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Abstract— The perception of the dynamic aspects of the
environment is a highly relevant precondition for the realization
of autonomous robot system acting in the real world. In this
paper, we propose a novel method for estimating dense rigid
scene flow in 3D LiDAR scans. We formulate the problem
as an energy minimization problem, where we assume local
geometric constancy and incorporate regularization for smooth
motion fields. Analyzing the dynamics at point level helps in
inferring the fine-grained details of motion. We show results
on multiple sequences of the KITTI odometry dataset, where
we seamlessly estimate multiple motions pertaining to different
dynamic objects. Furthermore, we test our approach on a
dataset with pedestrians to show how our method adapts to a
case with non-rigid motion. For comparison we use the ground
truth from KITTI and show how our method outperforms
different ICP-based methods.

I. INTRODUCTION
Perceiving the dynamics of the environment of a robot

provides highly relevant information about which aspects
change or how the environment might evolve in the future.
The dynamics of a scene can be studied either at object
or point level. Having pointwise motion or a dense mo-
tion field provides major advantages. First, it can help in
inferring different motions in the scene without using any
prior knowledge. Second, it allows the robot to reason about
the underlying cause of the motion. For instance, the rigid
motion field for points sampled from a static scene can
facilitate the estimation of the sensor motion. Third, it assists
in capturing the fine details of dynamics, enabling better
semantic understanding. For example, it can help the robot
deal with human motion, which is typically non-rigid.

Pointwise motion has garnered a lot of attention mainly
in the computer vision community. Various methods have
been proposed for estimating 2D pointwise motion in images
using color [5]. With the recent advent of affordable depth
sensors, different methods exist for scene flow estimation
using color and depth images [9], [10], [18]. These methods
cannot be applied directly to 3D point cloud data due
to inherent differences in the problem structure. First, the
constancy assumptions for brightness or gradients are not
valid for LiDAR data. The intensity values from LiDAR
are often unreliable as they also depend on the angle of
inclination. Furthermore, due to the sparse nature of LiDAR
data, gradients are not well defined. Second, the concept of
the neighborhood is well understood for images (fixed size
image patch), whereas a similar well defined structure does
not exist for 3D data. Third, most of these methods assume
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Fig. 1: Pointcloud colorized according to the translational
component of the estimated rigid motion flow. Black points
represent the static scene. The three red/orange cars have
similar hue values since they are moving in same direction,
while the green car moves in the opposite direction.

a linear motion (translation), which is justified if data is
collected at a high frame rate (30Hz). In cases, in which
data is not collected at a sufficiently high frame rate (with
a LiDAR scanner at 10Hz), the assumption of linear motion
cannot be justified.

In this paper we propose a novel approach for estimating
rigid scene flow that addresses all of the aforementioned
challenges. We formulate the problem as an energy mini-
mization problem. Our first contribution is introduction of the
concept of geometric constancy, i.e., that the local structure
is not deformed due to the motion. Next contribution is
introduction of a novel neighborhood structure for 3D point
clouds. Our approach approximates the scene using triangu-
lar meshes and considering two points as neighbors only if
they are vertices of the same triangle. Lastly, we estimate
the complete 6D rigid motion, instead of linear translational
motion only. With these contributions, our proposed method
can estimate dense rigid scene flow for 3D LiDAR data.

Figure 1 shows the rigid motion flow estimated by our
method. We test our approach on multiple sequences of
the KITTI odometry dataset [6] and demonstrate how our
method effortlessly estimates arbitrary motion in the scene.
For comparison, we use the ground truth and evaluate our
approach against ICP-based methods. For the cases, in which
ground truth is not available, we quantify our motion estimate
by measuring the alignment between scans. Furthermore,
we show advantages of having pointwise motion by testing
our approach on a dataset with pedestrians. The experiments
reveal that our method adapts to the case of non-rigid objects.



II. RELATED WORK

The problem of estimating motion flow has been studied
intensively in the past. The different developed methods can
be distinguished according to the dimension of the motion
field. Optical flow [5] describes 2D translation motion in im-
age plane, sceneflow [9], [22], [10] describes 3D translation
motion, and the rigid scene flow [18], [17] describes the rigid
motion.

Fortun et al. [5] provides extensive literature review for
optical flow. Building on optical flow, Vedula et al. [22]
introduced the term scene flow. They included first order
approximations of the depth map to estimate 3D flow. Herbst
et al. [9] extended the approach presented by Brox et
al. [1] and include a depth constraint to estimate scene
flow. Jaimez et al. [10] introduced a real time, primal-dual
algorithm based method to estimate scene flow for RGB-D
data. However, these methods make assumptions which for
reasons discussed in Section I are not valid for our case.

