment perception and a wheelchair
driver’s steering signals by estimating the trajectory the wheelchair
should execute, and to adopt this fused information for providing
safe navigation assistance. Furthermore, the wheelchair’s level
of autonomy is continuously adjusted to the driver’s varying
capabilities and desires. For each of the key components in the
RADHAR framework, experimental results are shown.

I. INTRODUCTION

Autopilots in airplanes greatly reduce the pilot’s workload by
taking over parts of the navigation. Their success in reducing
navigational complexity and improving safety motivates the
introduction of navigational assistance in other transportation
means as well. However, implementing robotic navigation
correction on a large scale also represents a potential safety
risk for millions of users.

For this reason, if navigation devices are to be correcting
the driver’s steering signals, thorough understanding of driver
behaviour and pervasive environment perception and interpreta-
tion are imperative. Though driver models have been proposed
for vehicles where the driver is in full control, such driver
models for intelligent vehicles are scarce. Furthermore, the
linking between environment perception, driver perception and
modelling, and robot decision making has often been weak

and ad hoc. The RADHAR project proposes a framework
to seamlessly fuse the inherently uncertain information from
both environment perception and the driver’s steering signals
by estimating the trajectory the robot should execute, and to
adopt this fused information for safe navigation with a level
of autonomy adjusted to the user’s capabilities and desires.
This requires lifelong, unsupervised but safe learning by the
robot. As a consequence, a continuous interaction between
two learning systems, the robot and the driver, will emerge,
hence RADHAR: Robotic ADaptation to Humans Adapting to
Robots.

This framework will be tested on a powered wheelchair as
a concrete testbed, given that many wheelchair drivers would
benefit from navigation assistance, given that they are driving in
very challenging 3D dynamic environments, and given that this
is typically a very heterogeneous user group with varying skills
and abilities. RADHAR will seek a solution for both semi-
autonomous and autonomous wheelchair navigation in everyday
environments. Semi-autonomous transport is important even if
perfect autonomous transport would be available, as it gives
more freedom to drivers who still want to drive themselves,
as it stimulates people and develops their dexterity for other
activities as well (such as for brushing one’s teeth or for eating
with a fork) and as it may help in reconstructing a damaged
brain motor image.



A. Expected contributions by RADHAR

The RADHAR project targets three main project outcomes:

1) Online 3D perception combining laser scanners and
vision with terrain traversability analysis at 10 Hz.

2) A navigation assistance framework for fusing environ-
ment and user perception, and for taking safe robot
navigation actions based on the estimated robot task
from uncertain driver signals, with an ability to take
navigation decisions at 5 Hz or higher.

3) A repeatable benchmark test to evaluate navigation
assistance systems based on driver models.

B. Demonstration platform

Fig. 1 shows one of the 4 demonstrator platforms that will
be built. This contains one haptic joystick, a touch screen with
GUI, 4 Kinects (1 pointed at the user), 2 bumblebees for outdoor
navigation, 3 laser scanners, 2 magnetic encoders, an Xsens
IMU, and a single PC. Besides these physical demonstrators, a
wheelchair simulator was built on which navigation assistance
algorithms can be tested first in a safe manner, and with which
users can be trained and selected.
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Fig. 1: One of the 4 RADHAR demonstrator platforms.

C. Evaluation by user groups

The RADHAR system will be evaluated by wheelchair
drivers from the school Windekind and from the Belgian
national centre for Multiple Sclerosis. In particular, 3 groups
of wheelchair drivers were selected: a group of starters who
did not drive any powered wheelchair before, a group who
easily collides when driving due to physical limitations, and a
group with mainly cognitive problems, who disregard important
aspects of their environment for driving such as other people
that are on their path.

D. Overview and system integration

This section provides an overview of the paper and describes
at the same time how the different RADHAR components fit
together.

Section II describes RADHAR’s Bayesian navigation as-
sistance framework in general. This framework estimates
the driver’s navigation intention from a set of executable
robot trajectories and the driver’s steering signals. For this, a
statistical model of the driver’s steering behaviour is learned
(Sections II-A to II-C). To verify driver model assumptions
such as focus-of-attention, the driver’s posture and eye lid state
(open or closed) will be continuously estimated with a Kinect
(Section II-D).

