
Learning a Local Feature Descriptor for 3D LiDAR Scans

Ayush Dewan Tim Caselitz Wolfram Burgard

Abstract— Robust data association is necessary for virtu-
ally every SLAM system and finding corresponding points is
typically a preprocessing step for scan alignment algorithms.
Traditionally, handcrafted feature descriptors were used for
these problems but recently learned descriptors have been
shown to perform more robustly. In this work, we propose a
local feature descriptor for 3D LiDAR scans. The descriptor
is learned using a Convolutional Neural Network (CNN).
Our proposed architecture consists of a Siamese network for
learning a feature descriptor and a metric learning network
for matching the descriptors. We also present a method for
estimating local surface patches and obtaining ground-truth
correspondences. In extensive experiments, we compare our
learned feature descriptor with existing 3D local descriptors
and report highly competitive results for multiple experiments
in terms of matching accuracy and computation time.

I. INTRODUCTION

For many robotics tasks, it is required to have robust
data association in order to match same parts of the scene
under different conditions. Estimating data association is
always an important step in SLAM systems [16] and different
methods for lifelong visual localization [13] rely on finding
corresponding points between scenes captured in different
seasons. Furthermore, knowing corresponding points is also a
requirement for different scan alignment methods [4]. In this
work, we propose a local feature descriptor for 3D LiDAR
data. Our proposed Convolutional Neural Network (CNN)
architecture learns the feature descriptor and the metric for
matching the descriptor in a unified way. Additionally, we
propose a method for generating local surface patches and
discuss an approach for obtaining ground-truth correspon-
dences.

The majority of existing feature descriptors for 3D data
are handcrafted [2] and rely either on quantifying surface
normals or curvature around keypoints. In contrast to these
methods, we do not try to explicitly extract geometric infor-
mation but instead use raw scan data. In this work, we focus
on using LiDAR scans and learn descriptors for two channel
surface patches encoding local shape and surface reflectance
values.

Recently, various CNN-based methods have been proposed
for learning feature descriptors for image patches [7, 20, 3]
and dense 3D surface patches [21]. All of these methods
include a two or multi-stream Siamese network for learning
a feature descriptor which is either discriminative in a pre-
defined [20, 3, 21] or in a learned metric [7]. Our proposed
architecture consists of a two-stream Siamese network for
learning a descriptor, followed by a network for learning

All authors are with the Department of Computer Science at the Univer-
sity of Freiburg, Germany.

0.98,0.02

Fig. 1: An illustration of keypoint matching using our learned
feature descriptor. Surface patches around the keypoints are
passed through the feature learning network to estimate
feature descriptors. These descriptors are then passed through
the metric learning network to estimate a matching score.
Red lines show the correspondences between the keypoints
in the two 3D LiDAR scans. Different colors in the architec-
ture represent different layers, which are explained in later
sections.

a metric for matching the descriptor. Our feature learning
network is based on the recent dense blocks architecture [9],
and for metric learning, we use a stack of fully connected
layers. Since the data used by existing learning based meth-
ods either consists of grayscale image patches or dense 3D
surface patches we also generated our own training data.
We extracted surface patches from LiDAR scans in the
KITTI tracking benchmark [6] and obtained ground-truth
correspondences by tracking keypoints using our previously
proposed method [4]. Fig. 1 demonstrates the matching of
keypoints using our learned feature descriptor on sparse 3D
LiDAR scans.

The foremost contribution of our work is a local feature
descriptor for sparse 3D LiDAR data and a metric for match-
ing this feature descriptor. We also target relevant problems
in the feature learning pipeline, i.e, extracting local surface
patches and obtaining the ground-truth correspondences. To
validate the performance of our feature descriptor, we evalu-
ate the matching accuracy and compare the performance with
handcrafted feature descriptors and descriptors learned with
different architectures. We also present results for another
experiment, where we align multiple objects based on feature
correspondences. Furthermore, to highlight the difference
between using a predefined and a learned metric, we present
comparative results for our proposed feature descriptor using

respective cases. In addition, we also show that our descriptor
can generalize to data from different type of LiDAR sensors.
We do this by repeating the alignment experiment but with
data from a different sensor. We also present an ablation
study to provide insight on the role of each modality we use
for learning the descriptor. The training and test data, learned
models and a C++ API for using the feature descriptor with
PCL is available here. 1

II. RELATED WORK

In this section we briefly discuss the handcrafted feature
descriptors that we use for comparison with our method and
an existing feature descriptor for sparse LiDAR scans. We
also discuss different CNN based descriptors proposed for
grayscale and dense 3D surface patches.

