Goal-Directed Forward Chaining
for
Logic Programs

Inauguraldissertation
zur
Erlangung der Doktorwiirde
der
Mathematisch-Naturwissenschaftlichen Fakultit
der Rheinischen Friedrich-Wilhelms-Universitit Bonn

vorgelegt von

Wolfram Burgard

Bonn
1991

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultit der Rheinischen Friedrich-Wilhelms-Universitit Bonn.

1. Berichterstatter: Univ.-Prof. Dr. Armin B. Cremers

2. Berichterstatter: Univ.-Prof. Dr. Hans Kleine Biining

Tag der miindlichen Priifung im Hauptfach: 18. November 1991

Tag der miindlichen Priifung im Nebenfach: 12. November 1991

Abstract

This dissertation discusses an approach to goal-directed forward chaining
for logic programs introduced by Yamamoto and Tanaka in 1986. It presents
solutions to different problems with this approach. One problem is caused by
the link clauses goal-directed forward chaining uses to focus on relevant
clauses. Their number may be very large in the context of propositional or
datalog programs and even infinite in the presence of recursive programs with
function symbols. We present an approach to reduce their number in the first
case and to obtain a more general but finite set of link clauses in the second
case. We introduce goal-directed forward chaining as a linear resolution strat-
egy called GDFC-resolution and show that GDFC-resolution is sound and
complete for definite logic programs. We compare different properties of cor-
responding SLD- and GDFC-trees which lead to the conjecture that GDFC-
resolution on average is more efficient than SLD-resolution for propositional
logic programs. We confirm this conjecture by experimental results. We prove
that GDFC-resolution is more efficient than SLD-resolution for different data-
log programs such as the procedure defining the ancestor relationship. Finally,
we show that GDFC-resolution terminates if SLD-resolution does and both ap-
proaches apply the left first computation rule which is also implemented in
Prolog. All results suggest that goal-directed forward chaining, at least in the
context of datalog programs, is a control strategy which realizes an efficient
forward chaining approach and thus may be an interesting alternative to SLD-
resolution.

Acknowledgements

First I would like to thank Armin B. Cremers for fruitful advice. He ini-
tiated my interest in this topic and supervised this research. Hans Kleine
Biining’s willingness to act as the co-referee of this dissertation and his con-
structive comments are highly appreciated. Special thanks are due to Lutz
Pliimer for his never ending engagement in many substantial discussions.
Thanks also go to Elmar Eder, Michael Hanus, Peter Heusch, Ralf Hinze,
Jiirgen Kalinski, Udo Lipeck, Stefan Liittringhaus, Hans Simon, Ewald
Speckenmeyer and Hermann Stamm for fruitful discussions. I am grateful to
the members of the ‘Logic Programming Groups’ at the Universities of
Dortmund and Bonn for helpful comments. Finally, I want to thank Jiirgen F.
Miinstermann for proofreading the manuscript.

CONTENTS

Introduction 1
Goal-Directed Forward Chaining 9
2.1 A Meta-Interpreter for Goal-Directed Forward
Ghaiming s N S s S s 9
2.2 The Approach of Yamamoto and Tanaka..........c..eceevceenncnc 13
2.3 Properties of Goal-Directed Forward Chaining..................... 16
Generating Link Clauses 21
3.1 " Einite LinkaClanse Programs,: ... o i st o, b s i o 0 21
3 2" Reducingithe Number of Linki Clansesis i ilie it 0t oo, ot 37
RS v e R B e L M B B R et 48
GDFC-Resolution 51
4.1:4 ThesResolutionySrate gy Al s ol Sitihe. it da e duasessss 51
4.2 Soundness and Completeness of GDFC-Resolution................. 58
4 3 Summany eee. Sl s teon nisniedl Gl 2 bl el 71
Efficiency of GDFC-Resolution 73
5.1 Corresponding SLD- and GDFC-Treesccccceeeeeeiniaceenenn 73
5.2 Average Complexities of Propositional Binary
P EO T S e e R S e e o 88
5.3 Complexities of Taxonomic Hierarchies.................cccceeniie 91
5.4 'Complexities of Transitive Closures. i it e 101
S S T T T e S s 113
Experimental Results 115
6.1 Efficiency for Propositional Programs..........ccccccovvevuvenenne 115
62 MEfficicncy for DatalosiRrograms. . mo e ot 121
6.3 Effectivity of the Link Clause Optimization.............cc.c..c.... 126
R S T ITIATY St s et el e 128

Termination of GDFC-Resolution

Related Work :
[l Deductive PDatabasest. i bas il Ll Lol s ol g
8198 ChoosingitheRule Direction f:: v tor o oSl i s

Conclusions
References
Index

Curriculum Vitae

131

145
145
150

153

157

165

167

Chapter 1

INTRODUCTION

One of the basic ideas of logic programming, first expressed by Kowalski
[41, 42, 43], is that an algorithm can be decomposed into two distinct compo-
nents, the logic and the control. Whereas the logic describes the problem to be
solved, the control specifies how it has to be solved. In its ideal form, logic
programming offers the programmer the possibility only to specify the logic
component of an algorithm leaving the control completely to the logic pro-
gramming system.

Prolog is a widely spread programming language which borrows its basic
constructs from logic, thus allowing the use of logic as a programming lan-
guage. Since its first implementation in 1972, many efficient Prolog inter-
preters and compilers have been implemented and a lot of applications have
been developed. Prolog is a logic programming system which is based on the
resolution principle [62], and the kernel of standard Prolog systems realizes a
specialized form of resolution called SLD-resolution [46]. SLD-resolution
which is a generalization of the modus tollens rule is a goal-driven approach;
starting with a given goal, SLD-refutation procedures attempt to derive a con-
tradiction, represented by the empty clause, by repeatedly replacing atoms of
the goal by the bodies of matching clauses after applying the matching substitu-
tion. Therefore, the built-in control behaviour of Prolog can roughly be de-
scribed as backward chaining combined with backtracking.

From the viewpoint of expert systems tools, Prolog belongs to the pro-
gramming languages with symbol manipulation capabilities in which all infor-
mation is represented by facts and rules. Demonstrating how important fea-
tures of expert systems such as explanation of behaviour, probabilistic reason-
ing and inference generated requests of data can easily be programmed in
Prolog, many authors have argued that Prolog is a powerful tool for imple-
menting knowledge-based systems [14, 64, 72]. Whenever computer programs

2 CHAPTER 1. INTRODUCTION

use facts and rules to store information the question arises which inference
strategy should be chosen. In general we distinguish two main strategies: for-
ward chaining and backward chaining. Generally, it is a difficult task to choose
the optimal inference direction. Above that, only a few weak heuristics are
known for that purpose [13]. In addition to efficiency aspects, the adequacy has
to be taken into account, since humans often find it more natural to understand
rules bottom-up.

Forward chaining as a data-driven approach [26, 27] can be applied to
either condition-action systems, so called production systems, or even to logic
based antecedent-consequent rules [89]. The production system approach, of
which OPS5 is an efficient representative [10, 17], has been proven to be a
good tool for the development of expert system applications in a wide variety
of domains [88]. The efficiency of production systems has its origin in a fast
inference engine which is based on the Rete match algorithm described by
Forgy in [21]. Production system interpreters repeatedly perform a match-se-
lect-execute cycle [29]. In the match phase the condition parts of the rules are
compared with the facts to compute the conflict set, which is the set of all exe-
cutable rule instances. Subsequently, the selection strategy picks one or more
rule instances out of the conflict set. Finally, in the execution step the actions
of the rule instances are applied, which results in a modification of the set of
facts. The process stops successfully, if a certain goal state is reached, or un-
successfully, if no condition part of a rule can be satisfied.

Because of the great importance of rule based languages several attempts
have been made to implement OPS5-like production systems on top of Prolog.
In this context we have to mention the inference engine KORE/IE [66, 67], the
commercially available system flex [85] as well as the approaches described in
[22, 40, 83]. Such a linkage between production systems and logic program-
ming leads to hybrid systems which are difficult to understand and to maintain,
since they only have operational semantics and the programmer has to consider
two different paradigms.

In contrast to that, logic based approaches modify only the control com-
ponent; they are generally not based on a special syntax and do not change the
semantics of the underlying logic program. Forward chaining approaches of
this class, which often can be regarded as a generalization of the modus ponens
rule, are the ‘naive’ and ‘semi-naive’ methods [4] and LLNR-resolution [77].
These strategies are a special case of unit-resolution [12] and are closely re-
lated to classical fixed point procedures based on bottom-up evaluation [11].

CHAPTER 1. INTRODUCTION 3

However, they also can be seen as a.special case of production systems in
which only additions to the data base are allowed.

The following Examples 1.1 and 1.3, which are due to [26], compare the
efficiency of backward and forward chaining for different taxonomic hierar-
chies.

EXAMPLE 1.1 (Evéluating Taxonomic Hierarchies):

Consider the following set of clauses specifying the taxonomic hierarchy
of animals which is illustrated in Figure 1.2. Suppose our goal is to show that
zeke is an animal.

animal(X)<«—insect(X)
animal(X)<mammal(X)
insect(X)«—ant(X)
insect(X)<«bee(X)
insect(X)<«—spider(X)
mammal(X)«lion(X)
mammal(X)«tiger(X)
mammal(X)<«—zebra(X)
zebra(zeke)«

(=3

Fig. 1.2: A taxonomic hierarchy of animals

i 4 CHAPTER 1. INTRODUCTION

If we use forward chaining then we always need only two steps to reach
the goal. Applying backward chaining, then, depending on the search strategy,
we possibly have to traverse a much larger search space. . []

EXAMPLE 1.3 (Evaluating Taxonomic Hierarchies):

Now consider the following set of clauses specifying the taxonomy illus-
trated in Figure 1.4. Again suppose our goal is to show that zeke is an animal.

nonsmall(X)«medium(X)
nonlarge(X)«medium(X)
warm(X)<mammal(X)
animal(X)«mammal(X)
nonspotted(X)«—striped(X)
nonsolid(X)«striped(X)
medium(X)«zebra(X)
mammal(X)<«zebra(X)
striped(X)«—zebra(X)
zebra(zeke)«

nonsmall

mammal zebr:;i

nonspotted

nonsolid

striped

3 Fig. 1.4: A simple taxonomy

In comparison with the previous example, we now we have an inverse sit-
uation. Whereas backward chaining always needs only two inferences, forward
chaining possibly has to traverse the complete taxonomic hierarchy. |

CHAPTER 1. INTRODUCTION 5

In the previous example SLD-resolution as a goal-driven approach bene-
fits from the fact that the information given with the input query (terms oc-
curring as arguments) and the structure of the underlying program (predicate
dependencies) are automatically exploited. Naive forward chaining approaches
which are not goal-directed often derive more information than necessary.
This situation is illustrated in Figure 1.5. In the worst case they compute the
complete least fixed point even if only a small subset of it would be sufficient.

Inference Goal

Fig. 1.5: Exhaustive forward chaining

If we again consider the previous example and take into account predicate
dependencies, then we considerably prune the search space, since we only
derive information about zeke which is relevant for the input query. However,
the exploitation of predicate dependencies is not the only technique to eliminate
unnecessary derivations. Supposed that there is a second zebra called roo, we
possibly conclude that roo is a mammal, even if this fact is completely irrele-
vant for our goal. In this example, the predicate dependencies restrict the
number of informations derived for a certain object, and the exploitation of
variable bindings reduces the number of: objects about which information is
derived. To sum up, the ability to focus on possibly relevant clauses during the
inference is an important requirement to forward chaining approaches for
logic programs.

A further problem with forward chaining is that the termination problem
seems to be harder than it is with backward chaining. The only inevitable
source of termination problems in logic programming is the use of recursive
clauses and structured terms [58, 78]. In the case of backward chaining termi-
nation is guaranteed by the simplification of terms. But if such clauses are
evaluated bottom-up, then terms are constructed. If the control component

6 CHAPTER 1. INTRODUCTION

does not have any information, when it has to stop the inference, then it never
terminates because it possibly produces arbitrary large terms. Figure 1.6 illus-
trates this situation.)

Inference

Facts

Fig. 1.6: Non-terminating forward chaining

The starting point for this dissertation is the approach to goal-directed
forward chaining for logic programs which has been proposed by Yamamoto
and Tanaka [90] in 1986. Considering different aspects of semantics, efficiency
and termination behaviour we show that this logic based approach, at least for
definite logic programs without function symbols, realizes a serious alternative
to the standard evaluation strategy of Prolog.

The structure of this dissertation is as follows:

Chapter 2 introduces a meta-interpreter for goal-directed forward chain-
ing and presents the transformation method of Yamamoto and Tanaka. It dis-
cusses the pros and cons of and identifies problems with this approach.

Chapter 3 discusses the generation of the link clauses which are used by
goal-directed forward chaining to focus on possibly relevant clauses. It pre-
sents an approach to reduce the number of link clauses in order to save space.
Furthermore, it gives an answer to the question how to handle definite pro-
grams with a possibly infinite number of link clauses.

Chapter 4 introduces a resolution strategy for goal-directed forward
chaining, called GDFC-resolution. It shows that the meta-interpreter for goal-
directed forward chaining indeed implements this resolution strategy. The

CHAPTER 1. INTRODUCTION 7

main results of this chapter are contained in two theorems concerning the
soundness and completeness of GDFC-resolution for definite logic programs.
This shows that goal-directed forward chaining, which can be combined with
SLD-resolution in a clean way, indeed provides operational semantics which
coincide with the declarative and denotational semantics. From a theoretical
point of view both theorems, in combination with their proofs, build the basis
for the three following chapters, since they tell us how to construct a GDFC-
refutation out of an SLD-refutation and vice versa.