Besides driver perception and modelling, thorough environ-
ment perception and interpretation is required. Section III-A
describes the detection and labelling of dynamic obstacles,
which will be used as input to a socially compliant motion
planner described in Section IV-A. Section III-B describes the
building of local maps, which is a necessary input to the motion
planner as well.

Based on the estimated map of the local surroundings, based
on a traversability analysis and based on the labelled dynamic
objects, a socially compliant trajectory is computed as discussed
in Section IV-A. In order to compute safe navigation actions
the driver’s body posture is continuously observed and it is
verified whether the driver is not outside a safety volume
(Section IV-B). This information will allow us to prevent the
wheelchair from driving through a door when the driver’s arms
are pending outside of the wheelchair for example.

The set of safely executable trajectories in the robot’s local
environment as well as the probability distribution over these
trajectories will be adopted to provide navigation assistance
to the driver. As described in Section V, RADHAR aims to
perform this using a haptic interface, as this establishes a fast
bilateral communication channel between driver and computer.

II. RADHAR’S NAVIGATION ASSISTANCE FRAMEWORK

Users with different abilities and needs require a general
methodology that can adapt navigation assistance to each
individual, and to different types of interfaces. In order to
avoid frustrating its user, the robot should recognise navigation
plans in a way that considers the user’s driving abilities.

We propose a probabilistic framework to recognise the user’s
navigation plans out of a set of local trajectories. In order to
increase robustness, this framework considers the uncertainty
when recognising user plans. It fuses past driving information
with the user’s specific driving style in order to estimate a
posterior probability over user plans. Further, these estimated
plans are the basis to share the control over the wheelchair
according to the user’s abilities and needs. The robot ensures the
user’s safety because it reasons about collision-free trajectories
that are also physically executable, i.e. kinematically and
dynamically feasible.

The robot first generates all possible user plans for a given
situation (plan generation). These plans represent all navigation
intents in an environment, and take the user’s body posture
(Section IV-B) and dynamic obstacles (Section IV-A) into
account. Next, the robot reasons about the user’s abilities
to determine the probability of each plan. Calculating the
probability of docking at a table (estimating the posterior)



directly is more difficult than obtaining the probability of the
input signals that are necessary to reach the table, assuming
the user has a plan to reach the table in mind. We call the latter
probability user model. However, the information available to
the robot from the user model is quite limited. Often the robot
is unable to disambiguate several intentions. Hence, it becomes
essential to consider past driving behaviour.

Our probabilistic formulation employs Bayes’ theorem to
calculate the posterior probability of user plan z;, given the
user’s current input, wuy, and past driving behaviour as follows:

posterior over user plans user model prior over user plans

ppost (ik‘"ll’k‘,, HO:k) = Puser (uk|ik7 HO:k) 'pprior (Zk|%0k) N
(1)
where 7 is a scale factor necessary to normalize the probability
distribution. The history Hq.; includes all previous user inputs
up to time k£ — 1, the sequence of robot actions ag.x, the
sequence of robot poses, xo.x, and any external sensor readings,

Z0:k-
A. Learning the models of plan recognition

In order to recognise the user’s navigation plans it is
necessary to devise a model of the user’s driving, as well
as a way to relate past behaviour to the present. The first
component is the user model of equation (1), which represents
how a specific user transforms mental plans into inputs to
the robot. The time evolution, linking the past to the present,
concerns how to initialise the prior probability (pprior(-)) With
the posterior of the previous time step.

We propose to learn the user model from direct observation
of the user’s driving. The user moves in the environment
following a predefined sequence of destinations. Afterwards,
during calibration, the complete trajectory of the user is known.
Hence, it becomes possible to compare the actual trajectory
with the set of local plans at each time step. The local path
that resembles the actual trajectory the best is employed to
predict the user’s input with a probabilistic function estimation
technique called Gaussian Process Regression [14]. Please refer
to [10] for a complete description of the procedure to learn
the user model.