Several handcrafted local feature descriptors for 3D point-
clouds have been proposed [2] and are currently part of the
PCL library [14]. The first descriptor we compare with is the
Fast Point Feature Histogram (FPFH) [15], which requires
normals as input and generalizes the mean curvature around
a point using a histogram. Tombari et al. [19] proposed the
Signatures of Histograms of Orientations (SHOT) descriptor.
Their contribution is a method for robustly estimating local
reference frames and a descriptor that quantifies local surface
normal information. The third image descriptor we compare
with is 3D Shape Context (3DSC) [5]. Similar to other
descriptors, it also requires surface normals as input and
uses a spherical grid around the keypoint for counting the
number of points in bins along azimuth, elevation and radial
coordinates. We compare our results with these descriptors
and show the advantages of using a learned feature descriptor
over the handcrafted counterparts.

A feature descriptor designed for sparse 3D LiDAR scans
was proposed by Serafin et al. [16]. They quantify the vertical
structure in the scene with 3D lines and planes (circles)
and show the efficacy of their approach by integrating
these descriptors in a SLAM system. Even though their
method improves the performance of the SLAM system, it
might perform sub-optimally for environments that lack these
vertical structures. In contrast to this, our feature descriptor is
not quantifying any geometric structures in the environment
and therefore can work in different environments.

With the advent of CNNs, several methods have been
proposed for learning feature descriptors, but mainly for
grayscale image patches. The architectures discussed in these
methods consist of a network for learning the descriptor,
followed by either a metric learning network for matching the
descriptors or a loss layer which minimizes the distance be-
tween the descriptors using a predefined metric. The architec-
ture proposed in MatchNet [7] consists of a Siamese network
for learning the descriptor and a metric learning module.
DeepCompare [20] discusses several different architectures:
Siamese, pseudo-Siamese, two-channel and central-surround
two-stream networks. The difference between Siamese and
pseudo-Siamese is that in the latter weights are shared only

1http://deep3d-descriptor.informatik.uni-freiburg.de

for selected layers instead of every layer. In two-channel
architectures, the image patches are stacked as two channels
instead of having a Siamese network. Central-surround two-
stream networks consist of four input streams, two for
complete image patches and two for the central crop of the
input patches. They use a loss layer minimizing Euclidean
distance instead of a metric learning module and show that
the central-surround two-stream architecture gives the best
performance. MatchNet and DeepCompare are outperformed
by recently proposed PN-Net [3]. This network architecture
uses three input streams where two streams have matching
image patches and the third stream is a non-matching image
patch. Unlike MatcheNet, which uses softmax loss, they use
SoftPN loss, a modified version of hinge loss [20].

A learning-based approach for 3D data was recently pro-
posed by Zeng et al. [21]. Their approach called 3DMatch,
targets learning descriptors for dense 3D surface patches
using a Siamese network trained with contrastive l2 loss.
One of the main contributions is the proposed 3D patch
representation, which uses a 3D voxel grid of Truncated
Distance Function values for representing the 3D shape. The
key difference between their work and ours is that they target
dense 3D surface patches extracted after aligning multiple
scans, whereas we focus on learning descriptors for single
sparse 3D LiDAR scan.

We compare our proposed feature descriptor with other
feature descriptors known to work with sparse 3D LiDAR
data. A comparison with other learned feature descriptors is
not possible because these descriptors are learned for either
grayscale image patches or dense 3D surface patches. Addi-
tionally, to justify using the dense blocks based architecture
for learning, we present comparative results with descriptors
learned using different types of CNN architectures [7, 8]

III. LEARNING A LOCAL FEATURE DESCRIPTOR

Our feature learning pipeline has three main steps. First
we extract keypoints and track them to obtain ground-truth
correspondences. Then we extract surface patches around
successfully tracked keypoints and in the last step we train
the network for learning a feature descriptor as well as a
metric for matching the descriptors in a unified manner.