Chapter 5 is concerned with the efficiency of GDFC-resolution. For that
purpose it compares different properties of GDFC- and SLD-trees. We show
that corresponding trees contain the same number of success branches and that
there is a success-branch of a certain length in an SLD-tree if and only if there
is a success-branch with the same length in the corresponding GDFC-tree. If
we always apply the left-first computation rule, then the failure branches in
GDFC-trees are not shorter than the corresponding failure branches in SLD-
trees. Moreover, a GDFC-tree contains at most as many failure branches as the
corresponding SLD-tree. This leads us to the conjecture that GDFC-resolution,
at least for propositional programs, on average is more efficient than SLD-
resolution. We consider certain classes of propositional and datalog programs
and show that indeed GDFC-resolution is more efficient than SLD-resolution
for these classes. For example, for the procedure defining the ancestor rela-
tionship GDFC-resolution always needs fewer inferences than SLD-resolution
to compute all answers of a goal.

Chapter 6 presents experimental results comparing the efficiency of
GDFC- and SLD-resolution. It describes benchmarks confirming the conjec-
ture expressed in the previous chapter. Further benchmarks show that GDFC-
resolution is very efficient even for datalog programs. Finally it analyzes the
approach to reduce the number of link clauses and presents experimental re-
sults suggesting that it may produce considerable space savings.

Chapter 7 addresses the termination problem. The main result of this
chapter is that, supposed we apply the left-first computation rule and use a
special approach to compute the link clauses, GDFC-resolution terminates if
SLD-resolution does. It furthermore demonstrates how automatic termination
proofs for logic programs proposed by Pliimer [57, 58, 59] can be adopted.

Chapter 8 compares goal-directed forward chaining with other ap-
proaches providing a bottom-up evaluation of logic programs. It considers the
field of deductive databases, where it already has been shown that enhanced

8 CHAPTER 1. INTRODUCTION

bottom-up approaches are more efficient than top-down strategies [80], and
discusses how GDFC-resolution fits into this area. It presents an extension of
goal-directed forward chaining to a set-oriented strategy which is closely re-
lated to APEX [49].

Finally, in Chapter 9 we summarize the results of this dissertation.

Chapter 2

GOAL-DIRECTED FORWARD CHAINING

This chapter introduces goal-directed forward chaining for logic pro-
grams. The first section presents a meta-interpreter implementing this control
strategy. The definition of the linear resolution strategy GDFC-resolution,
given in Chapter 4, is based on this meta-interpreter. The second section pre-
sents the translation method developed by Yamamoto and Tanaka. This ap-
proach allows us to transform a logic program into a forward chaining pro-
gram which directly can be executed by Prolog. Finally, the third section con-
cemns the pros and cons of and identifies the problems with this approach. The
development of solutions to these problems is the main subject of this disserta-
tion. For the foundations of logic programming we refer the reader to [2, 46].
Introductions to Prolog can be found in [15, 71].

2.1 A Meta-Interpreter for Goal-Directed Forward Chaining

The basic idea of goal-directed forward chaining, which is motivated by
the approach of Yamamoto and Tanaka to translate Prolog programs into for-
ward chaining production rules [90], can informally be described as follows:
supposed G is a goal, A is an atom in G and B« is a fact possibly relevant for
A, select a non-unit clause whose leftmost body literal unifies with B and
whose head is relevant for A, solve the remaining body literals and take the re-
sulting rule head as a new fact. This process is repeated until the resulting rule
head is unifiable with A (success) or the evaluation of one of the remaining
body literals fails (failure). Whenever a failure is encountered backtracking is
invoked to choose alternative facts or rules.

Program 2.1 contains a meta-interpreter which specifies the computa-
tional model of goal-directed forward chaining more precisely. We define the

CHAPTER 2. GOAL-DIRECTED FORWARD CHAINING 10

meta-interpreter at the goal reduction level. The top-level relation is
gdfc_solve(Goal) which is true if Goal is true with respect to the program be-
ing interpreted.

gdfc_solve(true)«

gdfc_solve((A,B))«
gdfc_solve(A),
gdfc_solve(B)

gdfc_solve(B)«
clause(B,true)

gdfc_solve(B)«
clause(A,true),
link(A,B),
subgoal(A,B)

subgoal(A,B)«
clause(B,(A,Body)),
gdfc_solve(Body)

subgoal(A,B)«
clause(C,(A,Body)),
link(C,B),
gdfc_solve(Body),
subgoal(C,B)

Program 2.1: A meta-interpreter for goal-directed forward chaining

This meta-interpreter focuses on relevant clauses by means of link goals
where link(A,B) means that A is possibly relevant for B. These link goals are
evaluated w.r.t. a link clause program which is generated from the program
being interpreted. Modulo variable renaming, the link clause program contains
the following clauses: for each non-unit clause in the program with head B and
leftmost body literal A it contains a clause link(A,B)«. It furthermore con-
tains the transitive closure of the link clauses, that is, the clause link(A,D)0«
for each pair of link clauses link(A,B)< and link(C,D)< where 0 is the most
general unifier of B and C, i.e., 6=mgu(B,C).

Let us consider the procedural reading of this interpreter. The
gdfc_solve/1 fact states that the empty goal, represented by the atom true, is
solved. This fact is necessary, because the clause/2 goals in the two subgoal/2

2.1. A META-INTERPRETER FOR GOAL-DIRECTED FORWARD CHAINING 11

clauses only match non-unit clauses with at least two body literals so that we
have to append the constant true to all non-unit clauses containing exactly one
body-literal. The second clause concerns conjunctions and means: “To solve a
conjunction (A,B), solve A and solve B.” Both clauses are also contained in the
standard three clause meta-interpreter for pure Prolog comprising Program
2

The procedural reading of the third clause is: ‘“To solve B, choose a fact
A« such that A and B unify.” The fourth clause covers the case that A< is a
possibly relevant fact for B. To solve B, choose a unit-clause A« for which
the goal «link(A,B) has a solution and show that A is a subgoal for B.

The last two clauses concern the subgoal-goal relation between atoms. To
show that A is a subgoal for B, select a clause whose leftmost body literal uni-
fies with A and whose head simultaneously unifies with B, and recursively
solve the remaining part of the body.

The last clause applies to situations where the head of the selected clause is
relevant for B. It states: ‘To show that A is a subgoal for B, choose a clause
whose leftmost body literal unifies with A and for which there is a link from
the head C to B, i.e., there is a solution to «1ink(C,B), recursively solve the
remaining part of the body and show that C is a subgoal for B.”

solve(true)¢—

solve((A,B))«—
solve(A),
solve(B)

solve(A)«
clause(A,B),
solve(B)

Program 2.2: A meta-interpreter for pure Prolog

EXAMPLE 2.3 (Connectivity in a Graph):

Consider the following program specifying the connectivity in a graph,
i.e., its reflexive and transitive closure.

CHAPTER 2. GOAL-DIRECTED FORWARD CHAINING 12

pX, X))
PX.Z)e(X,Y),p(Y,Z)

Suppose the graph is defined by the fact e(a,b)<— and the link clause pro-
gram contains the following link clause:

link(e(X,Y),p(X,Z))«

Figure 2.4 contains a trace of Program 2.1 computing both solutions for
the query «gdfc_solve(p(a,X)). =

call gdfc_solve(p(a,X))
call clause(p(a,X),true)
exit clause(p(a,a),true)
exit gdfc_solve(p(a,a)) =q
call clause(Y,true)
exit clause(p(Z,Z),true)
call link(p(Z,Z),p(a,X)) fail
exit clause(e(a,b),true)
call link(e(a,b),p(a,X))
exit link(e(a,b),p(a,X))
call subgoal(e(a,b),p(a,X))
call clause(p(a,X),(e(a,b),B))
exit clause(p(a,X),(e(a,b),p(b,X)))
call gdfc_solve(p(b,X))
call clause(p(b,X),true)
exit clause(p(b,b),true)
exit gdfc_solve(p(b,b))
exit subgoal(e(a,b),p(a,b))
exit gdfc_solve(p(a,b)) X=b

Fig. 2.4: Tracing the meta-interpreter

We conclude this section discussing this meta-interpreter as a specification
of a resolution strategy. The second clause specifies the selection of the left-
most goal as the goal to reduce. The third clause states that the selected literal
can be dropped if there is a unifying fact. The fourth clause allows us to re-
place a selected literal B by subgoal(A,B), if A is a fact possibly relevant for
B. Using the fifth clause we can replace a literal subgoal(A,B) by the remain-
ing literals of a clause, after the head has been unified with B and the leftmost

2.1. A META-INTERPRETER FOR GOAL-DIRECTED FORWARD CHAINING 13

body literal has been unified with A. The last clause stands for cases where the
head is possibly relevant for B. Then, additionally to the body literals starting
with the second, the literal subgoal(C,B) is added, where C is the head of the

selected clause.

2.2 The Approach of Yamamoto and Tanaka

Yamamoto and Tanaka presented an approach to transform a definite pro-
gram P to a forward chaining logic program Fp [90]. This technique has been
adopted from the bottom-up parsing system BUP, which is implemented in
Prolog [1, 53]. Different optimizations of BUP which are based on partial
evaluation are proposed in [74]. Algorithm 2.5 implements the approach of

Y amamoto and Tanaka.
ALGORITHM 2.5 (Compiler Proposed by Yamamoto and Tanaka):
1) For each fact A«—€P, Fp contains the clause

fact(A)¢«—

2) For each n-ary predicate symbol p occurring in P, Fp contains ex-
actly one terminate clause

p(X1,-- - Xal PX1s. -, Xn))
where Xj,...,X, are distinct variables.

3) For each clause p(ty,...,tm)¢=q(ui,...,un),A2,...,Ax€ P with k=1, Fp
contains the rule clause

q([uy,-..,un],G)¢
link(p(ty,. .- ,tm),G),
goal(Ay),...,
goal(Ay),
p([t1;..-tm],G)

CHAPTER 2. GOAL-DIRECTED FORWARD CHAINING 14

4) Modulo variable renaming, Fp contains a link clause link(A1,A)¢«,
for each clause A« Aj,...,Ape P. Modulo variab}e renaming, for
each pair of link clauses link(A,B)« and link(C,D)< with 8 is an
mgu for B and C, the clause link(A,D)0« is added to Fp. Fur-
thermore, Fp contains the clause link(X,X)«.

5) Finally, the following goal clause is added to Fp:

goal(G)«
fact(H),
link(H,G),
H=..[Head! Args],
- Call=..[Head,Args,G],
call(Call)

6) If «<Aj,...,A, is a definite goal for P, then the corresponding goal
for Fp is «—goal(A),...,goal(Ay).]

The way in which goals for Fp are evaluated is specified by the meta-in-
terpreter comprising Program 2.6.

gdfc_solve(true)«—

gdfc_solve((A,B))«
gdfc_solve(A),
gdfc_solve(B)

gdfc_solve(B)«
clause(A,true),
link(A,B),
subgoal(A,B)

subgoal(A,A)«

subgoal(A,B)«
clause(C,(A,Body)),
link(C,B),
gdfc_solve(Body),
subgoal(C,B)

Program 2.6: A meta-interpreter for the approach of Yamamoto and Tanaka

2.2. THE APPROACH OF YAMAMOTO AND TANAKA : 15

The first two clauses of this interpreter are the same as in Program 2.1.
The third clause implements the goal clause. The first literal in the body of this
clause selects all unit clauses, and therefore is equivalent to the first body lit-
eral in the goal clause. The second condition occurs in both clauses and checks
whether the selected fact is possibly relevant for the goal. The third literal
implements the last three conditions of the goal clause which are used to con-
struct a call of the form p([ty,...,tm],G) where p(t1,...,tm) is the fact retrieved
by the first literal. Whereas the subgoal/2 fact implements the terminate
clauses, the last clause replaces all rule clauses.

Even if both meta-interpreters for goal-dirécted forward chaining have a
different operational behaviour, we can show by means of unfolding [75], that
they are declaratively equivalent. Let us first consider the third clause. If we
unfold the link goal with the reflexive link clause, we can replace this clause
by the following two clauses.

gdfc_solve(B)«
clause(B,true),
subgoal(B,B)

gdfc_solve(B)«
clause(A,true),
link(A,B),
subgoal(A,B)

Analogous transformations can be applied to the second subgoal/2 clause.
From the results described in [7, 47, 75] it follows that the obtained program
is declaratively equivalent to Program 2.1 w.r.t. the top-level goal.

We now can drop the last literal of the third and fifth clause of the result-
ing program, since we can always reduce it to true using the first subgoal/2
clause subgoal(A,A)«. After that the fact subgoal(A,A)« is redundant, since
it cannot produce additional answers to gdfc_solve/l. If we remove it from the
program, we indeed obtain the meta-interpreter defined by Program 2.1. This
operation is admissible if we assume that subgoal/2 is not a top-level relation.
The same argument holds for the reflexive link clause link(X,X)«: after we
used it as input clause for unfolding we can remove it from the link clause
program.

One difference between both meta-interpreters is, that we do not need the
reflexive link clause using Program 2.1. However, Program 2.1 has the disad-

CHAPTER 2. GOAL-DIRECTED FORWARD CHAINING 16

vantage that it always scans the sequence of unit and non-unit clauses twice,
while both parts are only scanned once with Program 2.6. Thus, from the
viewpoint of runtime efficiency, the second approach can’be seen as a more
efficient implementation of goal-directed forward chaining.

Program 2.1, however, has an important advantage if we compare the
number of resolutions needed to solve a goal with that of Program 2.6. Let us
assume that the selection of a relevant clause, i.e., to choose a clause and solve
the link goal takes only one resolution. Suppose «A is a single literal goal and
P contains a fact B« such that B and A are unifiable. Then Program 2.6 needs
two inferences to solve <A even if B« is selected. Whereas the first logical
inference is necessary to select the unit clause, the second inference is needed
to check whether it unifies with the goal. Program 2.2 as well as Program 2.1,
however, need only one inference. Although Program 2.6 may be more effi-
cient with respect to the effective runtime behaviour, we define GDFC-resolu-
tion in Chapter 4 on the basis of Program 2.1. This simplifies the construction
of corresponding refutations, which is necessary to show the soundness and
completeness of GDFC-resolution, as well as the comparison of the length of
refutations which is necessary to judge the efficiency of GDFC-resolution. For
experimental studies concerning the runtime efficiency of goal-directed for-
ward chaining, however, we use Program 2.6.