For estimating dense semi-rigid flow for RGB-D data,
Quiroga et al. [18] solved an energy minimization problem,
using TV regularization to estimate piecewise smooth mo-
tion. Vogel et al. [23] proposed a method to estimate the 3D
motion and structure using RGB-D data. The main contribu-
tion of their work is using local rigid regularization instead
of variational regularization. Newcombe et al. [17] proposed
a method for dense SLAM using RGB-D scans, where they
reconstruct deforming surfaces and simultaneously estimate
dense volumetric 6D motion field. These methods show
commendable results but they use color and depth images,
while our approach relies on sparse depth data, therefore a
direct comparison is infeasible.

The methods discussed so far show results mainly for
indoor scenes. For outdoor environments, Menze et al. [15]
propose a method for object scene flow using images. They
over segment the scene into super pixels and using CRF
jointly estimate rigid motion and an association between
super pixels and objects. Even though their assumption about
rigid structure of the outdoor environment is not invalid
but our assumption of local rigidity enables our method to
estimate motion of a non-rigid object (incase of humans),
making our method more robust towards change in the
environment.

Various methods have been proposed for tracking using
3D LiDAR data in outdoor environments. Kaestner et al. [11]
proposed a generative Bayesian approach for detecting and
tracking dynamic objects. Moosmann et al. [16] used a
segmentation method based on local convexity for detecting
object hypotheses and combined ICP and a Kalman filter
for tracking. For 2D LiDAR data Tipaldi et al. [19] and
Van De Ven et al. [21] proposed methods for detecting and
estimating motion using CRF. In our previous work [3] we
proposed a method for detecting and tracking in 3D LiDAR
scans. We estimated multiple rigid motion hypothesis using
RANSAC and used a Bayesian approach to associate points
in the scene to different motion hypotheses. In this paper,
we rather focus on estimating pointwise motion and do not

reason about motion at object level. However, our current
method can be extended for segmenting dynamic objects on
the basis of motion.

Our assumption of local rigidity allows for deformation
of surfaces. Addressing this problem, Hähnel et al. [7] pro-
posed an approach extending ICP for registering deformable
surfaces for sparse LiDAR data. Similar to us they perform
pointwise estimation, allowing for smooth deformation of the
surface. The main difference between our method and their
method is that we estimate feature based correspondences,
while they use nearest neighbors for data association. The
assumption of nearest neighbors breaks if two surfaces are
far from each other, for instance when a dynamic object
moves in the direction opposite to the direction of sensor
motion. Our feature based method is immune to these cases
and can estimate large motion. For registering deformable
3D surfaces, Praveen et al. [4] extended the approach by
Hähnel et al. [7] by introducing the concept of correlated
correspondences, where they estimate pointwise deformation
and correspondence. Our approach adjusts to the cases of
non-rigid objects but in this paper we are not concentrating
on registering deformable dense 3D surfaces but instead es-
timating pointwise motion for sparse LiDAR data, therefore
a comparison with the work of Praveen et al. [4] and the
approach of Cosmo et al. [2] is beyond the scope of this
paper.

III. PROBLEM FORMULATION

A LiDAR scan P is given by a set of 3D points.

P = {pk | pk ∈ <3, k = 1, . . . ,K}. (1)

Given two LiDAR scans Pt−1 and Pt, the objective is to
find a dense rigid motion field that best explains the motion
between two scans. A rigid body transformation for a point
p ∈ <3 can be written as:

T (p) = Rp+ t, (2)

where t ∈ <3 is the translation and R ∈ SO(3) is the
rotation. Transformation in Equation (2) can be written as:

τ =

(
R t
0 1

)
∈ SE (3) (3)

As τ only has 6 degrees of freedom, we also introduce a
compact representation ς = (tT , qT ) ∈ <6, where t is the
translation and q is the vector part of a unit quaternion q̃.

The motion of the scene is embedded in a rigid motion
field T :

T = {τk | τk ∈ SE (3), k = 1, . . . ,K} (4)

We represent the problem using a factor graph G =
(Φ, T , E) with two node types: factor nodes φ ∈ Φ and
state variables nodes τk ∈ T . Here, E is the set of edges
connecting Φ and state variable nodes T . Figure 2 shows
the factor graph for our problem.