A. Generating Training Data

A key requirement for supervised learning is labeled
training data. Since labeling many correspondences by hand
is a strenuous task, existing methods [7, 20, 3, 21] use 3D
scene reconstruction for associating pixels corresponding to
same 3D point for obtaining ground-truth correspondences.
Using datasets by these methods is not possible, since our
objective is to learn a feature descriptor for sparse 3D LiDAR
data and the datasets made available by these methods either
consists of grayscale image patches or dense 3D surface
patches.

1) Ground-Truth Correspondences: To obtain ground-
truth correspondences, we first select the keypoints using
uniform sampling and then track those keypoints for the next
five frames. For tracking, we use our previously proposed

Fig. 2: The top image shows the tracked keypoint for
five frames. The image in the middle shows a voxelized
cube around a keypoint. The bottom image shows different
channels of an extracted surface patch. Surface reflectance
intensity is showed in green and depth is shown in red.

method for estimating pointwise motion [4]. Associating
keypoints over multiple frames instead of one allows us
to remove false correspondences. For keypoints that are
successfully tracked over multiple frames, we extract surface
patches for all five frames. The top image in Fig. 2 shows
tracking of a keypoint for five frames.

We used the LiDAR scans from the KITTI tracking
benchmark which consists of 20 sequences. We used the
surface patches extracted from the first 10 sequences for
training and the remaining 10 for testing.

2) Training Patches: Training a neural network for learn-
ing a feature descriptor requires local surface patches around
keypoints. In case of 2D image data, generating patches is a
straightforward task since the data is organized in a grid
structure, but for unorganized sparse 3D pointclouds this
task is non-trivial. In our approach, for a given keypoint, we
generate a cube with predefined length that is divided into
64×64×1 voxels. For every voxel we calculate the average
distance w.r.t the keypoint and the average surface reflectance
intensity values for the points inside the voxel. and store the
3D voxel as a two channel image patch (64× 64× 2). The
first modality (depth) aims at capturing the geometry and
the second (intensity) captures surface reflectance properties.
The local extent in which information has to be captured
around a keypoint is defined by the length of the cube.
Fig. 2 illustrates this process, where the middle image shows
the voxel structure around a keypoint and the bottom image
shows the modalities we use.

B. Network Architecture

Fig. 3(a) shows the network architecture that we use in our
approach. The architecture consists of a two-stream Siamese
network for learning the features, followed by a metric learn-
ing network. Each stream of the Siamese network consists of
two convolution layers followed by two dense blocks and a
bottleneck layer. Dense blocks based networks [9] have been
recently shown to improve the state-of-the-art for different
tasks. According to the authors [9], the improvement in
performance is mainly attributed to the better exploitation
of feature re-use capability which allows efficient flow of
information resulting in better feature representation.

Each dense block consists of two layers, where each layer
is a composite function consisting of batch-normalization,
Rectified Linear Unit (ReLU), and a convolution operation.
The bottleneck layer is a convolution layer and output of it
is the learned feature descriptor.

In the metric learning module, we have 5 fully connected
layers (fc) where every fc layer, except the last one (fc4),
is followed by a ReLU. The input to the metric learning
module is the concatenation of the output of each stream of
the Siamese network. The number of feature maps for every
fc layer is shown in Fig. 3(b).

Our unified feature and metric learning problem can be
seen as a binary classification problem, where a pair of input
patches have to be classified as matching or non-matching.
Our training set is T = {(X 1

n ,X
2
n ,Yn), n = 1, . . . , N},

where X 1
n and X 2

n are two sets of surface patches and Yn =
{yk ∈ {1, 0}, k = 1, . . . , N} is the corresponding ground
truth labels. The activation function for our learning model
is defined as f(x1k, x

2
k, θ), where θ are the parameters of

our model and x1k ∈ X 1
n and x2k ∈ X 2

n is a pair of surface
patches. The network learns the weights θ by minimizing the
cross-entropy (softmax) loss in Eq. 1, over all patch pairs as
shown in Eq. 2. To avoid overfitting we add a term for l2
regularization to the loss function in Eq. 2.