2.3 Properties of Goal-Directed Forward Chaining

In the previous sections we presented a meta-interpreter for goal-directed
forward chaining and a corresponding transformation approach. In this section
we discuss some of the features of and problems with this approach.

First it is worth mentioning that the rule translation method produces ef-
ficient Prolog programs, since the head of a resulting clause is the first condi-
tion of the premise part of the original non-unit clause. Accordingly, even if
there are a lot of non-unit clauses, the system can efficiently pick out the nec-
essary rule without searching through the whole sequence of rules [90].
Furthermore, the obtained program can be compiled by a Prolog compiler in
order to gain further speed up.

The meta-interpreter and the translation approach both can be enhanced
in the same way as the standard interpreter for pure Prolog. Sterling [72] gives

2.3. PROPERTIES OF GOAL-DIRECTED FORWARD CHAINING 17

a survey of different possible extensions of meta-interpreters which are useful
for expert systems. Such enhancements can be used to implement reasoning
about uncertainty, dialogue capabilities (query-the-user) or explanation facili-
ties. Yamamoto and Tanaka already have shown how such dialogue and expla-
nation functions can be implemented in the rule compiler. The following
clause, inserted after the second, extends the behaviour of the meta-interpreter
by implementing a switch to backward chaining. It assumes that a procedure
backward/1 is defined, which specifies which goals should be evaluated by the
interpreter for pure Prolog.

gdfc_solve(B)«
backward(B),
]

L

solve(B)

A similar clause can be added to Program 2.2. This extension realizes a
neat integration of backward and forward chaining, because the system can
switch between both inference strategies dynamically at runtime. In a first step
the meta-relation backward/1 can define a fixed direction for each relation.
However, further extensions may enable the system to exploit runtime infor-
mation and to choose the optimal inference strategy for each particular goal
depending on this information.

In Chapter 1 we identified the ability to focus on possibly relevant clauses
as an important requirement to forward chaining approaches. Goal-directed
forward chaining obtains this necessary feature by means of the link clauses
which allow a fast selection of possibly relevant clauses exploiting variable
bindings of the goal and predicate dependencies of the program.

Yamamoto and Tanaka already mentioned the problem that a huge num-
ber of link clauses may be obtained when the transitive closure of the link
clauses is statically generated, i.e., at the translation process. They argued,
however, that the dynamic generation of the link clauses during the inference
process is a time consuming alternative which may decrease the performance

considerably.

A further problem is, that the transitive closure of the link clauses may
become infinite in the case of definite programs containing function symbols.

CHAPTER 2. GOAL-DIRECTED FORWARD CHAINING 18

EXAMPLE 2.7 (Natural Numbers):
Consider the following procedure defining the natural numbers

nat(0)¢«
nat(s(X))¢—nat(X)

The link clause for this program is
link(nat(X),nat(s(X)))«

If we compute the transitive closure of this link clause we obtain the fol-
lowing sequence:

link(nat(X),nat(s(X)))«
link(nat(X),nat(s(s(X))))«—
link (nat(X),nat(s(s(s(X)))))«...

Thus the transitive closure contains infinitely many link clauses of the
form link(nat(X),nat(s"(X)))< where n>1. m

One solution to this problem is to compute the transitive links needed to
solve the actual goal dynamically at runtime. Then, however, we have to solve
a termination problem. For, if there are infinitely many atoms which are pos-
sibly relevant for the actual goal or infinitely many atoms for which a particu-
lar atom may be relevant for, then the process generating the transitive links
may not terminate.

Concerning the termination behaviour of their approach, Yamamoto and
Tanaka [90] wrote: ‘In the case of first order predicate logic, recursive rules
are sometimes harmless. However, we have not yet solved the problem of how
to determine what kinds of recursion this system can and cannot handle.’

There are two further questions concerning goal-directed forward chain-
ing. The first one affects the operational semantics and asks, whether each
computed answer is correct (soundness), and, whether each correct answer can
be computed using a fair search rule (completeness). The second one addresses
the efficiency of goal-directed forward chaining: are there any programs for
which the control strategy implemented by goal-directed forward chaining is
more efficient than the standard strategy of Prolog?

2.3. PROPERTIES OF GOAL-DIRECTED FORWARD CHAINING 19

To sum up, the following questions have to be answered:

« How can we solve the problem of infinitely many link clausgs?

o How can we reduce the number of link clauses if their transitive clo-
sure is finite?

o Is goal-directed forward chaining sound and .complete?

- How efficient is goal-directed forward chaining? .

e Which termination behaviour does goal-directed forward chaining

have?

The following chapter gives an answer to the first two questions. Chapter
4 concemns the third question and shows the soundness. a.n.d ct?mpleteness of
GDFC-resolution, a linear resolution strategy whose definition is based on the
meta-interpreter for goal-directed forward chaining. Chapter. 5. and ChapterD 6
show that goal-directed forward chaining may be more efficient than SL -
resolution for several classes of propositional and datalog programs, and t.hlS
way give answers to the fourth question. Chapt.er i address.es the last ques:tl.on
and presents a special procedure for the dynamic computation of the tr.ansmve
links which has the effect that GDFC-resolution always terminates if SLD-

resolution does.

Chapter 3

GENERATING LINK CLAUSES

The meta-interpreter for goal-directed forward chaining uses link clauses
to focus on relevant clauses and to exploit variable bindings of the input query.
The link clauses cause a termination problem, since their number may be in-
finite. But even if their number is limited, they require a large amount of stor-
age. Thus it is an important question, how their number can be reduced. In this
chapter we will be concerned with both problems. We begin with the termina-
tion problem and present an approach to generate a possibly more general but
finite set of link clauses. We continue with the space problem and introduce a
solution to it. Finally we discuss a further approach to optimize the link
clauses.

3.1 Finite Link Clause Programs

As we have seen in the previous chapter, the number of link clauses may
be infinite, if the source program contains recursive procedures defined over
recursive data structures. Therefore, criteria which are necessary or sufficient
for the infinity are highly desired. In addition we are interested in approaches
to obtain a finite number of link clauses without affecting soundness and com-
pleteness of this approach.

DEFINITION 3.1 (Set of Link Clauses):

Let P be a definite program. Modulo variable renaming the set of link
clauses Linkp for P contains a clause link(B;,B)< for each clause B<—By,...,Bn
with n21 in P. We say Linkp is cyclic (or recursive) if there are link clauses
ly,...,lne Linkp (n=1) such that the predicate symbol of the right atom in I;

22 CHAPTER 3. GENERATING LINK CLAUSES

equals the predicate symbol of the left atom in l;;; and the predicate symbol of
the right atom in I, equals the predicate symbol of the left atom in ;.]

The link clause program, which is needed to implement goal-directed
forward chaining, consists of the transitive closure of the set of link clauses.

DEFINITION 3.2 (Link Clause Program):

Let P be a definite program. The link clause program Lp for P is a set of
link clauses containing all clauses of Linkp. Furthermore, for each pair of
clauses link(A,C)< and link(D,B)<-€ Lp with 6 is an mgu for C and D, and
modulo variable renaming, Lp contains the clause link(A,B)0«. The reflexive
link clause program Ll}?r is Lpu{link(X,X)<}.]

If we apply the approach of Yamamoto and Tanaka, i.e. Program 2.6,
then indeed we need the reflexive link clause program L.
Example 3.3 (Link Clauses for the append Procedure):
Consider the well known procedure for appending two lists which is
append([],X,X)«
append([X1Xs],Ys,[XI|Zs])«
append(Xs,Ys,Zs)
Whereas Linkp consists of only one clause, namely
link(append(Xs,Ys,Zs),append([XIXs],Ys,[XIZs]))«
Lp is infinite; it contains infinitely many clauses of the form
link(append(Xs,Ys,Zs),append([XIXs],Ys,[XIZs]))«
link(append(Xs,Ys,Zs),append([X;,X5IXs],Ys,[X1,X2Zs]))

link(append(Xs,Ys,Zs),append([X1,X2,X31Xs],Ys,[X1,X2,X31Zs]))¢
2 [

The following theorem shows that the infinity of the link clause program
is generally undecidable.

3.1. FINITE LINK CLAUSE PROGRAMS 23

THEOREM 3.4 (Undecidability of the Finiteness of Lp):
It is undecidable whether or not Lp is finite if P is a definite program. ®

Proof: To show the result we apply Rice’s theorem [3] which says that
each non-trivial property of Turing machines is undecidable. Thus, we first
have to show, how we can represent an arbitrary Turing machine program by
a set of link clauses.

Let a Turing machine T be a subset of SXAXSxAX{l,r}, where S is a fi-
nite set of states, A is the finite alphabet of T and {Lr} is the set of possible di-
rections to which the head can move. An element (s,a,t,b,r) of T is interpreted
as follows: if the current state of T is s and the tape-symbol at the head posi-
tion is a, then T prints b, moves the head one position to the right and changes
its state to t. For each Turing machine there are two special states sg, sf€ S
where sg is the initial state and sy is the final state. Let f be a Turing com-
putable function. We say T computes f, if T starting in so with tape inscription
x reaches s¢ with tape inscription y if and only if y=f(x).

We now construct a logic program Py implementing T. To represent the
tape of T we use two (generally incomplete) lists where the first one represents
the tape left from the actual head position and the second the tape at the head
position and right from it. For example, if T moves left, then we simulate this
by removing the first element of the list representing the left part of the tape
and inserting it at the first position of the list representing the right part of the
tape. For example, if the tape is ([alL],[bIR]) then we have the tape (L,[a,bIR])
after T moved one field left.

Accordingly, for each tuple (s;,am,sj,an,r) we add the clause
tm(s;,L,[am/R])¢—tm(sj,[alL],R)

and for each tuple (sj,am,sj,an,1) we add the clause
tm(s;,[SIL],[am!R])—tm(s;,L,[S,anlR])

to Pr. Finally, for the halting state sf we add the fact

tm(sg,_,)¢

24 CHAPTER 3. GENERATING LINK CLAUSES

We start T with the goal «tm(so,left,right) where so is the initial state and
left and right are terms representing the initial tape contents. Clearly T reaches
its final state if and only if there is a refutation of PU{<«tm(so,left,right)}. In
this case the terms occurring at the second and third position of the last non-
empty goal contain the computed output.

Let us now consider the set of link clauses Linkp for Pr. For each clause
representing a transition where T moves one field to the right. Linkpp contains
a clause

link(tm(sj,[anlL],R),tm(s;,L,[amIR])) ¢~

Furthermore, for each transition where T moves left, Linkpy contains a
link clause

link(tm(s;,L,[S,a,IR]),tm(s;,[SIL],[amIR]))

Each link clause in Linkpy represents a one step transition between states.
Accordingly, the link clauses in Lpy represent all possible transitions between
states. Each element

link (tm(s;, left;,right;),tm(s;,left;,right;)) <

of Lp; means that T, starting with tm(sj,left;,right;), scans all fields repre-
sented by the prefixes of leftj, rightj, left; and right; until it reaches
tm(s;,lefti,right;). Otherwise, the variables L and R representing the remain-
ders of the lists in the link clauses of Linkp; would not be bound to lists with
non-empty prefixes during the computation of Lpy. Let us first consider an ex-
ample before we continue with the proof.

EXAMPLE 3.5 (Turing Machines):
Consider the Turing machine T, which simply replaces the blank symbol
by a and then stops. T, consists of the tuple (so,b,sr,a,r) only. Consequently, the

corresponding logic program P, contains the following two clauses:

tm(sp,L,[bIR])¢<—tm(sg,[alL],R)
tm(sg,_,_)

Linkp, and Lp, contain only one link clause, namely

3.1. FINITE LINK CLAUSE PROGRAMS 25

link (tm(sg,[alL],R),tm(sg,L,[bIR]))<—
‘Now consider T which replaces a word of the form a" by c":

(50,2,50,C,1)
(s0,b,s£,b,1)

The corresponding logic program P contains the following clauses:

tm(sg,L,[alR])¢«—tm(sg,[cIL],R)
tm(so,L,[bIR])¢—tm(sg,[bIL],R)
tm(sf,_,)

In this case Linkp, contains the clauses

link(tm(so,[cIL],R),tm(so,L,[alR])«—
link(tm(sg, [bIL],R),tm(so,L,[bIR]))«—

which have an infinite transitive closure so that Lp, contains infinitely
many clauses of the form

link(tm(sg,[cIL],R),tm(so,L,[alR]))<—
link(tm(sg,[bIL],R),tm(so,L,[bIR]))¢—
link(tm(so,[c,cIL],R),tm(so,L,[a,alR]))<—
link(tm(sg,[b,cIL],R),tm(sg,L,[a,bIR]))—
link(tm(sg,[c,c,cIL],R),tm(so,L,[a,a,alR]))
link(tm(sg,[b,c,cIL],R),tm(sg,L,[a,a,bIR])) <
link(tm(sg,[c,c,c,cIL],R),tm(sp,L,[a,a,a,alR]))
link(tm(sg,[b,c,c,clL],R),tm(so,L,[a,a,a,bIR])) ...

The last link clause means that there is a transition where T, starting in so
with tape inscription [a,a,a,b] and head position at the leftmost a, scans all four
fields until it reaches s¢. The tape inscription after this transition is [c,c,c,b] and
the head is positioned right from b. Lp, is infinite, since there are infinitely
many such transitions. The fact that T scans arbitrarily long words of the
form a"b results in arbitrarily long prefixes of the lists in the second and third
argument position of the atoms in the link clauses.]