The dataset of human-robot navigation also allows to learn
the parameters of the prior in equation (1). Local plans, which
resemble the actual trajectory of the user at subsequent times,
should inherit probability. We formalise this insight as a
series of soft probabilistic constraints in a Dynamic Bayesian
Network [13] in order to learn the prior. We explain the
complete procedure in [8].

B. Evolution of the framework

The framework to recognise the user’s navigation plans
was first proposed by Demeester et al. [4]. In this early work,
navigation intentions are global destinations in the environment.
Later work [5] expands the intention representation with the
path to reach the goal, as the same destination might be reached
in different ways.

Another important aspect is the impact of steering disabilities
on the user model. Some users might be unable to execute all

trajectories perfectly. Hiinteman et al. study in [9] this effect
for a user who is unable to turn left.

A further improvement is to learn the user model directly
from driving data. In [10] Hiinteman et al. propose a learning
framework based on Gaussian Process Regression [14] for
user modelling and validate it on the driving pattern of a
spastic user. The navigation plans in [10] are local trajectories
instead of global plans. These local plans allow the robot to
reason locally with rich collision information about a user
who can drive anywhere. However, linking local plans across
time without fixed global references is hard. The dissertation
of Hiinteman [8] describes a learning framework to learn all
parameters of local plan recognition.

C. Analysing the plans of a user with spastic quadriplegia

In order to verify the validity of the approach, we have
analysed the navigation plans of a user with spastic quadriplegia
driving an electric wheelchair in an indoor environment. No
navigation assistance was provided to understand how the user
drives without external interference.

Fig. 2 shows a snapshot of the experiment, at which the
user is locally turning on the spot after having driven forward.
Fig. 2a, shows the set of considered local trajectories for plan
recognition. Fig. 2b displays the same plans according to their
posterior probability. Darker colours indicate higher probability.
A cyan trajectory indicates the future path the user will follow,
which allows to compare the estimated navigation plans with
the actually executed trajectory.
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Fig. 2: Recognising the navigation plans of a spastic user.

In this situation, plans with an intermediate curvature have
the highest probability. Plans of high and low curvature
still remain probable, whereas plans leading backwards are
improbable. The most probable plan coincides locally with the
future path of the user. For an in-depth analysis of the user’s
driving style, please refer to the dissertation of Hiintemann [8].

D. Head orientation estimation

The driver model in Equation 1 assumes the driver is focused
on the navigation task. However, this may not always be the
case. We intend to estimate the driver’s focus of attention based
on the head orientation, amongst others. For this, a Kinect
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Fig. 3: Output of the user head pose estimation system. The
green cylinder represents the head orientation.

sensor is mounted on the wheelchair and points towards the
driver.

Our approach for 3D head pose estimation [6] does not
rely on specific graphics hardware and can be tuned to

achieve a trade-off between accuracy and computation cost.

We formulate the problem as a regression, estimating the head
pose parameters directly from the depth data provided by
a Kinect. The regression is implemented within a random
forest framework [3], learning a mapping from simple depth
features to a probabilistic estimation of real-valued parameters
such as 3D nose coordinates and head rotation angles. Since
random forests (as any regressor) need to be trained on labeled
data and the accuracy depends on the amount of training, we
generate an arbitrary number of synthetic training examples
without the need of laborious and error-prone annotations. Our
system works in real-time on a frame-by-frame basis, without
manual initialization. It works for unseen faces and can handle
large pose changes, variations such as facial hair, and partial
occlusions, e.g. due to glasses, hands, or missing parts in the
3D reconstruction. Moreover, as it does not rely on specific
features, e.g. for the nose tip detection, our method can be
adapted to the localization of other parts of the face.

Fig. 3 shows an example frame, with our method successfully
estimating the head pose even when the nose is badly occluded
and thus most of the other approaches based on 3D data would
fail. Facial expressions also do not seem to cause problems to
the regression in most of the cases, even though the synthetic
training dataset contains only neutral faces.

Once the head pose of the user is estimated, it can be used to
evaluate his/her attention level by a simple comparison to the
motion direction. The assumption here is that a user focused on
the navigation task will more likely watch towards the direction
in which the wheelchair is moving.