L(p, q) = −
∑

c∈{0,1}

pc log qc (1)

θ∗ = argmin
θ

1

N

N∑
k=1

L
(
yk, f

(
x1k, x

2
k, θ
))

+
η

2
‖θ‖22 (2)

An alternative to metric learning is to use a loss layer
directly after the feature learning. Most commonly used
loss layers are contrastive loss [21] and hinge embed-
ding loss [17]. Both of these layers try to minimize the
Euclidean distance between matching descriptor pairs and
simultaneously increase the margin between non-matching
pairs. In section IV we present a comparison between our
proposed network for unified learning and our modified
feature learning network trained with hinge embedding loss.
In the modified version we replace the last convolution layer
(Fig. 3(b)) with a set of fully connected layers, where the
output of the last layer is the feature descriptor.

Surface Patches

Feature

Learning
Metric

 Learning
Sparse LiDAR Data

(a)

conv,3x3,16

conv,3x3,16

avg-pool,2x2

64x64x2

fc0,1024

fc1,512

fc2,512

fc3,256

fc4,2

softmax + cross entropy loss

concatenation, 512d

avg-pool,2x2

avg-pool,2x2

conv,1x1,4

:
=

batch Norm

 ReLU

 conv 3x3

(b)

Fig. 3: (a) An overview of our feature learning method. The local information around the keypoints from sparse LiDAR
scans is converted into surface patches. Input to the feature learning network is a pair of matching and a pair of non-matching
surface patches and input to the metric learning network is the learned feature descriptors. In (b) we show the architecture
for each module. Feature learning module is a Siamese network, where filters in each layer share weights and the metric
learning network contains a stack of fully connected layers.

C. Training

Our complete network architecture is implemented in
TensorFlow [1]. Using our patch generation method, we
generated 58,710 surface patches for training. The input to
the network is a batch of surface patch pairs. Each batch
consists of an equal number of matching and non-matching
surface patches as shown in Fig. 3(a). With these surface
patches, we estimated 117,400 positive and 704,400 negative
pairs. Since the input to the network always consists of a
negative and positive combination, our effective training set
consists of 704,400 samples.

We train our network with a batch size of 32 and use
the Adam optimizer [10] with a learning rate of 1e−4.
The parameter η for l2-norm regularization was fixed to
5e−4. The growth rate for dense blocks is 4. The network
was trained for 5 epochs and the complete training process
required around 2 hours on an NVIDIA GeForce GTX 980
graphics card.

IV. RESULTS

To evaluate our method, we perform multiple experiments.
We first evaluate the matching accuracy for various descrip-
tors. We then report the average alignment errors for objects
scanned using Velodyne HDL-64E and HDL-32E LiDAR
scanners. We also report computation times for calculating
and matching the different descriptors. For all experiments
we compare the proposed feature descriptors with other fea-
ture descriptors. Among handcrafted descriptors, we compare
with SHOT [19], FPFH [15], and 3DSC [5]. To justify the
usage of dense blocks for our task, we present results for
feature descriptors learned with the following two different
network architectures [7, 8].

1) The first architecture [7] was proposed to learn a feature
descriptor and a metric for grayscale image patches.
Their feature learning architecture consists of blocks
of convolution layers and ReLUs separated by max-
pooling layers and they use a stack of fully connected
layers for metric learning. This feature learning archi-
tecture is similar to the initially proposed CNN archi-
tectures for instance VGG [18]. Other methods [21, 20]

co
n

v,3
x
3

,1
6

6
4

x
6

4
x
2

:=

batch N
orm

 R
eLU

 conv 3x3/2

R
e
s B

lo
ck

 1

conv,1x1,16,/2 conv,1x1,24,/2

co
n

v,1
x
1

,4

conv,1x1,32,/2

batch N
orm

 R
eLU

R
e
s B

lo
ck

 3

Fig. 4: Architecture for ResNet-8

proposed for learning feature descriptors have also used
similar architectures. The reason we chose the architec-
ture from MatchNet is because they have similar input
patch size as ours (64×64) and also use metric learning.