Our next goal is to show that Lpy is infinite if and only if, for each natu-
ral number N, there are two states sj and s; and a transition from s; to s; during
which T scans at least N+1 distinct fields of the tape.

26 CHAPTER 3. GENERATING LINK CLAUSES

First we show ‘=’. Suppose Lpy is infinite. Thus arbitrarily long prefixes
of lists must occur in second and third argument positions of the atoms in the
link clauses, because the set of states as well as the alphabet of T is finite. Thus
there must be at least one link clause of the form

link (tm(s;,left;,right;),tm(s;,left;,right;)) <

such that the length of both prefixes in left; and right;, or left; and right;
exceeds N. Consequently, if T starts with tm(s;,left;,right;) then T scans more
than N different tape fields until it reaches tm(s;,left;,right;).

Next we show ‘<’. Assume that, for each natural number N, there is a
transition from tm(sj,left;,right;) to tm(s;,leftj,right;) where T scans at least
N+1 distinct fields of the tape. Consequently Lpy must contain the link clause
link(tm(s;,left;,right;),tm(s;,left;,right;))<—. Since T scans more than N fields,
the length of both prefixes of left; and right;, or left; and right; must be greater
than N. Since N is not fixed Lp; must be infinite.

Let T be the set of all Turing machines T such that, for each natural
number N, there is a transition during which T scans at least N+1 distinct
fields of the tape. Clearly for the programs discussed in Example 3.5 we have
T,¢ Te and Tc€ To.. Hence T. is a non-trivial subset of all Turing machines. It
follows from Rice’s theorem that T. is undecidable. Consequently, it is also
undecidable whether or not Lp is finite. [

The following two theorems define program classes which have finite link
clause programs.

THEOREM 3.6 (Finiteness of Lp):
Lp is finite if P is a datalog program.]

Proof: If P is a datalog program then the Herbrand base of P is finite.
Consequently, the set A of all non-ground atoms modulo variants we can build
from the Herbrand base by replacing terms by variables is finite too. Thus Lp
is finite, since, for each atom occurring in a link clause of Lp, there is an atom
in A which is equivalent modulo variable renaming. [

3.1. FINITE LINK CLAUSE PROGRAMS 0)7]

Although the number of link clauses in Lp is finite for datalog programs
it may be very large. For example, the size of Lp may depend super-exponen-
tially on the arity of the procedures in P.

EXAMPLE 3.7 (Link Clauses for Datalog Programs):
_Consider the following datalog program consisting of the clauses

P(X.Y,Z)<p(Y,Z,X)
p(X,Y,Z2)p(Y,X,Z)

Whereas the first clause establishes a rotation of the arguments, the sec-
ond clause exchanges the first and the second argument. Both clauses in com-
mon can be used to generate any permutation of the arguments. Therefore, Lp
contains 6 link clauses which is the factorial of 3.

link(p(X,Y,Z),p(Y,Z,X))
link(p(X,Y,Z),p(Y,X,Z)) ¢
link(p(X,Y,Z),p(Z,X,Y)) ¢
link(p(X,Y,Z),p(Z,Y, X))
link(p(X,Y,Z),p(X,Y,Z))¢
link(p(X,Y,Z2),p(X,Z,Y)) ¢]

THEOREM 3.8 (Finiteness of Lp):

Lp is finite if P is not left-recursive. [

Proof: If P is not left-recursive then the link clauses are acyclic, i.e.
there is no link from any predicate symbol to itself. Consequently Lp must be
finite.]

Both conditions discussed above are rather restrictive. For example, the
append procedure (see Example 3.3) is left-recursive and contains function
symbols. However, both results suggest at least two approaches to obtain a fi-
nite link clause program:

1) we can transform P to a program which is not left-recursive.

2) we can modify Linkp so that Lp is finite.

28 CHAPTER 3. GENERATING LINK CLAUSES

Let us consider the first approach. One idea is to change the order of
body literals in the clauses of P so that the transformed program is no longer
left-recursive. We believe, however, that the application range of this method
is rather restricted. Experienced Prolog programmers generally avoid left-re-
cursion. Left recursive rules are inherently troublesome, since they are a
source of infinite loops if they are called with inappropriate arguments [56,
71]. Moreover left-recursion is only used when it cannot be avoided, i.e., the
clauses contain only one body literal and the termination is guaranteed by a
simplification of terms (see Example 3.3). Thus, it is likely that this strategy
can be applied very seldom only.

A second idea is to introduce unique predicate symbols which are added
to left-recursive procedures as leftmost body literal so that the resulting pro-
gram is no longer left-recursive. Furthermore, we also have to add corre-
sponding facts to the program. For example, we can transform the append
procedure to

append([],X,X)«

append([XIXs],Ys,[XIZs])«
append_help,
append(Xs,Ys,Zs)

append_help«—

This indeed yields the desired result; the procedure is not left-recursive
and the corresponding link clause program is finite. Let us consider the trace
for the goal «gdfc_solve(append([a,b],[d],L)) restricted to calls of the rela-
tions gdfc_solve/1 and subgoal/2.

«—gdfc_solve(append([a,b],[d],L))
«subgoal(append_help,append([a,b],[d],[alL,]))
«gdfc_solve(append([b],[d],L;))
<subgoal(append_help,append([b],[d],[blL;]))
«gdfc_solve(append([],[d],L>))

The goals for gdfc_solve/l are exactly the same as those to solve/1 eval-
uation the same query with Program 2.2, the standard meta-interpreter for
pure Prolog. As a matter of fact, the behaviour of the interpreter for goal-di-
rected forward chaining closely relates to backward chaining, if we transform
the program this way. Although this approach is very simple, it unfortunately
counteracts the effect of our interpreter.

3.1. FINITE LINK CLAUSE PROGRAMS 29

Because we want to retain the forward chaining characteristic of our
meta-interpreter, we next investigate, how we can achieve the finiteness of Lp
transforming Linkp instead of P.

EXAMPLE 3.9 (Natural Numbers):

Again consider Example 2.7 where we presented a procedure defining the
natural numbers. As already mentioned the set of link clauses contains only
one clause, but the link clause program is infinite. Now consider the clause
which is obtained by renaming the first variable

link(nat(Y),nat(s(X)))«

Even though neither of the two criteria for the finiteness is met, the cor-
responding link clause program is finite. The difference is, that the original
clause, in contrast to this one, sets up a cyclic data flow (with respect to the
transitive closure) in which a structured term is involved. |

The example above shows, that the infinity of Lp is caused by a cyclic
flow of data through argument positions containing structured terms.
Subsequently we consider, how we can exploit information about such data
flow to formulate a more sophisticated criterion for the finiteness of Lp. The
following example explains this idea more precisely.

EXAMPLE 3.10 (Cyclic Data Flow):
Consider the following two link clauses:

link(q(X),p(1(X))) ¢
link(q(f(X)),p(X))«

In the first link clause we have a data flow from q; (the first argument of
q/1) to p1. In the second link clause the data flow goes from p; to q;. While the
direction in the first link clause is from left to right, we have the opposite di-
rection in the second link clause. Since both directions cannot be combined to a
cyclic data flow during the computation of the transitive closure, Lp is finite.
However, if we add the clause

link(p(f(X)),q(f(X))) <

30 CHAPTER 3. GENERATING LINK CLAUSES

Lp becomes infinite, because this clause produces a cyclic data flow in
both directions. Whereas the first and the third link clause together produce
arbitrarily large terms on the right side of the generated link clauses, we ob-
tain arbitrarily large terms on the left side using the second and third link
clause. Thus there is a strong relationship between the side on which arbitrar-
ily long terms occur and the direction of the data flow. :]

The previous example shows, that we need a precise notion of cyclic data
flow through argument positions containing structured terms (cyclic migra-
tion) which takes into consideration the direction of the data flow. We use the
following definition to introduce migration graphs which are motivated by the
migration sets defined in [49] (see also Section 8.1). Migration graphs repre-
sent the flow of data between structured terms in the link clauses. Because
there are two possible directions of migration in the link clauses, we always
have two different migration graphs representing both directions.

DEFINITION 3.11 (Migration Graphs):

Let P be a definite program. The migration graphs M; Linkp and M Linkp
for Linkp are multi-graphs defined as follows:

(a) For each link clause link(p(....t;,...),q(...,uj,...))<—€ Linkp with y;
resp. ti is a structured term sharing a variable with t; resp. uj,
M Linkp T€SP. My Linkp contains an arc (p;,q;) resp. (qj,pi)-

(b) If M, Linkp contains an arc (p;,q;), then M; rinkp contains an arc (qj,rk)
for each link clause link(q(...,u;,...),r(...,Vk,...))¢<—€ Linkp where u;
and vy share a variable. If M pinkp contains an arc (g;,pi), then, for
each link clause link(r(...,Vk,...),p(...t...))<— where t; and vi share
a variable, M Linkp contains an arc (p;,rx).]

EXAMPLE 3.12 (Migration Graphs):

Consider the following set of link clauses:

link(p(X,g(Y)),q(f(X),Y)) ¢
link(q(X,Y),p(X,Z))

3.1. FINITE LINK CLAUSE PROGRAMS 31

Whereas M Linkp i8 cyclic, M) pinkp contains no cycle. Both migration

graphs are shown in Figure 3.13.]
q2 P1
P2 qi

Fig. 3.13: Migration graphs M; Linkp and M Linkp

The following theorem establishes a link between cyclic migration and the
infinity of Lp by means of migration graphs.

THEOREM 3.14 (Finiteness of Lp):

Let P be a definite program with link clauses Linkp. Lp is finite if M; pinkp
and M, pinkp are acyclic.]

Proof: Let us consider the case where M, Linkp is acyclic. It follows from
the definition of the migration graph, that there is no cyclic data flow from
left to right through an argument position containing a structured term.
Consequently it is not possible that arbitrarily large terms occur on the right
side of the link clauses in Lp. Since the same argument holds for M Linkp, Lr
cannot contain link clauses with arbitrarily long terms. Thus Lp must be fi-
nite. =

Theorem 3.14 says that Lp is finite if there is no cyclic data flow through
argument positions containing structured terms. This result suggests an ap-
proach to tackle the problem of infinitely many link clauses. All we have to do
is to eliminate cyclic data flow by replacing a sufficiently large number of mi-
grating variables by unique variables in order to delete all cycles in M Linkp
and M Linkp-

82 CHAPTER 3. GENERATING LINK CLAUSES

The approach to replace terms by unique variables to stop possibly infi-
nite processes is also applied in [7] to solve the problem of non-termination
during partial evaluation, and in [36] to stop the computing of filters which
select possibly relevant tuples during the evaluation of queries to deductive
databases.

It is clear that the result of such a renaming is a set of more general link
clauses which have a finite but more general transitive closure. Therefore, we
next have to answer the question, whether or not such a transformation is ad-
missible.

THEOREM 3.15 (Property of the Link Clause Program):

Let P be a definite program, Lp the link clause program for P and <A a
single literal goal. If PU{«- A} has a refutation, then P contains a fact B«
such that either A and B are unifiable or Lp contains a link clause the head of
which is unifiable with link(B,A).]

Proof: Let us consider the SLD-refutation of PU{<A} which comes
from the left-first computation rule. Suppose Cy,...,Cy, are the input clauses
used for the derivation of the first goal which is shorter than its predecessor.
Let us denote the the head of each C; by B; for i=1,...,n, and the leftmost body
literal of each C; by B, for i=1,...,n-1. Clearly Cy,...,C, satisfy the following
conditions:

1) Bj and A are unifiable with mgu 0,

2) Bi16i and Bi,; are unifiable with mgu 64, for i=1,...,n-1, and

3) G, is a unit clause of the form Bj¢.

If n=1 then A and B,, are unifiable. Otherwise, if n>1, then Linkp contains
n-1 link clauses of link(B;;,B;)<—. The derivation constructed above implies
that Lp contains a link clause link(By.1 1,B1)0¢ the head of which is unifiable
with link(B,,A). m

The previous theorem implies that Lp establishes a necessary condition

for the provability of a given goal. Thus, from this point of view we can use
Lf>‘“ instead of Lp, because L{>"‘ is more general than Lp. In Chapter 4 we show

3.1. FINITE LINK CLAUSE PROGRAMS 33

that such a generalization of Lp is also admissible w.r.t. the soundness and
completeness of GDFC-resolution.

Nevertheless, one could regard the fact that the resulting link clause pro-
gram has a weaker selectivity as a disadvantage of this approach. Thus, we
next address the question how to maximize the selectivity of Lp. If no problem
dependent information is available, one approach is to minimize the number of
arcs which have to be removed from the migration graphs so that they become
acyclic. Unfortunately, the problem to remove a minimum number of arcs
from a directed graph in order to delete all cycles denoted as the minimum
feedback arc set problem is NP-hard [25]. Our problem exactly is the mini-
mum feedback arc set problem for multi-graphs. The feedback arc set problem
(FAS) is defined as follows :

DEFINITION 3.16 (FAS-Problem):
Input: A directed graph G=(V, A) and a positive integer k<IAl.

Question: Is there a subset A’cA with |A’I<k such that A’ contains at least
one arc from every directed cycle in G? [

ALGORITHM 3.17 (Find Migrating Variables):

Input: A definite program P.
Output: A set V of variables occurring in the link clauses which have to
be renamed so that Lp becomes finite.

1) Compute Linkp (possibly after moving appropriate literals in the
clause bodies to the leftmost position). If Linkp contains no migrat-
ing variables set V=@ and stop.