The factor graph describes the factorization of the function

φ(T ) =
∏
i∈Id

φd(τi)
∏
l∈Np

φp(τi, τj), (5)
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Fig. 2: Factor graph representation of our problem. Gray
and red circles represent state variables for the scans Pt−1
and Pt respectively. Green squares represent factors for the
regularization term, while purple squares represent factors
for the data term.

where {φd, φp} ∈ φ are two types of factor nodes describing
the energy potentials for the data term (purple squares) and
regularization term (green squares) respectively. The term Id
is the set indices corresponding to keypoints in Pt−1 and
Np = {〈1, 2〉, 〈2, 3〉, . . . , 〈i, j〉} is the set containing indices
of neighboring vertices.

The objective is to find T ∗:

T ∗ = arg min
T

E(T ), (6)

which minimizes the energy E(T ):

E(T ) = − lnφ(T ) (7)

A. Data Term

Our approach relies on the assumption of geometric
constancy, i.e., that the local geometric structure is not
deformed because of the motion. We parametrize the local
geometry using a SHOT feature descriptor [20]. Unlike other
methods [1], [9], which make similar constancy assumptions,
we do not consider the geometric structure explicitly in the
optimization, because gradients w.r.t. parametrized geometric
structure are not well behaved due to the sparse nature of
LiDAR data. Instead, we realize our constancy assumption by
matching points in the scan having a similar local geometric
description.

To find point correspondences we use the same approach
as discussed in our previous work [3]. Since we only
have correspondences for a subset of points, the data term
is defined only for state variable nodes corresponding to
keypoints.

We define the error for data term in the following way:

ed(τi) = τip̃i − p̃i′ (8)

Here, p̃i and p̃i′ are the corresponding points in consecutive
scans represented in homogeneous coordinates, τi is the
unknown rigid motion and i ∈ Id. The data term is defined
as:

φd(τi) = exp(−‖ed(τi)‖2) (9)

In Figure 2, a purple square connecting state variable
nodes of two different scans represents φd(τi).

B. Regularization Term

The data term helps us to estimate the motion, but is
defined only for a subset of points. In addition to this, it
is known that estimating pointwise motion independently is
an ill-posed problem. In case of rigid motion which has
6 unknowns, a minimum of 3 non-collinear point corre-
spondences are required. Therefore, to obtain a well-posed
optimization problem, for which a unique solution exists and
which has a dense, locally smooth motion field, we include
a regularization term in our energy function.

A similar regularization term is often included in energy
minimization problems [9], [1], [18]. In case of estimating
a motion field in an image domain, the local neighborhood
is well understood. A common practice is to consider all
pixels in a small image patch as neighbors. In case of 3D
point cloud data, the concept of neighborhood is not as
straightforward as for images. A naı̈ve way to calculate
the neighborhood is to consider all the points in a sphere
around a point as neighbors. Since our method relies on the
assumption of rigidity of the local structure, it is important
that the definition of neighborhood considers the structure
of the scene, which spherical neighborhood fails to do.
For instance, using spherical neighborhood points on the
surface of two different objects can be considered neighbors
if objects are close to each other. To circumvent this problem
we construct a triangular mesh structure [14] to approximate
the surface and consider points as neighbors only if they are
vertices of the same triangle.

The error term for the regularization term is defined in the
following way:

ep(τi, τj) = ξ(τ−1i τj) (10)

where, τi and τj are the motion transformations for neigh-
boring nodes and ξ(·) is the mapping function from SE(3)
to a compact representation in <6.

The energy potential for the regularization term is defined
as:

φp(τi, τj) = exp(−‖ep(τi, τj)‖2) (11)

In Figure 2, a green square connecting neighboring state
variable nodes represents φp(τi, τj).

IV. OPTIMIZATION

The error for both data and regularization terms is
quadratic and the problem is of sparse non-linear least
square form. Using Equations (9) and (11), we can simplify
Equation (7) as:

E(T ) =
∑
i∈Id

‖ed(τi)‖2 +
∑
l∈Np

‖ep(τi, τj)‖2 (12)

We use the Levenberg-Marquardt algorithm to find an
estimate that minimizes the energy. Since the regularization
term only connects neighboring points, the problem can be
decomposed into multiple independent sub-problems, which
can be solved efficiently in parallel.