2) The second architecture we compare with consists of
residual blocks [8]. Lately, residual blocks based archi-
tectures have also shown to perform well for a variety
of tasks [8, 12]. We use a ResNet-8 [12] for feature
learning and keep the metric learning architecture un-
changed. Fig. 4 shows the ResNet-8 architecture we
used.

Furthermore, we also compare with our feature learning
network trained with the hinge embedding (H.E.) loss. The
first three comparisons present the advantages of learned
feature descriptors over the handcrafted descriptors. The next
two comparisons highlight the benefits of using dense blocks
while the last one compares the performance of a learned
metric with a predefined metric.

A. Matching Accuracy

The goal of this experiment is to test the performance
of different descriptors on the pairs of surface patches from
our testing set. We use 100,000 samples, half of them are
matching and the other half are non-matching. For every case
we plot a receiver operating characteristic (ROC) curve and
report false-positive rate at 95% recall (FPR95). The ROC
curves are shown in Fig. 5 and the FPR95 is reported in
Table I. The curve is plotted for various matching thresholds,
which in case of metric learning is the softmax score. For
the handcrafted descriptors and the descriptor learned using

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Ours
SHOT
3DSC
FPFH
MatchNet
Hinge Embedding Loss
Ours (only depth)
Ours (only intensity)
ResNet-8

Fig. 5: ROC curves for different feature descriptors. Perfor-
mance of our proposed feature descriptor is comparable to
MatchNet. Using H.E. loss instead of metric learning leads to
a decrease in performance, whereas all handcrafted descrip-
tors underperform in comparison to the learned descriptors.

H.E. loss, the Euclidean distance between descriptors is used
as matching threshold.

The error for our feature descriptor is the lowest and
it outperforms the handcrafted descriptors by a significant
margin. The next best performing feature descriptors is
learned using the architecture of MatchNet, followed by the
ResNet-8 architecture. These results justify learning a feature
descriptor using our proposed architecture.

The error increases when our feature learning network is
trained with H.E. loss (yellow curve in Fig. 5), demonstrating
the importance of metric learning. The increase in perfor-
mance due to metric learning comes at the cost of an increase
in matching time due to computationally expensive forward
pass through the metric learning network. We discuss the
matching time for different descriptors in next section.

TABLE I: FPR95 Error

Method Feature Size Error(%)
SHOT [19] 352 82.56
FPFH [15] 33 10.26
3DSC [5] 1980 89.16

MatchNet [7] 4096 0.45
ResNet-8 256 0.60

Ours (H.E. Loss) 256 1.94
Ours (depth + intensity) 256 0.42

Ours (only depth) 256 0.46
Ours (only intensity) 256 0.53

B. Alignment

Many methods for surface or scan registration require
coarse initial alignment, especially when data is collected at
a low rate (typically 10Hz for LiDAR) and the assumption
that nearest neighbor points are corresponding does not
hold. In this experiment we align multiple objects scanned
using two different LiDAR scanners. In Table II, we report
the number of objects used in the experiment, number of
points belonging to each object, number of keypoints and the
translational and rotational alignment error of our method.

TABLE II: Alignment error of our method for the individual
objects

Object ID Points Keypoints te(m) re(rad)
Scans from Velodyne HDL-64E

0 1369 483 0.28 0.04
1 493 285 0.54 0.04
2 787 332 0.47 0.04
3 250 186 0.52 0.02
4 1320 383 1.55 0.24
5 970 394 1.06 0.13
6 228 129 1.48 0.10
7 199 154 1.10 0.06
8 580 395 0.73 0.02
9 564 427 0.08 0.02

10 316 233 1.22 0.04
11 1517 908 0.23 0.01

Scans from Velodyne HDL-32E
0 313 230 0.88 0.07
1 3271 1099 0.46 0.13
2 3741 1239 0.49 0.13
3 319 239 0.22 0.14