III. ENVIRONMENT MODELLING

In order to provide safe trajectories for both autonomous
and semi-autonomous navigation assistance, a reliable model
of the wheelchair’s local surroundings should be built. In
order to do so, typical dynamic objects in everyday wheelchair
environments are detected and labelled (Section III-A), and a
3D model of the environment is built (Section III-B).
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Fig. 4: Sample output when detecting other wheelchairs a) and
a person b).

A. Dynamic object detection and classification

To detect dynamic obstacles we rely on the input provided
by a Kinect placed in front of the RADHAR wheelchair and
pointed towards the environment. Our algorithm is based on
Hough forests, which are sets of decision trees learned on
the training data. Each tree in the Hough forest maps local
appearance of image elements to its leaves, where each leaf is
attributed a probabilistic vote in the Hough space. In line with
the general random forest paradigm [1, 3], the training process
for each tree is governed by a combination of randomization
and optimization strategies. The set of leaves in the Hough
forest can thus be regarded as an implicit appearance codebook
that has been directly optimized for Hough-based detection.
Similar to general random forests, Hough forests are efficient
to learn and to apply. The combination of the tree structure
and simple binary tests makes training and matching against
the codebook very fast, whereas clustering-based learning of
explicit codebooks as in [12] is considerably more expensive
in memory and time. In our case, the random forests have
been trained on labeled data captured in the scenario in which
the RADHAR wheelchair will most likely navigate. Sample
obstacle classes are people and wheelchairs, for which some
example detection results are provided in Fig. 4.

B. Robust 3D SLAM

An important building block in autonomous and assisted
driving is the construction of a suitable map as representation
of the environment around the wheelchair. To properly address
tasks like docking at a table or driving on ramps, the RADHAR
project puts an emphasis on perceiving and mapping the
environment in 3D, and providing methods for path planning
and collision avoidance based thereon.

When moving in previously unknown environments, a map
can be constructed using simultaneous localization and mapping
(SLAM). While laser-based SLAM for robots moving on a 2D
plane can be considered a solved problem, the extension to 3D
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Fig. 5: Observations like tracked features or sensor readings
produce constraint edges between consecutive robot poses
modeled by nodes in a graph.

with cameras instead of laser scanners still poses problems,
e.g., when lighting changes occur, or when camera images are
blurred due to fast movements.

To achieve robust 3D SLAM, we propose a framework
that allows for easy integration of several sensor modalities
that complement each other. A modular frontend collects
observations from feature tracking on color and depth images,
laser scanners, and readings from inertial measurement units
and odometry. These observations are treated as constraint
edges between consecutive robot poses modeled as nodes in a
graph as shown in Fig. 5. Using our general graph optimization
framework “g20” as backend [11], the position of the nodes
can be jointly optimized to determine a consistent map.

IV. TRAJECTORY GENERATION FOR AUTONOMOUS AND
SEMI-AUTONOMOUS NAVIGATION

Based on the estimated map of the local surroundings, a
traversability analysis and the labelled dynamic objects, a set of
trajectories is computed that is compliant with the wheelchair’s
dynamic environment (Section IV-A). Moreover, the driver’s
body posture is monitored to detect potentially dangerous
situations (Section IV-B).

A. Socially compliant motion planning

To allow for socially compliant motion planning, our goal
is to learn and imitate human behaviour. In interaction with
pedestrians, the autonomous wheelchair should react similarly
to a wheelchair that is steered manually. However, humans
navigate cooperatively in populated environments and the
behaviour of all interacting agents are mutually dependent. The
actions of any agent influences the behaviour of its environment,
but at the same time its actions are influenced itself by the
behaviour of the surrounding agents.

Bennewitz et al. [2] describe how sequential path planning
can generate plans for several agents. However, using this
approach the plan for each agent only depends on a subset of
the other agents. To solve the problem of mutual interaction
between all agents, Helbing and Molnar [7] presented the
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Fig. 6: Joint trajectories comprising three agents. The target
positions of the agents are depicted by red crosses. Left:
randomly initialized. Right: joint trajectories converged.
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Fig. 7: Predicting real-world human navigation behaviour: the
figures show a comparison of the human trajectories recorded
in a motion capture studio and the trajectories predicted by
our approach and by the social forces method.
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social forces model that aims to describe the local interaction
behaviour of humans. Similarly, van den Berg et al. [16]
introduced reciprocal velocity obstacles, which also describe
rules for cooperative collision avoidance. However, these
methods are mainly reactive which results in a limited capability
to predict future interaction.