2) Compute M;inkp and M Linkp- Compute a feedback arc set for both
graphs. Let V={vl v is a variable producing migration in a link
clause which corresponds to an arc in the feedback arc set}. =

At present there are at least two known approaches to approximate the
minimum feedback vertex set [63, 69], which can also be used to solve the
minimum feedback arc set problem considering the corresponding arc-graph
[28, 68]. While the first one with linear runtime was developed by Rosen in

34 CHAPTER 3. GENERATING LINK CLAUSES

1982, the second one, presented by Speckenmeyer in 1989, has time complex-
ity O(FM*IA|3) where Fy is the size of the minimum feedback arc set and Ais
the set of arcs. Even if Speckenmeyer’s approach needs more computation
time, it gives promising improvements of Rosen’s approach. Fortunately, we
can apply both approaches without any changes as subroutines to minimize the
number of variables which have to be renamed (see Algorithm 3.17), since the
corresponding arc-graph of a multi-graph is a directed graph without multiple
arcs.

EXAMPLE 3.18 (Arithmetic Expressions):

Consider the following contextfree grammar for arithmetic expressions
defined by the productions:

expression — term

expression — term, [+], expression
term — factor

term — factor, [*], term

factor — identifier

factor — [‘(’], expression, [‘)’]
identifier — [a]

identifier — [b]

identifier — [c]

A straightforward translation into definite clauses yields the following
program [71]:

expression(S,So)«—term(S,Sp)
expression(S,So)«—term(S,[+S;]),expression(S1,50)
term(S,So)«factor(S,So)
term(S,So)<factor(S,[*IS1]),term(S1,So)
factor(S,So)«identifier(S,So)
factor([*(’IS],Sg)<—expression(S,[‘)’ISe])
identifier([alS],S)«

identifier([blS],S)«

identifier([cIS],S)«

Linkp is

3.1. FINITE LINK CLAUSE PROGRAMS 35

link(term(S,So),expression(S,So))¢—
link(term(S,[+IS1]),expression(S,Sp))¢«
link(factor(S,Sp),term(S,Sp))
link(factor(S,[*IS;]),term(S,S¢))¢—

link (identifier(S,Sp),factor(S,So))<
link(expression(S,[)’ISol),factor([‘(IS],S0)) ¢

Both migration graphs are illustrated in Figure 3.19.

factors | expression;

LR N

€Xpressiony ———s= termo factor]————="1 term{

Fig. 3.19: M Linkp and M Linkp for Example 3.18

Whereas M,,Linkp has two parallel arcs, M| Linkp contains normal edges
only. Speckenmeyer’s Markovian approach applied to the corresponding arc-
graphs computes the optimal solution by selecting (expressiony,factor;) from
M Linkp and one arc from M inkp. If we apply Rosen’s approach then, depend-
ing on the starting node, we possibly obtain two parallel arcs which have to be

H removed from M, inkp- A straightforward extension of Rosen’s method which
‘ applies Rosen’s algorithm n times with each vertex as starting node (n-Rosen)
‘ also produces the optimal solution [70]. Thus, in order to make both graphs
u acyclic, we only have to remove one arc from each graph. Supposed that we

obtained the arcs (expression;,factor;) and (factorz,expressiony) which come
from the last link clause, we only have to replace this clause by

F link(expression(S,[)’ISol),factor([‘(’1S1],S2))«
| For this example it suffices to rename two variables in Linkp in order to
1 obtain a finite link clause program.]

There are different reasons why Algorithm 3.17 possibly produces sub-
optimal solutions only. First, a single arc in a migration graph possibly comes
from two variables producing cyclic data flow in the same argument position.
Second, one single variable may be involved in both directions of data flow
(see the third link clause in Example 3.10), so that we possibly make useless

36 CHAPTER 3. GENERATING LINK CLAUSES

renaming. One idea to reduce this problem is to split step 2) of Algorithm
3.17. Instead of computing both feedback arc sets simultaneously we simply
compute them successively. After computing the first feedback arc set we re-
move all arcs in the second migration graph which correspond to the same mi-
gration.

Even if we do not obtain the optimal solution in all cases we regard this
somewhat heuristic approach as well suited, since we can apply it with great
success to non-trivial examples such as the well known procedures defined in
Example 2.7, 3.3 and 3.18.

The pros and cons of this transformation approach can be summarized as
follows. It has the drawback that the resulting link clause program has a
weaker selectivity which may lead to a computational overhead. As we will see
in Chapter 7, the selectivity of the link clause program has great influence on
the termination behaviour of goal-directed forward chaining. A basic pre-
condition of the sufficient termination criterion developed there is that the link
clause program which is used has the same selectivity as Lp. In contrast to that
the renaming approach has the great advantage that it allows us to deal with
finite sets of link clauses so that automatic decisions, whether or not a clause is
relevant, always terminate. By all means, in the remainder of this dissertation
we can assume that there is a finite link clause program corresponding to the
following definition.

DEFINITION 3.20 (Finite Link Clause Program):

For each definite Program P, a finite link clause program LE" for P sat-
isfies the following conditions: ot

1) if Gis «link(A,B), then the refutation of LE"{G} terminates, and,

2) for each correct answer 0 for LpU{G]}, there is an answer 6 for
Lg“u{G} such that GO’ is more general than GO.

Accordingly, the reflexive finite link clause program Linref is obtained

from LE" by adding the link clause link(X,X)<. n

3.2. REDUCING THE NUMBER OF LINK CLAUSES 37

3.2 Reducing the Number of Link Clauses

This section concerns the problem to reduce the number of link clauses in
Lp when it is finite. The main idea of the approach is illustrated in the follow-
ing example.

EXAMPLE 3.21 (Different Numbers of Link Clauses):

Consider the following propositional program containing n clauses of the
form

Pi<—Pi+1,9i (=15 n)

Clearly, the transitive closure Linkp consists of n:(n+1)/2 link clauses.
However, if we change the order of the body literals to

Pi<—qi,Pi+1 (=1

then Lp, which is the same as Linkp, contains n clauses only. =

This example shows that the space saving obtained by a reordering of lit-
erals in the bodies of the non-unit clause may be of order O(n). Thus it would
be very useful to have an algorithm which provides a reordering of literals in
the clause bodies such that the number of link clauses for the resulting pro-
gram is minimal.

As a matter of fact, there is a strong relationship between link clauses and
directed graphs in the context of propositional logic programs.

DEFINITION 3.22 (Link Graph):

I.,et P be a propositional program. The link graph LGp is a directed graph
containing an arc (A,B) for each link clause link(A,B)« in Linkp. []

Figure 3.23 contains the link graphs for both programs discussed in
Example 3.21.

38 CHAPTER 3. GENERATING LINK CLAUSES

P1
P2 pTl pf ?ﬂ
1 q1 G2 Qn
|
|
Pn+1

Fig. 3.23: Link graphs

DEFINITION 3.24 (Selection of Literals):

Let P be a definite program and ¢:=c(P) be a selection which selects ex-
actly one literal from each non-unit clauses in P. A corresponding program Py
for P consists of all unit clauses in P and all non-unit clauses obtained from the
non-unit clauses in P by moving the literals selected by ¢ to the leftmost posi-
tion in the clause body. Formally, P contains a clause the form

A=A jiAi e Aiji- LA jis Lo, Aip
for each non-unit clause
Aie—Ails- oA 1A Al jis 1 - A n

in P with Aj;; is selected by o, since j; occurs in the i-th position of

0=01’j21 RS 9j|'l)

where 1<ji<n;, for i=1,...,n.]

Subsequently we show that the problem of finding a minimum link clause
program Lp; for a propositional program P is NP-hard. To prove the claim

we reformulate the problem of finding the minimal link clause program as a
decision problem, denoted by LCP, and show its NP-completeness by a reduc-

3.2. REDUCING THE NUMBER OF LINK CLAUSES 39

tion of the hitting set problem, denoted by HS. Since HS is NP-complete [25], it
follows immediately that our optimization problem is NP-hard.
DEFINITION 3.25 (LCP-Problem):’

Input: A propositional program P with ILinkpl=n and a positive integer k
with n<k<n-n.

Question: Is there a selection ¢ of literals in P such that the number of
link clauses in Lp, is less or equal k? |]
DEFINITION 3.26 (HS or Hitting-Set-Problem):

Input: Collection C of subsets of a finite set S and a positive integer k<ISI.

Question: Is there a hitting set, that is a subset S’cS with IS’I<k such that
S’ contains at least one element from each subset of C? |
EXAMPLE 3.27 (Hitting Sets):

Cc={ {a,b,c},{b,d,e},{va,e,f }} has hitting séts

bl b0 (b.e)susslasbic hsraai{ ab,0idie)
For k=2 there a;e the following solutions:

{a,b},{a.d},{ae},{be},{b,f},{ce}]

THEOREM 3.28 (NP-Completeness of LCP):
LCP is NP-complete. [

Proof: First, it is easy to see that LCPe NP. For, if there is a selection ¢
of literals in P such that Lp, contains at most k link clauses, all we need to do
is to take © as a guess and verify that indeed Lp, has at most k link clauses. For
this purpose we compute Lp, and count the number of link clauses. This can be
done by a polynomially bounded algorithm.

40 CHAPTER 3. GENERATING LINK CLAUSES

Second we show that HS can be reduced to LCP (HSe<LCP). Let the input
S, C=(C},C,...,Cn} and an integer k be given. Let ¢ be a unique symbol not
occurring in S. For each set Ci={ci1,Ci2,...,Cini}€C produce one clause
C¢—Ci1,Ci2,. -+ ,Cin; Obviously, this transformation is polynomially bounded. The
resulting program P consists of one single non-recursive procedure defined by
n clauses. Consequently, Linkp, and Lp, are identical and contain at most n
link clauses for each 6. The following example demonstrates how to carry out
this transformation.

EXAMPLE 3.29 (Hitting Sets and Link Clause Programs):

Suppose C is {{a,)b,c},{b,d,e},{a,e.f}} (see Example 3.27). Since p does
not occur in any set in C, we construct the following propositional program.

p<ab,c
p<b,de
pease,f]

If there is a hitting set S’ with IS’I<k, then compute ¢ by selecting only
such predicates in the body of the non-unit clauses which also occur in S°. It
follows from the construction of P that each non-unit clause contains a symbol
in its body which is an element of S’. Obviously, Linkp,; and Lp, contain at
most k link clauses.

On the other hand, if there is selection ¢ of literals such that the link
clause program Lp, contains at most k link clauses, then the set

S’={cl c is selected by G}

is a hitting set with IS’I<k. Thus the answer to the input with respect to HS
is ‘yes’ if and only if the answer to the input with respect to LCP is also
yest [

One important property of the program constructed in this proof is that
some predicate symbols must occur in more than one clause body if Linkp
contains less link clauses than P non-unit clauses. One might argue that it is a
quite exceptional case in practical applications that one predicate symbol oc-
curs more than once in the clause bodies of a procedure. Therefore, we now
consider this problem for programs in which all clauses defining one proce-
dure contain distinct predicate symbols in their bodies. Again we use the cor-

3.2. REDUCING THE NUMBER OF LINK CLAUSES 41

responding decision problem which we call LCPD (lmk clause program for
programs with predicate-disjoint clause-bodies).
DEFINITION 3.30 (LCPD-Problem):

Input: A propositional program P with ILinkpl=n, which does not contain
two clauses in the definition of one procedure with the same predicate in their
body, and a positive integer n<k<n-n.

Question: Is there a selection ¢ for P such that the number of link clauses
in Lp is less or equal k?]
THEOREM 3.31 (NP-Completeness of LCPD):

LCPD is NP-complete. ¢ m

Proof: Based on the strong relationship between LCP and LCPD it is
straightforward to see that LCPDe NP.

Again we use the hitting set problem and show that HSe<LCPD. Let the
input S, C={C,,Cy,...,Cy} and an integer k be given. In contrast to the proof
for the NP-completeness of LCP we now need n+1 unique symbols not occur-

ring in S. Let us denote them by {c,c1,¢2,...,cn}. First, P contains n clauses

CCy
C<C)

C¢Cp
Furthermore, for each set Ci={c; 1,Ci2,...,Cin;} € C, P contains the clause
Ci€=Ci,1,Ci,25---,Ci,n;

If k is the upper bound for HS, then we set the upper bound for LCPD to
2:n+k. It is clear that this transformation is polynomially bounded.

The resulting program consists of 2-n clauses where no predicate symbol
occurs in two clause bodies belonging to the same procedure. While Linkp
contains exactly 2-n link clauses, Lp consists of 3-n clauses in the worst case. If

42 CHAPTER 3. GENERATING LINK CLAUSES

there is a hitting set S’ with IS’I<k, then compute 6 by selecting only those
predicates in the body of the last n clauses which also occur in S’. It follows
from the construction of P that each of the last n clauses contains a symbol also
occurring in S’. Obviously, Lp, has at most 2-n+k link clauses.

On the other hand, if there is a selection of literals ¢ for P such that Lpg
contains at most 2-n+k link clauses, then

S’={cl c is selected by 6}]\[cy,¢2,.-.,Cq}
is a hitting set with 1S’I<k.

Consequently, IS’I<k if and only if the number of link clauses in Lp, is
less than or equal 2-n+k. Hence the answer to the input with respect to HS is
‘yes’ if and only if the answer to the input with respect to LCPD is also ‘yes’. m

Both results presented above imply that the problem of finding a selection
o of literals in the clause bodies of P in order to minimize the number of link
clauses in Lp, is intractable. So we have to be content with a polynomially
bounded approximation algorithm. Our approach is based on an order of the
non-unit clauses which is induced by the predicate dependency graph for P.

DEFINITION 3.32 (Predicate Dependency Graph):

Let P be a definite program. The predicate dependency graph Dp is a di-
rected graph G=(V,E) where V contains all predicate symbols occurring in P
and E={(p,q)! q is a predicate symbol occurring in the body of a clause with
head p in P}.]

If P is non-recursive, then the predicate dependency graph is acyclic and
the procedures of P can be embedded into a well-founded partial order. This
order is constructed out of the predicate dependency graph Dp of P. We state
p>q if the transitive closure of Dp contains an arc (p,q), that is, p depends on
q. This order is well-founded, since P is non-recursive.