TABLE III: Average alignment errors for HDL-64E scans

Method raw RANSAC t(s)
te(m) re(rad) te(m) re(rad)

SHOT [19] 1.38±1.06 0.13±0.11 0.76±0.56 0.10±0.07 0.05
FPFH [15] 3.37±5.40 0.33±0.54 1.30±0.89 0.14±0.11 0.004
3DSC [5] 2.75±2.58 0.34±0.38 0.81±0.37 0.08±0.04 0.57

MatchNet [7] 0.88±0.47 0.08±0.06 0.93±0.77 0.07±0.05 14.78
ResNet-8 0.95±0.48 0.077±0.067 0.83±0.71 0.08±0.05 1.03
H.E. loss 0.76±0.34 0.076±0.062 0.52±0.27 0.05±0.01 0.18

Ours 0.77±0.47 0.071±0.061 0.57±0.28 0.06±0.02 0.92

TABLE IV: Average alignment errors for HDL-32E scans

Method raw RANSAC
te(m) re(rad) te(m) re(rad)

SHOT [19] 0.57±0.29 0.11±0.04 0.46±0.54 0.07±0.06
FPFH [15] 1.32±1.08 0.22±0.10 2.07±2.20 0.14±0.25
3DSC [5] 2.48±3.46 0.28±0.27 0.73±0.77 0.06±0.03

MatchNet [7] 0.97±1.01 0.13±0.08 0.88±1.24 0.14±0.11
ResNet-8 0.81±0.33 0.14±0.06 0.60±0.56 0.07±0.04
H.E. loss 0.65±0.14 0.07±0.06 0.58±0.55 0.11±0.04

Ours 0.51±0.23 0.12±0.02 0.41±0.39 0.05±0.05

1) LiDAR Scans from Velodyne HDL-64E: In this exper-
iment we align 12 static objects extracted from consecutive
LiDAR scans from the KITTI tracking benchmark. Since
all objects are static, the ground-truth motion is the inverse
sensor motion, which is provided by the benchmark. In Fig. 6
we show example results, where the image on the left shows
the misaligned objects and the corresponding points, whereas
the right image illustrates the aligned pointclouds. As before,
we use uniform sampling for selecting keypoints. In Table III,
we report the average translational error te and rotational
error re for the motion estimated using the raw point corre-
spondences and correspondences filtered with RANSAC. The
motion estimated using raw correspondences reflects more
clearly on the feature matching accuracy in comparison to
filtered correspondences. The alignment error reported for
our method using raw correspondences is average of the
errors reported in Table II. While our feature descriptors with
learned metric and hinge embedding loss perform similar,
they outperform the other descriptors by significant margin.

The rightmost column in Table III reports the feature

Fig. 6: An illustration of the alignment experiment. The image on the left shows the sparse misaligned objects and the
correspondences estimated by matching our feature descriptor. The image on the right shows the aligned pointclouds.

matching time. The FPFH descriptor takes minimum time for
matching but has the largest alignment error. All the hand-
crafted descriptors can be matched quickly using KD-trees
in comparison to feature descriptors learned using a metric
and therefore they have the lowest matching time. In this
experiment our feature descriptor learned using Euclidean
distance performs most favorably considering both alignment
error and matching time. Among the feature descriptors
learned using the metric, the time for MatchNet is the
largest. This increase in time is mainly attributed to the large
descriptor size (4096 vs. 256) which results in twice as much
as parameters in the metric learning network in comparison
to other learned descriptors. The matching time of ResNet-8
is similar to ours, since the architecture for metric learning
and the feature descriptor size is the same in both cases.

2) LiDAR Scans from Velodyne HDL-32E: We repeat the
alignment experiment like above but with the data collected
from a 32 beam LiDAR scanner. Like before we align static
objects and use the sensor pose from the SLAM solution [11]
as ground-truth motion. The purpose of this experiment is to
show that our feature descriptor is not overfitting to data
collected from a single sensor but can generalize to data
collected from different sensors. Even though both sensors
provide the same modalities, the data from Velodyne HDL-
32E is often sparser in comparison to data from Velodyne
HDL-64E and also the has different measurement noise.
Table IV shows the alignment error for different cases and
our feature descriptor learned with metric outperforms the
other descriptors. This experiment demonstrates that our
proposed feature descriptor is capable of generalizing on data
from different sensors.