In contrast, we employ joint path planning for actual
trajectories of all involved agents including the autonomous
wheelchair and humans. For these joint trajectories, we define
parameterized features like acceleration and inter-agent dis-
tances. Using a maximum entropy-based learning method we
compute the probability distribution that closely reproduces
the feature values observed in recorded human interactions.

Given a navigation task (cf. Fig. 6 and Fig. 7), the au-
tonomous wheelchair computes the probability distribution over
joint trajectories. It then selects the most likely joint trajectory
which includes a predicted trajectory for the wheelchair itself.
By executing this plan the wheelchair navigates cooperatively
through populated environments.

B. User posture analysis

Using a Kinect mounted on the RADHAR wheelchair and
pointed towards the user, we need to detect the posture of the
subject sitting in the wheelchair. The solution we adopted to
achieve this goal is to detect the person in the depth image,



Fig. 8: Output of the user posture analysis system. The body
parts which are outside of the safety volume are marked in
red.

define a safety bounding volume around the chair, and check
whether the whole body of the person is inside this volume or
not. The solution we propose does not require any initialization
and is based on the Flood Fill algorithm applied to depth
data. We assume that the central pixel of the image belongs
to the person sitting on the wheelchair (this is a reasonable
assumption, since the Kinect will be placed in front of the
chair, at a distance of about 70cm, thus the person will cover
the central part of the image), and we extend the region from
that pixel. More precisely, we include a pixel only if its depth
value is close enough to the depth of one of its neighbors
which already belong to the region. Then the safety volume
can be arbitrarily set, depending on the size of the wheelchair.
As a final step, we check whether all the 3D locations of the
pixels belonging to the person are inside the bounding volume
or not. Fig. 8 shows the output of our system: the parts of
the body inside the safety volume are depicted in green, while
those outside it are shown in red.

V. HAPTIC FEEDBACK AND SHARED CONTROL

Given an estimation of the safe trajectories the driver most
probably wants to execute, the RADHAR system is now able
to provide actual navigation assistance to the driver. This will
be performed by adopting a novel haptic joystick.

A. Haptic navigation assistance

Touch and kinesthesis (in short haptics) are subtle, effortless
senses that are critically important for fast and accurate
interaction with our environment. While picking up a pencil a
complex interaction and exchange of forces takes place that
allows us to grasp it in a stable manner without slipping nor
thumbling. An interaction of that complexity takes place almost
effortlessly, requiring hardly any mental effort. A haptic display
system is a robotic joystick that can be programmed to exert
well-controlled forces upon its user. Connected to a virtual
reality environment with dynamics engine such joystick can

replicate the forces that arise when e.g. picking up the pencil. In
theory, and when well designed a user might find it troublesome
to distinguish a virtual from a real pencil. Such system would
thus feel natural and be intuitive to interact with.

Forces displayed by the haptic device should not necessarily
replicate a purely physical phenomenon in order to be perceived
as natural or intuitive. RADHAR looks at ways to encode
navigation assistance schemes and present them via a haptic
joystick to the wheelchair driver. If designed well, such haptic
environmental feedback could feel intuitive and allow effortless
navigation through complex environments. However, since
there is often no physical equivalent for a navigation assistance
scheme, finding an intuitive encoding is not straightforward
at all. Furthermore, since wheelchair users often have limited
power and get easily tired, haptic feedback should not increase
the overall effort.

Compared to traditional navigation assistance or so-called
shared control schemes [15], where users only perceive the de-
cisions by the navigation system after wheelchair displacement,
haptic guidance allows a more profound sharing of control.
The user can negotiate directly with the navigation assistance
system over this fast bilateral communication channel and
should thus encounter less surprises on how the wheelchair
will move (Fig. 9). Furthermore, by applying sufficient force
upon the joystick, the user can always overrule the suggestion
by the assistance system. So, in the end, the user can keep the
control over the system.