The basic idea of our approach is to scan the non-unit clauses in P bot-
tom-up according to this order and to select that body literal from each clause
for which we obtain the minimum transitive closure of all link clauses com-
puted so far. Algorithm 3.33 realizes this approach. The output is a selection 6
of literals in P and the corresponding link clause program Lp.

3.2. REDUCING THE NUMBER OF LINK CLAUSES 43

ALGORITHM 3.33 (Approximation Algorithm for LCP):

Input: A non-recursive program P.
Output: A selection ¢ of body literals for the non-unit clauses of P and a
link clause program Lp for Pg.

1) SetL:=0 and Q:={CI C is a non-unit clause in P}.

2) If Q=@, set Lps=L and stop. Otherwise, let Ci=Aj<A, 1,...,Ain€ Q
be the i-th non-unit clause in P such that A; is one of the smallest
predicate symbols occurring in a clause head in Q w.r.t. to the order
induced by Dp, i.e., there is no symbol B occurring in a clause head
in Q with B<A;. Let A;; be the body literal of C; for which the
transitive closure of Lu{link(A;;,Aj)¢<} contains the smallest num-
ber of link clauses compared with all other body literals of C;.

3) Assign j to the i-th position of o, the transitive closure of L to L, set
Q:=Q\{C;j} and go to 2). ®

Which time complexity does this algorithm have for propositional pro-
grams? Suppose P contains n non-unit clauses, where k is the maximum length
of all clause bodies in P. For each clause and each body literal occurring in a
clause Algorithm 3.33 computes a transitive closure of maximally n link
clauses which takes O(n®) steps. Consequently the time complexity of
Algorithm 3.33 is O(k:n*) and the costs for the optimization are limited by
O(k:n), since we already need O(n3) to compute Lp without any eptimization.

If we apply Algorithm 3.33 to the program discussed in Example 3.21
then indeed we obtain the optimal selection of literals. However, it is needless
to say that there are cases where Algorithm 3.33 produces suboptimal solutions
only, and it is easy to construct programs where we obtain the worst case.
Sources for wrong selections are multiple dependencies between predicate
symbols. A simple form of such dependencies are multiple occurrences of a
certain predicate symbol in different clause bodies of the same procedure.

EXAMPLE 3.34 (Worst Case Ratio of Algorithm 3.33):

Consider programs of the following type:

44 CHAPTER 3. GENERATING LINK CLAUSES

a<—aj,...,an
a¢<—a,...,4n
a<a,

Suppose Algorithm 3.33 scans the clauses in the order as they are listed.
If the leftmost body literal is selected in each clause then we obtain n link
clauses even if one would be sufficient. Consequently, the worst case ratio may
depend linearly on the number of clauses.]

Even if Algorithm 3.33 possibly produces solutions which differ linearly
from the optimal solution it in practice leads to considerable space savings. In
Section 6.3 we present experiments which give an impression of the effectivity
of this approach.

Motivated by the strong relationship between the LCP-problem and the
HS-problem, which is expressed by the reduction of the latter to the first, one
could speculate that it is possible to apply heuristic approaches used to find
minimum hitting sets. Johnson [32] shows that the selection of the element with
the largest number of occurrences yields a worst case ratio, which can grow
with the logarithm of the number of sets. Unfortunately, as the following ex-
ample shows we cannot obtain the same result applying this heuristic to LCP.

EXAMPLE 3.35 (Worst Case Ratio of Johnson’s Heuristic):
Consider programs of the following type

ap¢—ar,b1,c1
ap¢—ay,by
a1<—a2,b2,cz
aj¢—azby

ap_1¢—2p,bn,Cn
ap-1$—2p,by

If we apply Johnson’s heuristic and select the leftmost body literal of each
clause then we obtain exactly n-(n+1)/2 clauses. However, if we always select
the second body literal of each clause we have n link clauses only.
Consequently, Johnson’s heuristic may produce a linear worst case ratio. ~ ®

3.2. REDUCING THE NUMBER OF LINK CLAUSES 45

Note that our approach would lead to a worst case ratio of order O(1) in
the previous example. On the other hand, if we apply Johnson’s heuristic to
Example 3.34 then indeed we obtain the optimal solution. Whereas Algorithm
3.33 attempts to produce as short paths as possible in the link graph, Johnson’s
heuristic exploits multiple occurrences of a predicate symbol in a procedure to
reduce the number of link clauses. Thus an integration of Johnson’s approach
may lead to a promising improvement of Algorithm 3.33.

Our approach to minimize the number of link clauses is a bottom-up ap-
proach, because the clauses in P are scanned bottom-up according to the topo-
logical order induced by Dp. It is an interesting question whether it would
generally be more effective to use a top-down approach.

EXAMPLE 3.36 (Top-Down Approach for LCP):
Again consider the program containing n clauses

Pi¢<—Pi+1,4i : {1

If we apply a top-down approach, i.e., we start with the clause

P1<P2,91

then nothing speaks against a selection of p; even if q; should be pre-
ferred. Moreover, since pi+1 and g; always add the same number of link
clauses, this approach possibly produces the worst case by selecting the first
body literal in each clause.]

Whenever heuristics are applied which generally lead to suboptimal solu-
tions only, one has to answer at least two questions. The first one concerns the
effectivity and asks for the worst case behaviour of the approach. With
Example 3.34 we gave an answer to this question. The subject of the second
one is the identification of input classes for which the optimal solution is ob-
tained. In Example 3.34 we showed that multiple dependencies between predi-
cate symbols are one reason for suboptimal solutions. We next investigate
whether it suffices to exclude multiple dependencies so that algorithm 3.33
produces optimal solutions.

46 CHAPTER 3. GENERATING LINK CLAUSES

DEFINITION 3.37 (Unique Path Property for Graphs):

A graph G=(V,E) satisfies the unique path property, if there is at most
one path between two arbitrary vertices u,ve V. Such a graph is called a
unique path graph. |

THEOREM 3.38 (Polynomial solvability of LCP):

Let P be a non-recursive, propositional program whose predicate depen-
dency graph satisfies the unique path property. Suppose P contains no proce-
dure such that one predicate symbol occurs in the clause bodies of two differ-
ent clauses defining it. Then the minimum link clause problem for P is solv-
able in polynomial time and Algorithm 3.33 produces the optimal solution. =

Proof: All we have to do is to show that Algorithm 3.33 computes the
optimal selection of literals under these restrictions.

Let C be the clause currently selected and suppose T is the procedure C
belongs to. Let A be the head of C and B be the body literal of C which adds
the minimum number of link clauses to the transitive closure. Since each body
literal of C occurs in no other clause defining 7, B indeed is the optimal literal
in C with respect to 7. Now suppose P contains a procedure 7’ with head A’
such that A’ depends on A. The unique path property implies that A’ does not
depend twice on any body literal of a clause defining 7. Consequently B is also
optimal with respect to ’. Since Algorithm 3.33 scans the procedures bottom-
up according to the topological order induced by the predicate dependency
graph, B must be optimal with respect to P.]

Although we mainly discussed the minimization of the number of the link
clauses in Lp in the context of propositional programs, our approach as well
can be applied to definite programs which are non-recursive. However, since
the efficiency of the query evaluation process largely depends on the exploita-
tion of variable bindings, it is not always recommended to give unrestricted
preference to the space saving. Link clauses where the left and right side are
variable disjoint have a minimum selectivity and negatively influence the effi-
ciency.

3.2. REDUCING THE NUMBER OF LINK CLAUSES 47

EXAMPLE 3.39 (Cousin Relationship):

Consider the following datalog program defining the cousin relationship
based on the parent and sibling relationships

cousin(Cousin;,Cousing)¢—
parent(Parent;,Cousin;),
parent(Parent;,Cousiny),
sibling(Parent;,Parent;)

If we select the last literal in this clause, then we have no data flow be-
tween the left and the right side of the corresponding link clause which is

link(sibling(Parent;,Parent;),cousin(Cousin;,Cousiny))«

This link clause allows no exploitation of variable bindings which possibly
produces a significant computational overhead during the evaluation of
queries. =

The previous example shows that Algorithm 3.33, from the viewpoint of
efficiency, first of all should select literals sharing variables with the head of
the clause which are most frequently bound by queries. Warren [87] describes
a simple but effective strategy for planning a query so that the Prolog inter-
preter can execute it efficiently. Based on a simple cost function, which de-
pends on statistic information about the program, this approach computes an
optimal order of literals. Similar extensions of Algorithm 3.33 should allow us
to select an optimum literal from the viewpoints of efficiency and space re-
quirement.

In the context of datalog programs the efficiency of goal-directed for-
ward chaining additionally depends on the amount of ‘redundant’ link clauses
in Lp. Redundant link clauses are such link clauses which are an instance of
other link clauses in Lp, and are a source of redundant derivations which are
highly undesired.

EXAMPLE 3.40 (Ancestor Relationship):

Consider the following Program specifying the ancestor relationship:

48 CHAPTER 3. GENERATING LINK CLAUSES

ancestor(X,Y)e«
parent(X,Y)

ancestor(X,Z)«
parent(X,Y),
ancestor(Y,Z)

parent(abraham,isaac)<—
Linkp and Lp both contain the following link clauses:

link(parent(X,Y),ancestor(X,Y))«
link(parent(X,Y),ancestor(X,Z))«

While there is only one proof for ancestor(abraham,isaac) using the stan-
dard Prolog interpreter, there are two proofs using the meta-interpreter for
goal-directed forward chaining. The reason is that there are two links from the
fact to the goal. The first link clause, however, is redundant, because it is sub-
sumed by the second. m

This example shows that redundant link clauses are a source of redundant
derivations. Since we do not alter the declarative semantics of Lp removing
redundant link clauses, we can formulate the following heuristic for the opti-
mization of link clause programs:

‘Remove redundant link clauses!’

Redundant link clauses, unfortunately, are not the only source of redun-
dant derivations. Redundant derivations are also caused by link clauses which
have a common instance. We will discuss this problem and a possible solution
to it in Chapter 5.

3.3 Summary

This chapter addressed the problems with the link clauses used by goal-di-
rected forward chaining to focus on relevant clauses. It showed that it is gen-
erally undecidable whether or not the transitive closure of the set of link
clauses is finite or not. It presented and approach to obtain a possibly more
general but finite transitive closure of the link clauses. This allows us to deal
with finite sets of link clauses so that automatic decision procedures, whether

3.3. SUMMARY 49

or not a clause is relevant, always terminate. This chapter also demonstrated
that the number of link clauses in the transitive closure may be reduced by
moving appropriate body literals of the non-unit clauses to the leftmost posi-
tion. Since the problem to find an optimal selection of literals is NP-hard in
the context of propositional programs, it presented an approach to minimize
the number of link clauses. For propositional programs the space saving may
be of order O(n) where n is the number of non-unit clauses in the underlying
program.

Chapter 4

GDFC-RESOLUTION

The main topic of this chapter is the introduction of a linear resolution
strategy for goal-directed forward chaining. The calculus, which is denoted by
GDFC-resolution, is based on the meta-interpreter for goal-directed forward
chaining presented in 2.1. This approach has several advantages. First it en-
ables us to define the semantics of goal-directed forward chaining and second
it facilitates the efficiency comparison of SLD- and GDFC-resolution. In 4.1
we introduce GDFC-resolution. In 4.2 we show that GDFC-resolution is sound
and complete for definite logic programs and consider the question, how to
construct a GDFC-refutation out of a given SLD-refutation and vice versa.

4.1 The Resolution Strategy

If we define GDFC-resolution taking the meta-interpreter for goal-di-
rected forward chaining as a basis, we first need the concept of subgoal-goal
pairs to represent situations in which an atom of the form subgoal(A,B) is se-
lected, i.e., we prove that A is a subgoal for B.

DEFINITION 4.1 (Subgoal-Goal Pair):

Let A and B are be arbitrary atoms. Then we denote a pair <A,B> as a
subgoal-goal pair. A is called the subgoal of the goal B. If A and B have the
same predicate symbol <A,B> is a recursive subgoal-goal pair. |

92 CHAPTER 4. GDFC-RESOLUTION

DEFINITION 4.2 (GDFC-Goal):

A GDFC-goal is a goal <—A,...,A, (n21) such that A, is either an atom or
a subgoal-goal pair, for i=1,...,n. =

The following definition introduces GDFC-resolution. To focus on rele-
vant clauses GDFC-resolution uses LE" instead of Lp. The advantage of this
approach is that every check whether a clause is possibly relevant terminates so
that every link goal has a finite number of solutions only. This allows us to
deal with a finite number of one-step derivations for each particular goal, i.e.,
with GDFC-trees (see below) in which each node has finitely many successors
only.

DEFINITION 4.3 (GDFC-Resolution):

Let P be a definite program, L™ be a finite link clause program for P,
and G be a GDFC-goal < Aj,...,Aj,...,An. Then G’ is derived from G via
GDFC-resolution w.r.t. LE" using a clause Ce P and a substitution 8 if the fol-
lowing conditions hold:

1) Ajis a selected element (atom or a subgoal-goal pair) in G.