The point correspondences we estimate contain outliers,
which have a strong negative impact on the estimate. To
tackle outliers, we use a saturated robust kernel ρ:

ρ(x2) =


x2

2 , if x2 ≤ c2

c2

2 , if x2 > c2

 (13)

where x2 is the squared error and c is the kernel size. We
use a robust kernel only for the error in the data term and
rewrite Equation (12) as:

E(T ) =
∑
i∈Id

ρ(‖ed(τi)‖2) +
∑
l∈Np

‖ep(τi, τj)‖2 (14)

Since, the initial error is large, we perform two steps of
optimization. First we optimize without a robust kernel to
reduce the error and then perform another optimization run
with the robust kernel to minimize the effect of outliers.

As we use sequential data, the motion transformations can
also be expected to be temporally smooth. We do not include
a term for temporal smoothing explicitly in our energy
minimization function, but we initialize the estimate for a
vertex in the graph with the estimates from previous scans.
Points with known motion are transformed into the frame
of reference of the next scan. We perform data association
between the transformed points and the points in the next
scan on the basis of Euclidean distance and propagate the
estimated motion. Since we do not have data association
for each point, we still perform two steps of optimization
to make sure that state variable nodes without good initial
estimates are not treated as outliers due to a large initial
error.

V. RESULTS

We perform multiple experiments to evaluate our ap-
proach. For the first set of experiments we use five sequences
from the KITTI odometry dataset. Estimating the ground
truth motion for each point or for every moving object
is labor intensive and non-trivial, but if the scene only
contains static structure, then the motion of each point is
the motion of the sensor. Therefore, to evaluate our method,
we choose three sequences (3, 5 and 6) with no moving
objects and two sequences (4 and 12) containing multiple
dynamic objects. Furthermore, to illustrate the advantages of
estimating pointwise motion, we evaluate our method on a
new dataset with pedestrians. In this experiment we estimate
the motion for a non-rigid structure. We collected this dataset
using a Velodyne HDL-32E LiDAR sensor mounted on a
robot.

We employ the g2o toolkit [12] for optimization. For
all the experiments we remove all the ground points in a
preprocessing step. We chose c2 = 0.05 as kernel size
(Section IV). This choice depends on the maximum error
that can be tolerated.

We compare our method with two variants of ICP. The
first one is ICP with no initial estimate, whereas the second
one uses RANSAC to calculate an initial estimate before
calculating the alignment using ICP. During the application

of RANSAC we use the same correspondences as in our
approach.

A. KITTI Dataset

We use five sequences from the KITTI odometry dataset
to evaluate our approach. For each sequence we calculate
dense rigid motion flow. Figure 3 shows results for two
sequences. To visualize the motion flow, we colorize the
point cloud using the magnitude and the direction of the
estimated translational motion. Figure 4 shows the color
palette used for colorizing the points.

Figure 3a and 3c show the colorized point clouds for
scans in sequences 4 and 5. For better visualization we
use the ground truth odometry to compensate for the sensor
motion. The static scene in both sequences is represented by
black (center of the color palette). Figure 3a also shows two
dynamic objects (cars in blue and red) moving in opposite
direction. Our method correctly estimates the different mo-
tions in the scene, highlighting one of the advantages of our
approach.

We observed that the motion estimate for points farther
away from the sensor was different to the points closer to
the sensor. This can be explained by the lever arm effect,
causing the farther away points to have larger rotational
motion than points closer to the sensor. This explains the
different shades of black that can be observed in both figures.
Figures 3b and 3d show the alignment of consecutive scans.
In both cases the scans are aligned correctly for the static
scene as well as for the dynamic objects, demonstrating that
the estimated motion is correct even for the points that are
effected by the lever arm effect.

The performance of our approach decreases when a sub-
graph contains very few points because the optimization
problem is ill-posed for these cases. This mainly happens
for points on the curb.

B. Motion Field

Using the ground truth, we calculate an error in translation
and rotation for each point. We then calculate average error
for each frame, which is further averaged over the entire
sequence. Table I contains the translational error te (in
meters) and the rotation error re (in radians) for our method
and the ICP methods.

For all the three sequences we calculated the minimum
error in translation. Our method outperforms both ICP meth-
ods. The ICP method without initialization yields the largest
error. This result can be expected as ICP is known to suffer
from poor initializations, which is the case here since the
sensor is moving. Regarding the rotational error, the results
are comparable.