B. Haptic obstacle avoidance along circular paths

A novel haptic guidance scheme was developed to help steer
the powered wheelchair users through narrow and complex
environments [17]. The scheme encodes the local environment
of the wheelchair as a set of collision-free circular paths. An
adaptive impedance controller is then tuned based on this
encoding so that it slows the wheelchair down in the direction
of short circular paths (thus with imminent collisions) and
bends the user towards longer circular paths (helping to avoid
the collisions). Fig. 10 displays the resistance a user would
feel at the joystick, for an environment and circular encoding
displayed in 10a.

C. Experiments with backwards driving into an elevator

Preliminary experiments were conducted with this kind of
haptic navigation assistance. With cardboard boxes an artificial
environment was built up to represent an elevator. The user is
asked to maneuver the wheelchair backwards inside this elevator
beginning from a fixed starting position. The maneuvering
capability with or without navigation assistance is measured
during the execution of this task. Parameters that were recorded
are time until completion and the number of collisions. At
this stage of the research all experiments are conducted by
one single able-bodied user (male, 33 years) with limited
expertise in driving powered wheelchairs. Both experiments
were conducted 10 times. Three types of experiments were
conducted and executed in random order:

Type 1: navigation without guidance. The user was allowed
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Fig. 9: Navigation assistance through unilateral or bilateral
shared control.

to look backwards over the shoulder during these experiments.

Note that this way of operation is not possible or very tiring
for many typical wheelchair users.

Type 2: navigation with visual guidance. The user was
asked to maneuver the wheelchair while observing a GUI that
displayed the environment encoded as a set of collision-free
path lengths. Type 3: navigation under haptic feedback. The
user was asked to drive ‘blindly’ inside the elevator solely
relying on his sense of touch and the haptic guidance.

Table I and Fig. 11 summarize the results from the different
experiments. At this moment, navigating the wheelchair while
looking backwards over the shoulder is still superior, but, also
here, collisions could not be avoided. Indeed, the task is quite
challenging as the elevator is quite narrow, leaving only about
10 centimeters of space at both sides between wheelchair and
door post. With only visual or haptic guidance, the amount
of successful executions dropped to 6/10. This score might
seem quite low, but it must be stressed that the user did not
have to look backwards over the shoulder. So such navigation
strategy could come in handy to help especially those users
that experience problems in looking over their shoulder while

|

(b) Associated force field.

Fig. 10: Collision-free paths and associated force field in haptic
joystick.

TABLE I: Summary of results (time in s, average and standard
deviation calculated for successful runs only).

run 1 2 3 4 5 6 7
type 1 13.23 | 13.15 | 10.11 14.31 11.94 9.45 9.69
type 2 11.00 | 12.09 | 11.47 | 14.01 9.6 10.34 | 17.51
type 3 254 1043 | 21.86 | 1523 | 19.48 | 13.37 | 26.65
run 8 9 10 av. stdev | coll.

type 1 1046 | 12.07 | 10.14 11.14 1.47 1

type 2 11.84 9.82 15.73 11.60 1.48 4

type 3 13.02 | 40.83 | 17.94 18.23 5.89 4

steering a wheelchair.

At this moment GUI-based navigation is still faster than
navigating solely based upon haptic guidance (Table I). Under
haptic guidance the user is somehow ‘palpating’ the environ-
ment to feel where the passage is, whereas the GUI immediately
shows the user where the passage is. On the other hand
the haptic guidance warns the user when a collision is near.
Fig. 11b shows an exemplary trajectory where the user turns
the wheelchair after such warning and successfully completes
the task.

There is definitely still some room for improvement. But note
that it is quite remarkable that already now in 6/10 cases the
user manages to drive into the elevator solely relying on haptic
guidance. Without such guidance, without GUI or looking
backwards over the shoulder such maneuver would be close
to impossible.
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Fig. 11: Navigation trajectories when driving backwards into
an elevator.

VI. CONCLUSION

This paper has described the main technological components
of the RADHAR navigation assistance approach. Experimental
results for each component separately have been shown. These
components are now being integrated into one system, so that
it can be tested by the user groups.
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