2) Suppose A;is an atom and C is a unit clause B¢«—.

a) If A; and B are unifiable with mgu 0, then G’ is the goal
—(Ay...,Ai1,Ait15-..,An)0. (Rule 1)

b) If O is an answer for L‘;;'“u{<—link(B,Ai)}, then G’ is the goal
«(Ay,...,Ai1,<B,AD> Ajs1,...,An)O. (Rule 2)

3) Suppose A, is a subgoal-goal pair <A,A’>. Let C bbe a non-unit clause
B<«B,,...,Bg such that A and B, are unifiable with mgu 6;.

a) If BO; and A’ are unifiable with mgu 6, then G’ is the goal

—(Ay,...,Ai1,B2,... .BiAist,...,An)B. (Rule 3)

4.1. THE RESOLUTION STRATEGY 53

b) If O is an answer for LE"U{«link(B8;,A")}, then G’ is the goal
(—-(Al,. 5o ,Ai.l,Bz,. e ,Bk,<B,A’>,Ai+1,. S ,An)e. (Rule 4)
G’ is called the GDFC-resolvent. b |

Note that the conditions for an application of Rule 1 and Rule 2 respec-
tively Rule 3 and Rule 4 are not mutually exclusive and that there are situa-
tions in which we can apply either Rule 1 or Rule 2 respectively either Rule 3
or Rule 4. ‘ ;

DEFINITION 4.4 (GDFC-Derivation):

Let P be a definite program and G a definite goal. A GDFC-derivation of
PU{G]} w.r.t. LE" consists of a possibly infinite sequence G=Go,Gy,... of def-
inite forward chaining goals, a sequence C;,Cs,... of variants of program
clauses of P, and a sequence 01,02,... of substitutions such that each Gi4 is
derived from G; using Ci;1 and 6j41. ?]

DEFINITION 4.5 (GDFC-Refutation):

A GDFC-refutation of PU{G} w.r.t. L is a finite GDFC-derivation
with the empty clause O as the last goal in the derivation. B
DEFINITION 4.6 (Computed Answer):

Let P be a definite program and G a definite goal. A computed answer 0
for PU{G} w.r.t. LE" is the substitution obtained by restricting the composi-
tion ©;...0, to the variables of G, where 61,...,8, is the sequence of substitu-
tions used in a GDFC-Refutation of PU{G} w.r.t. LE". : "
DEFINITION 4.7 (Failed GDFC-Derivation):

A failed GDFC-derivation is one that ends in a non-empty goal with the
property that none of the rules 1-4 can be applied to the selected element. B

54 CHAPTER 4. GDFC-RESOLUTION

Our next goal is to show that there is a strong relationship between the
meta-interpreter for goal directed forward chaining and GDFC-resolution.

LEMMA 4.8 (Simulation-Lemma):
Let P a definite program, LE" a finite link clause program for P and G be
a GDFC-goal <—Aj,..-,A;,...,An. Suppose A, is selected element in G and G’ is
derived from G via GDFC-resolution w.rt. Lf>"‘ using a clause CeP and a
substitution 6. Then we can simulate this derivation using the meta-interpreter
for goal-directed forward chaining (Program 2.1). n

Proof: All we have to do is to show that, for each derivation rule in our
calculus, there is a corresponding clause in the meta-interpreter. It should be
noted that, even if it is not explicitly expressed by the code, the mgu’s com-
puted at every reduction step the meta-interpreter performs are simultaneously
applied to all literals of the actual goal.

Suppose the selected element A; is an atom and we apply Rule 1 using a
fact B« in P with the property that B and A; are unifiable. We derive G’ from
G by removing A; and applying 6=mgu(B,A;) to the resulting goal. Consider
the third clause which is

gdfc_solve(B)«
clause(B,true)

This clause means that we can drop the selected atom if there is a unifying
fact. Thus, it directly corresponds to Rule 1.

Now suppose Aj is an atom and we apply Rule 2 using a fact B« in P for
which there is an answer 0 for LE"U{«link(B,A;)}. By means of Rule 2 we
obtain G’ from G by replacing A; by the subgoal-goal pair <B,A> in G and

applying 0 to the resulting goal. The fourth clause of the meta-interpreter is

gdfc_solve(A)«
clause(B,true),
link(B,A),
subgoal(B,A)

It allows us to replace a selected goal A by a goal subgoal(B,A), if B is a
possibly relevant fact for A. Consequently, this clause implements Rule 2.

4.1. THE RESOLUTION STRATEGY 55

Next suppose A; is a subgoal-goal pair <A,A’> and P contains a non-unit
clause B«B;,...,Bx such that A and B, are unifiable with mgu 63, and B6; and
A’ are unifiable with mgu 6. In this case we obtain G’ from G applying Rule 3:
we replace <A,A’> by By,...,By and apply 6 to the resulting goal. Now con-
sider the fifth clause which has the form

subgoal(A,B)«
clause(B,(A,Body)),
gdfc_solve(Body)

By means of this clause we can replace a goal subgoal(A,B) by the re-
maining literals of a clause after the head has been reduced with B and the
leftmost body literal has been reduced with A. Clearly, this clause implements
Rule 3.

Finally suppose that A; is a subgoal-goal pair <A,A’>, P contains a non-
unit clause B«Bj,...,Bx such that A and B; are unifiable with mgu 6;, and
there is an answer 6 for Lg"u{e—link(Bel,A’)}. In this case we apply Rule 4
and derive G’ from G replacing the subgoal-goal pair by Bo,...,Bx,<B,A’> and .
applying 0 to the resulting goal. The last clause of the meta-interpreter is

subgoal(A,B)«
clause(C,(A,Body)),
link(C,B),
gdfc_solve(Body),
subgoal(C,B)

We apply this clause whenever the head of a non-unit clause, the leftmost
body literal of which is unifiable with the already deduced subgoal A, is pos-
sibly relevant to solve B. Then, additionally to the body literals starting with
the second, the atom subgoal(C,B) is added, where C is the head of the selected
clause. Consequently this clause realizes Rule 4.

Since the unifications we compute in each derivation step are the same as
those computed in the corresponding computation of the meta-interpreter, the
derived goals must be variants.]

The previous lemma expresses the relationship between one-step deriva-
tions of GDFC-resolution and Program 2.1. The following theorem general-
izes this result to arbitrarily long derivations.

56 CHAPTER 4. GDFC-RESOLUTION

THEOREM 4.9 (Relationship between Program 2.1 and GDFC-Resolution):
Let P be a definite program and G be a definite goal. Then every GDFC-
derivation of PU{G} w.r.t. LE" can be simulated by a corresponding compu-

tation of Program 2.1. |

Proof: The proof for this theorem is straightforward. For each deriva-
tion with length n>1 we can construct the corresponding computations of
Program 2.1 by repeated applications of Lemma 4.8. n

As well as for SLD-resolution we can define GDFC-trees.

DEFINITION 4.10 (GDFC-Tree):

Let P be a definite program and G be a definite goal. A GDFC-tree for
PU{G} w.r.t. Li"is a tree satisfying the following conditions:

1) Each node of the tree is a (possibly empty) GDFC-goal.
2) The root node is G.
3) Let G’=¢Ay,...,A;...,A; (n21) be a node in the tree and suppose A;
is the selected element. Then, for each GDFC-resolvent G” derived
from G’ using the four derivation rules, G’ has a successor node G”.
4) Nodes that are the empty clause have no children.]
Each GDFC-derivation corresponds to a branch in the GDFC-tree which
comes from the same selection function. Whereas refutations correspond to
branches ending with the empty clause, failed derivations have branches with a

non-empty goal as last node. Infinite derivations, however, correspond to in-
finite branches.

EXAMPLE 4.11 (GDFC-Tree):

Let us again consider the program specifying the reflexive and transitive
closure of a graph:

4.1. THE RESOLUTION STRATEGY 57

pX,X)e (&)
p(X,Z)(—e(X,Y),P(Y,Z) (CZ)
e(a,b)«— (C3)

LEn contains only one link clause, namely

link(e(X,Y),p(X,Z)) <~ (L1)

Figure 4.12 shows the GDEFEC-tree for G=<p(X,b) w.r.t. Llf>i“ coming
from the computation rule which always selects the leftmost element. A label
‘Rule i (C, L)’ of an arc is interpreted as follows: G’ can be derived from G
applying Rule i with input clause C and link clause L. Whenever Rule 1 resp.

Rule 3 is applied, no link clause is needed. (]
«p(X,b)
Rule 1 (Cy) Rule 2 (C3, L)
O «<e(a,b),p(a,b)>
{X=b}
Rule 3 (Cy)
<p(b,b)
Rule 1 (Cy)
O
{X=a}

Fig. 4.12: GDFC-tree for «p(X,b)

Note that this tree is smaller than the SLD-tree we obtain using the left-
first selection function (see Figure 4.13). The SLD-tree additionally contains
one failure branch. Hence, in a situation in which the complete tree has to be
traversed GDFC-resolution would be more efficient than SLD-resolution. A

58 CHAPTER 4. GDFC-RESOLUTION

detailed discussion of efficiency aspects is the main subject of the two follow-
ing chapters.

«p(X,b)
C C
O «—e(X,Y),p(Y,b)
{X=b}
fit
«p(b,b)
C 1 C2
] «e(b,Y),p(Y.,b)
{X=a} failure

Fig. 4.13: SLD-tree for <—p(X,b)

4.2 Soundness and Completeness of GDFC-Resolution

Our next goal is to show that GDFC-resolution is sound and complete for
definite programs. For the sake of simplicity we often consider a fixed selec-
tion rule only. As the following lemma shows, we do not lose any solutions by
this restriction, since, independently from the computation rule, we always
find a refutation if PU{G} is unsatisfiable. We obtain this result by an exten-
sion of the switching lemma for definite goals [46] to GDFC-goals.

4.2. SOUNDNESS AND COMPLETENESS OF GDFC-RESOLUTION 59

LEMMA 4.14 (Independence of the Computation Rule):

Let P be a definite program and G be a definite goal. Suppose there is a
GDFC-refutation of PU{G)} w.r.t. LE" with computed answer 6. Then, for any
computation rule R, there exists.a GDFC-refutation of PU{G} w.r.t. LE" via R

with computed answer 6” such that G’ is a variant of G6.]

The following lemma illustrates the structure of GDFC-refutations. The
proofs of soundness and completeness of GDFC-resolution are mainly based on
this structure.

LEMMA 4.15 (Structure of GDFC-Refutations):

Let P be a definite program and G be a definite goal. Let Cy,...,C, be the
sequence of input clauses used for the refutation of PU{G}. Then there is a
subsequence Dy,...,D; (1=r<n) of Cy,...,C, such that the following conditions
hold:

1) Dy is a unit clause Bj« with D1=Cy,

2) Djis a non-unit clause Bj«Bjj,...,Bim; (mi=1) such that B;.;, which
is the head of Dj.1, and B; ; are unifiable, for each i€ {2,...,r}, and

3) the head of D, and the selected atom of G are unifiable.

Proof: Suppose Ay is the selected atom in G. Following the definition of
GDFC-resolution which says that we can use apply either Rule 1 or Rule 2 in
the first derivation step we have to distinguish two cases.

Suppose Rule 1 is applied. Thus C; must be a unit clause Bi¢— such that
B; and Ay are unifiable. In this case the first and the third condition are simul-
taneously met and we set r=1 and D;=C;.

Next suppose Rule 2 is applied. Thus C; is a unit clause Bj<— which is
possibly relevant for Ay so that Ag is replaced by a subgoal-goal pair of the
form &Bj,Ax>0. Clearly C; satisfies the first condition and we set D;=C;j.
Since PU{G]} has a refutation, it must be possible to eliminate this subgoal-
goal pair. Definition 4.3 implies that this can only be done by a finite number
of applications of Rule 4 and one application of Rule 3.

60 CHAPTER 4. GDFC-RESOLUTION

Suppose we need m>0 applications of Rule 4 which always produce sub-
goal-goal pairs of the form <A,A;>8 where 8 is the composition of the substi-
tutions computed so far and A6 is an instance of the head of the input clause
used 'do generate it. If such a subgoal-goal pair is selected, then the leftmost
body literal of the next input clause must be unifiable with A6. Consequently
both input clauses satisfy the second condition. We now set r to m+2. If
D,...,Dms1 are the input clauses used for these m derivations then Dy,...,Dr.;
satisfy the second condition.

Definition 4.3 implies that in the last step, when Rule 3 is applied, the
head of the (m+2)-th input clause additionally must be unifiable with Ayxy
where 7 is the composition of the substitutions computed so far. Let D, be the
clause used in this step. Clearly D; satisfies the second and the third condition.
Consequently, Dy,...,D; is a sequence of the desired form. L]

THEOREM 4.16 (Soundness of GDFC-Resolution):

Let P be a definite program and G be a definite goal. Each answer for
PU{G)} w.r.t. LE" computed by a GDFC-refutation is correct.]

Proof: We show by induction on the length n of the GDFC-refutation of
PU{G} w.r.t. Li" that, for each computed answer 0, there is a corresponding
SLD-refutation of PU{G} which computes an answer 7y such that Gy subsumes
GO. Furthermore we show that both refutations have the same length and that
the same input clauses are used to compute them. The GDFC-refutations con-
sidered in this proof are based on the computation rule which always selects
the subgoal-goal pair, if one exists, and the leftmost atom otherwise. An appli-
cation of Lemma 4.14 yields the desired result.

Suppose n=1. Then G must be a single literal goal <~ A. Lemma 4.15
implies that P must contain a unit clause B« such that B and A are unifiable
with mgu 0 so that Rule 1 can be applied. Consequently we can also use B« in
a corresponding one-step SLD-refutation of PU{<A}. If y is the answer com-
puted by the SLD-refutation, then GO and Gy are variants.

Next suppose the result holds for all GDFC-refutations with maximal
length n-1, and G is «~A,Ay,...,An (m21). Clearly A; is selected first, since
G contains no subgoal-goal pair. .

4.2. SOUNDNESS AND COMPLETENESS OF GDFC-RESOLUTION 61

It follows from Lemma 4.15 that P must contain 121 clauses D;,Ds,...,D;,
such that D; is a unit clause of the form B«, the head of D; is unifiable with
the first body literal of Dj., for i=1,...,r-1, and the head of D; is unifiable
with Ay, re {1,....k}.

We distinguish two cases. If r=1 then P contains a unit clause so that we
apply Rule 1 to derive G which is

(—(Az,‘ 5= ,Am)61
Clearly we can use the same unit clause as input clause in an SLD-refuta-
tion which yields a variant of Gj. It follows from the induction hypothesis, that

each answer for PU{G1} computed by a GDFC-refutation is correct.