C. Alignment

Ground truth motion is available only for the static scenes.
Therefore to quantify the motion estimate for dynamic scenes
we measure alignment between two scans by calculating the
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Fig. 3: Estimated motion flow. (a) and (b) show the motion flow for two sequences of the dataset, (c) and (d) are the
corresponding aligned scans. Pointcloud in (a) and (b) are colorized according to the color palette in Figure 4. Static
structure is represented by black color and the dynamic objects in (a), (blue and red car) are moving in the opposite
direction. In (c) and (d) points in black represents the scan Pt and green points represents the scan Pt−1 transformed into
the the next frame.

TABLE I: Error in rigid motion flow

Sequence 3 Sequence 5 Sequence 6
te re te re te re

Ours 0.22±0.07 0.02±0.007 0.21±0.07 0.02±0.008 0.50± 0.12 0.04±0.01
ICP 0.77±0.34 0.03±0.02 0.73±0.27 0.05±0.02 1.59±0.51 0.11±0.04

ICP+RANSAC 0.38±0.25 0.02±0.01 0.26±0.12 0.02±0.01 0.65±0.26 0.04±0.02

crispness score Cs, which is [8]

Cs =
1

ni

ni∑
k=1

G(p′k − p̂k, 2Σ), (15)

where p̂k is the nearest point in the point set Pt to the
transformed point p′k from the point set Pt−1 , ni are the
number of points and Σ is the covariance. The crispness
score defines the compactness of two point sets: the higher
the score, the closer are the two point sets. The scores are
scaled between 0 and 1.

TABLE II: Crispness score for outdoor scenarios

Ours ICP ICP+RANSAC
Sequence 3 0.91±0.01 0.86±0.03 0.91±0.01
Sequence 4 0.87±0.04 0.74±0.07 0.88±0.04
Sequence 5 0.93±0.02 0.87±0.03 0.93±0.02
Sequence 6 0.89±0.02 0.79±0.05 0.89±0.02

Sequence 12 0.81±0.07 0.63±0.06 0.83±0.06

Crispness scores for our method and ICP+RANSAC
method are comparable (Table II). This result can be ex-
pected since, for outdoor scenarios, objects are rigid and all
the points in a subgraph move in a similar way.

Fig. 4: Color wheel representing the magnitude (saturation)
and direction (hue) of the translational motion.

D. Non-rigid objects

To test our approach for non-rigid objects, we collected a
dataset with four different kinds of human motion: moving
arms upwards, moving arms backwards, bending forward and
bending sidewards. Figure 5 compares our approach with
the ICP+RANSAC method for the cases of the arm moving
upwards and the body bending sidewards. In the first case
there are multiple motions: the right arm moves upwards and
the left arm moves downwards while the rest of the body
remains static. Our method estimates the different motions
and aligns the scan correctly, whereas for the ICP-based
method, the whole body tilts clockwise to align the left arm.
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Fig. 5: Alignment of non rigid structure for arm moving
upwards ((a)-(c)) and body bending sidewards ((d)-(f)). The
first column shows the input scans. The points in scan Pt

are shown in red and scan Pt−1 is shown in gray. The scan
aligned by our approach is shown in green (second column),
whereas the ICP result is shown in blue (third column).

Similarly for the second case, the alignment proposed by our
method better represents the underlying motion.

Table III shows the crispness score for the pedestrian
dataset. For all cases our method provided a better score.
Our method effortlessly adapts to the non-rigid case and con-
vincingly outperforms the rigid motion based methods. This
experiment again demonstrates the advantages of estimating
pointwise motion and emphasizes the flexible nature of our
approach.

TABLE III: Crispness score for human motion

Ours ICP ICP+RANSAC
Moving arm upwards 0.98±0.005 0.91±0.05 0.91±0.05
Moving arm backwards 0.97±0.02 0.93±0.04 0.93±0.04
Bending sidewards 0.97±0.04 0.94±0.03 0.94±0.04
Bending forward 0.89±0.04 0.85±0.03 0.84±0.04

VI. CONCLUSIONS

In this paper, we present a novel method for estimating
the rigid scene flow for 3D LiDAR data. We introduce the
concept of geometric constancy and use spatial smoothing to
estimate dense rigid motion flow. Furthermore, we discuss a
novel method for estimating neighboring points in 3D point
cloud data. Our approach is tested on multiple sequences
of the KITTI dataset and on a dataset with pedestrians. For
the KITTI dataset we report lower translation error and a
comparable alignment score. For the dataset with pedestrians,
our method outperforms the rigid motion based methods.
Advantages of our method are that it can estimate multiple
arbitrary motions in the scene, it performs competitively in
case of rigid objects and readily adapts to the cases with
non-rigid objects.
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