TABLE V: Per feature computation time (in ms) for various
neighborhood radii.

Method Processor Neighborhood radius (m)
0.4 0.8 1.6 3.2 6.4

SHOT [19] MC 0.092 0.096 0.119 0.284 0.787
FPFH [15] MC 0.090 0.282 0.961 3.01 10.23
3DSC [5] C 0.148 0.440 3.21 31.19 344.10

MatchNet [7] MC+
G

0.036+
0.139

0.037+
0.139

0.047+
0.139

0.075+
0.139

0.219+
0.139

ResNet-8 MC+
G

0.036+
0.151

0.037+
0.151

0.047+
0.151

0.075+
0.151

0.219+
0.151

H.E. loss MC+
G

0.036+
0.132

0.037+
0.132

0.047+
0.132

0.075+
0.132

0.219+
0.132

Ours MC+
G

0.036+
0.133

0.037+
0.133

0.047+
0.133

0.075+
0.133

0.219+
0.133

TABLE VI: Computation time (in seconds) for various
sampling radii.

Method Sampling radius (m)
3.2 1.6 0.8 0.4 0.2 0.1 0.05

SHOT [19] 0.97 0.97 1.36 2.64 6.45 12.47 24.83
FPFH [15] 27.97 28.30 27.86 31.87 40.74 55.79 85.13
3DSC [5] 8.97 35.07 99.49 355.58 1111.65 3073.30 6179.10

MatchNet [7] 0.03+
0.22

0.11+
0.33

0.28+
0.67

0.81+
1.68

3.72+
3.29

4.40+
6.25

9.17+
8.26

ResNet-8 0.03+
0.20

0.11+
0.16

0.28+
0.70

0.81+
1.68

3.72+
3.61

4.40+
6.75

9.17+
9.84

H.E. loss 0.03+
0.33

0.11+
0.42

0.28+
0.70

0.81+
1.47

3.72+
3.01

4.40+
5.43

9.17+
7.80

Ours 0.03+
0.34

0.11+
0.43

0.28+
0.71

0.81+
1.49

3.72+
3.05

4.40+
5.52

9.17+
7.90

C. Computation Time

In Table V and VI, we report the computation time for es-
timating feature descriptors for different neighborhood radii
and sampling radii. In the first case, we estimate descriptors
for the same number of points (sampling radius of 0.4m) but
for different neighborhood radii. This evaluation highlights
per feature calculation time, which only depends on the input
neighborhood radius. In the second case, we use a fixed
neighborhood radius of 3.2m while varying the sampling
radius. This evaluation focuses on changes in computation
time with the increase in number of keypoints. For each
case we report the processor details, i.e whether it is a
multi-core CPU (MC), single core CPU (C) or GPU (G).
For learning methods, we separately report the time required
for estimating the surface patches and the time required for
estimating the feature descriptors.

For small neighborhood radii, handcrafted descriptors have
low computation time because different per-point operation
like estimating normals and estimating descriptor among
other different operations, are performed efficiently for
smaller radii (fewer points). While increasing these radii
(more points), these operations are not as efficient as before
even with usage of KD-Trees. In case of the learned feature
descriptors, the change in neighborhood radii only affects the
patch computation time and not the feature estimation time.
For patch computation the voxelization of the neighborhood
is independent of the number of points in the neighborhood.
The only operation dependent on number of points is cal-
culating the average in depth and intensity values. Among
the learned descriptors, our feature descriptor requires least
computation time in comparison to other architectures be-

cause our feature learning network has the least number of
parameters as well.

With the decrease in sampling radius, the number of
keypoints increases. The reported time is the combined com-
putation time for all the keypoints. In this case, the better per-
formance of learned feature descriptors is mainly attributed
to the proper utilization of parallel processing capabilities
of GPUs in comparison to the multi-core implementation
of handcrafted descriptors on CPUs. In comparison to other
learned descriptors, the performance of our feature learning
network scales better with the increase in number of key-
points. Since our network is smaller than others, it allows us
to process larger batches of data in parallel.

D. Ablation Study

To better understand the contribution of each of the modal-
ity, we trained two separate networks with single channel
input (depth and intensity). Table I shows the FPR95 error for
both cases. The performance of the feature descriptor learned
using depth is better than the feature descriptor learned using
surface intensity values. Since the surface reflectance values
often depend on the angle at which laser beam hits the
surface, they are not as stable as the depth values, especially
in the case when the sensor is moving. The error for both of
these cases is higher than the feature descriptor learned using
both modalities and therefore using them together helps in
learning a more discriminative feature descriptor.

V. CONCLUSIONS

In this work, we propose a local feature descriptor for 3D
LiDAR scans and a metric for matching the descriptors. We
use an architecture based on dense blocks for feature learning
and show how our architecture learns more discriminative
feature descriptors in comparison to descriptors learned using
other common architectures. We report results on match-
ing accuracy and the alignment error. For both cases our
learned descriptor outperforms handcrafted descriptors by a
significant margin. We also report results for data collected
from a different sensor and demonstrate how our descriptor
can generalize to different sources of data. We compare the
performance of a descriptor learned using a predefined metric
and learned with a metric and show that using former is suit-
able when faster matching time is necessary. Additionally, we
also present an ablation study to understand the importance
of depth and intensity modalities and show that using them
together enables learning of a more discriminative feature
descriptor.

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[2] Luıs A Alexandre. 3d descriptors for object and category recognition: a
comparative evaluation. In Workshop on Color-Depth Camera Fusion
in Robotics at the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, volume 1, page 7,
2012.

[3] Vassileios Balntas, Edward Johns, Lilian Tang, and Krystian Mikola-
jczyk. Pn-net: conjoined triple deep network for learning local image
descriptors. arXiv preprint arXiv:1601.05030, 2016.

[4] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Bur-
gard. Rigid scene flow for 3d lidar scans. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

[5] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and
Jitendra Malik. Recognizing objects in range data using regional point
descriptors. Computer vision-ECCV 2004, pages 224–237, 2004.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for autonomous driving? the kitti vision benchmark suite. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[7] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and
Alexander C Berg. Matchnet: Unifying feature and metric learning
for patch-based matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3279–3286, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[9] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] Rainer Kümmerle, Michael Ruhnke, Bastian Steder, Cyrill Stachniss,
and Wolfram Burgard. Autonomous robot navigation in highly
populated pedestrian zones. Journal of Field Robotics, 32(4):565–589,
2015.

[12] Antonio Loquercio, Ana Isabel Maqueda, Carlos R. Del Blanco, and
Davide Scaramuzza. Dronet: Learning to fly by driving. IEEE Robotics
and Automation Letters, 2018. doi: 10.1109/lra.2018.2795643.

[13] Tayyab Naseer, Luciano Spinello, Wolfram Burgard, and Cyrill Stach-
niss. Robust visual robot localization across seasons using network
flows. In Proc. of the AAAI Conference on Artificial Intelligence, 2014.

[14] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(pcl). In Robotics and automation (ICRA), 2011 IEEE International
Conference on, pages 1–4. IEEE, 2011.

[15] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point fea-
ture histograms (fpfh) for 3d registration. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 3212–3217.
IEEE, 2009.

[16] Jacopo Serafin, Edwin Olson, and Giorgio Grisetti. Fast and robust 3d
feature extraction from sparse point clouds. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, pages
4105–4112. IEEE, 2016.

[17] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos,
Pascal Fua, and Francesc Moreno-Noguer. Discriminative learning
of deep convolutional feature point descriptors. In Proceedings of the
IEEE International Conference on Computer Vision, pages 118–126,
2015.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[19] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique
signatures of histograms for local surface description. In European
Conference on Computer Vision (ECCV). Springer, 2010.

[20] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image
patches via convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4353–
4361, 2015.

[21] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianx-
iong Xiao, and Thomas Funkhouser. 3dmatch: Learning local geomet-
ric descriptors from rgb-d reconstructions. In CVPR, 2017.