On the other hand, if r>1 then Lemma 4.15 implies that D; is a unit
clause B« for which there is an answer 6; for Lg"u{e——link(Bl,Al)} so that

we apply Rule 2 producing G; which is
«—(<B1,A1>,A2,...,An)01
Since the computation rule always selects the subgoal-goal pair, we next
use the non-unit clauses Ds,...,D; as input clauses. Suppose each D; has the
form Bij<Bi1,Bi2,...,Bim;, for i=2,...,r. Thus, if Gj (1<i<r-2) is
«(B22,..-,B2,mzs---sBi2s-- - Bim<Bi,A1>,A2,...,Am)0;
we use Di,1 as input clause and apply Rule 4 to derive Giy; which is
«—(B22,..,Bimi-Bit1,2,-- -, Bir 1 mis,<Bis1,A1>,A2,...,Am)Bin1
Finally, if the actual goal, Gr.1, is
«(B22;----B2.mzs---sBr1,2:- - - Br-1me15<Br- LA, Az, ., Am)Or.1
we use Dy applying Rule 3 to derive G, which has the form
—(B2.2s-.-,B2ampsi - Br125- - Br1mr1:Br2s- - :Brymes A2, ..., Am) By
We now will construct a corresponding SLD-derivation which is based on

the left-first computation rule. Since the head literal of Dy is unifiable with A;
by mgu Y1, we can use D; as first input clause. Furthermore, the structure of

62 : CHAPTER 4. GDFC-RESOLUTION

the GDFC-derivation and the construction of Dy,...,D; imply that we can use
D,.1,...,D1 as the next input clauses. Consequently the r-th goal Gy is

«(B22,... ,B2.m2:B32,... B3 m3y-ce s Br 2y BrmpA2,... Am)Ye
where 7; is the composition of the substitutions computed so far.

Since the answers for the link goals used in the first r steps of the GDFC-
derivation possibly produce additional substitutions, G must be an instance of

Gr.

It follows from the induction hypothesis that each answer computed by a
GDEC-refutation of PU{G;} is sound. Thus, each answer computed by a
GDFEC-refutation of PU{G} must be sound too. It furthermore follows that
both refutations have the same length and that the same input clauses are
needed to compute them. ™

Additionally to the soundness result a further desirable property of refu-
tation procedures is completeness.

THEOREM 4.17 (Completeness of GDFC-Resolution):

Let P be a definite program and G be a definite goal. Then, for each cor-
rect answer 0 for PU{G}, there is an answer y computed by a GDFC-refuta-
tion of PU{G} w.r.t. Li" and a substitution ¢ such that 6=yc. (]

Proof: By induction on the length n of the refutation we show that there
is an answer y computed by a GDFC-refutation of PU{G} w.r.t. L™ and a
substitution & for each answer © computed by an SLD-refutation of PU{G}
such that @=yo. This GDFC-refutation needs the same number of steps and uses
the same input clauses as the SLD-refutation. Throughout this proof we assume
that the computation rule used for the SLD-refutation always selects the left-
most literal.

Suppose n=1. In this case G must be a single literal goal <~ A and P must
contain a fact B« such that A and B are unifiable with mgu 6. Clearly we can
apply Rule 1 with B« as input clause in a GDFC-refutation of PU({G}.
Consequently, if y is the answer computed by the GDFC-refutation then 6 and
Y are variants.

4.2. SOUNDNESS AND COMPLETENESS OF GDFC-RESOLUTION 63

Next suppose the result holds for all SLD-refutations with maximal length
n-1. Suppose. G is «~A1,As,...,An (1m<n), G=Gy,....G,=0is the sequence of
goals, and C;,...,C; is the sequence: of input clauses used for an SLD-refutation
of PU{G} with length n.

Let us consider -the. elimination of A;; that is the ‘SLD-refutation of
PU{«A,} with length ke {1,...,n}. Suppose C; (1<r<k) is the first.unit clause
in the sequence of input clauses, i.e., r=min{j | Cj is a unit clause}. Thus, G; is
the first goal in the sequence of goals which is shorter than its predecessor.
Clearly Cy,...,C; satlsfy the followmg conditions:

1) The head of Cy: and Ay are un1f1able with mgu 91

2) . Cj.is a non-unit clause Bi« B 1,. Bjm; (mj21) such that B;j; and
Bi.+1, which is the head of C,+1, are umflable with mgu 6;,,, for each
vd€fids, etz)s '

3) C;isaunit clausc.

We dlstmgmsh two cases. Flrst 1f r=1 then C; is a unit clause B1<—— such
that By and A; are unifiable with mgu 8;.' Hence Gy is -

("(AL---,Am)e}
Second, if r>1 then G, is . . -
(_"(Br~1,2v~~-vBr-’l,mr.l,BrQ,Z,'--,Br-Z,mpzy---,Bl,z,»--,Bl,mpAZv-'--,Am)elu-er
- We now will construct a GDFC-derivation which uses the same number
of steps and the same input clauses to derive a variant of G;. For the sake of
simplicity we use the computation rule which always selects the subgoal goal
pair or the leftmost literal if no. subgoal goal pair exists.
If r=1 we also use C; applying Rule 1 to derive |

(—(Az,. £ ,Am‘)'Yl 4.

. Clearly vy, and 6, are variants.,

. Now suppose r>1. From the construction of Cy,...,C; and the definition of
Lp" it follows, that there must be r-1 link clauses in L“" which subsume those

64 5004 " CHAPTER 4. GBFC-RESOLUTION

computed from Cj,...,Cr.1. Consequently, there are answer substitutions A; for
LU (e link(B;,A1)} (i=2,...,r) which do not produce unnecessary substitu-
tions. This means that we obtain no superfluous variable-bindings using these
answers.

. Starting with G we can use use C,=B« and apply Rule 2 to derive the
GDFC-geal

('_(<BI'1A]>9A2’~ o vAm)Yl

with y1=A,. Because of the selectien function we subsequently always re-
place the subgoal-goal pair. Consequently, if the actual goal is

(;—(Br-i.Z,- v .Bf.lm,_l,. 5 ,Bj_z,. % ,B;‘mi,<Bi,A[>,A2,< o ,Am)“{l oo Yr-it1

for i=r,...,3, we can apply Rule 4 using C;, as input clause and A;.; to
derive

—(Br.1.2,-- - Br-tmero- - Bict 20 - Bict micts <Bict, A1> Ags . AmMYh-- Yreiv2
Finally;ﬂ'f i=2 and the actual-goal is
—Br12,e-- Brtmeise--sB2.2 s B2,m2<B2,A1>A2,. .., AmWa- - Vet
-we_can apply Rule 3 using-C; to derive G¢-which is
—~(Br-1,2,--Brimeise- - B1.25e - Bim-Azc AmWi Y

Since the substitutions obtaimed as answers for the link goals produce ne
unnecessary variable bindings, G; must be a variant G,. It follows from the in-
duction-hypothesis that each answer for PU{G,} computed using SLD-resolu-
tion can also be computed using GDEC-resolution. Consequently, for each an-
swer O computed by an SLD-refutation of PU{G]} there is an answer y com-
puted by a -GDFC-refutation of PU{G} w.r.t. L{:‘“ and a substitution ¢ stech
that ©=yo. Furthermore, both refutations have the same length and the same
input clauses are used to compute them. -

Both results presented above are summarized by the following theorem.

4.2. SOUNDNESS AND COMPLETENESS OF-GDFC-RESOLUTION 65-

THEOREM 4.18.(Soundness and Compléteness on GDFC—,—Re{soluti'on)V: :
GDFC-resolution is sound and complete for definite logic progre{rﬁs. n

In Chapter 3 we présented an approach to obtain a finite: number of link
clauses by renaming variables in Linkp. In this context the question came up
whether or not this operation, which leads to more ‘general link clauses in the
transitive closure, is admissible. The previous theorem shows.that indeed the
generalization of the link clauses has no influence on the operational semantics
of GDFC-resolution.

In the remaining part of this dissertation we often speak about corre-
sponding refutations which, in contrast to the GDFC-derivations constructed
above, are computed via the left-first computation rule. The length and the
number -of such corresponding ‘refutations are: important in the following
chapter where we compare the efficiency of GDFC-resolution with: that of
SLD-resolution. To put the notion of corresponding refutations onto a more
formal level, we subsequently define two functions mapping a sequence of in-
put clauses used for a GDFC- resp. SLD-refutation to the sequence of input
clauses used for the corresponding SLD- resp. GDFC-refutation. .

Let us first consider how an SLD-refutation can be computed out of an
existing GDFC-refutation. Suppose G is <-Aj,As,...,An and Dy,...,D; are the r
clauses satisfying the conditions defined in Lemma 4.15 concerning the struc-
ture of GDFC-derivations. Suppose' each Dj, 1<i<r, has the form
Bj<-Bi 1,...,Bim; and the computation rule always selects the leftmost element.
Clearly we first use D; as input clause in the GDFC-derivation to derive G,
which is

(B A i S
After that D, is used as input clause which results in the goal
«—(B22,...,Bomy,<B2,A1>,A,...,An)02,
Subsequently the literals left from the subgoal-goal pair are eliminated,

before we replace the subgoal-goal pair using D3. Suppose Q is the sequence
of input clauses used to eliminate (B22,-.,B2,m2)02. Thus Gigyi2 s

—(<B2,A1>,Ag,...,An)0IQ1+2

66 : “CHAPTER 4. GDFC-RESOLUTION

where i+ denotes the composition of the substitutions computed so far.
Generally, Di;; can be used as input clause whenever <B;,A;> is selected
(1<i<r-1). ;

For each i€ {2,...,r-1}, we denote-the possibly empty sequences of input
clauses used between D and'D;,; by Qi. Furthermore, let Q; be the sequence of
input clauses used between D;-and the input ‘clause used at the moment where
A, is selected. Hence,Q; contains the sequence of input clauses used to elimi-
nate the elements coming fromB;»,...,Bim; fori=2,...,r. Suppose Z; is 0 and
T is1Qyl+... +Qy, fori=2,...;r. ik, KOuL el 18 : :

Thus, if Gg;4i is

.(—(<BivAl>’A2r--vAm)e£i+i

for i=1,...,r-2, we use Dj,; as input clause applying Rule 4 to derive
GZ;+i+l which is ' g !

—(Bis+12,- . --Bis1.miy1-<Bis1,A1>,A2,. . ;AR)Oziin1

However, if i=r-1, i.e. the actual goal is Gy jy+r-1, We apply Rule 3 using
D; to derive Gy py+r Which has the form ;

(;(Br.2o-~ . ,Br.mpAZ, - ,Am)ef(r-lyr
Whenever 1<i<r-2 and Gg4is1 is
—(Bis12,-.-sBis1.mis1,<Bis ,A1>,A2,.. . ,Am)O5i4is1

we use the clauses contained in Qj41 to eliminate the elements coming
from Bi;1.2,...,Bit1,mis1 SO that G&i+1)+i+l is

—(<Bis+,A>,Ag,... 9Am)92(i+1)+i+l
However, if i=r-1 and Gg;4i+1=Gg.1y4r 1S
(_((Bf.Zv .s aBi‘.mr,A29~ .o ,Am)e}‘(r.i)-d-r

we use the sequence Q; so that Gy, is

(A2, ,Am)Brac

4.2. SOUNDNESS AND COMPLETENESS OF GDFC-RESOLUTION 67

Let Q;; represent input clause j in sequence Q;. Then by our construction
the sequence of input clauses is

D1,D2,Q2,15..-,Q2,02,03,Q3,1,-..,Q3,Q31,- . - -Dr,Qr, 15 -, Qr

Figure 4.19 gives a more detailed illustration for this GDFC-derivation.

Input clauses | Derived Goals
«—ALA,...,.An
D1=C1 (—(<B1,A1>,A2,...,Am)61v
D,=C, —(B22,...,Bomy,<B2,A1>,Ag,...,An)0;
Q2,1 :
Q2.|Q2| (-—(<B2;A1>7A2,' .o rAm)622+2
D3 «(Bsp,...,B3,m3,<B3,A1>,Ag,...,An)05043
Q3,1 :
Dr.1 —(Br125+ s Br1,me1,<Br-1:A1>A2,...,Am)0s 2)4r-1
Qr—l,l :
Qr-l,lQ(»ll (_(<Br—l,A1>;A2, ces ,Am)ez(r-l)ﬂ-l
D «(Br2,-...BrmpA2,.e. ,Am)e):(,.1)+r
Qr,l :
Qrio=Cx —(A2,...,Am)O54r

Fig. 4.19: A GDFC-derivation

The proof of Theorem 4.16 implies, that we can use a sequence R; of in-
put clauses, which is a permutation of the clauses contained in Q;, to compute a
corresponding SLD-refutation of PU{«(Bip2,....Bim)0z;y+i}, for each
i€ {2,...,r}. Consequently, the concatenation of the sequences Ry,...,R; gives us
the order, in which the input clauses have to be used to eliminate the literals of
the goal

(_(B2,29' e 7B2,m27B3,29' Q0 ,BS,m3,~ UG 9Bl,2v‘ oe vBr,mr)YI

68
CHAPTER 4. GDFC-RESOLUTION

Thus, the corresponding SLD-derivation via the left-first computation

rule, which is illustrated in Fj y
Pl ustrated in Figure 4.20, uses the following sequence of input

D;,Dr.g,...,Dy JRoo R2,Q2R3 1,... RriQd

Input clauses | Derived Goals
«—ALA,..., Ay
gr (_(Br,l ,Br,2, “ee ,Br,mpAZv .. sAm)Yl
i T-1 ‘(-(Br-l,Zv-~aBr-l,mr.lyBr,Z,-~-sBr,mr,A2y-~~,Am)'Y2
gZ (“(32,1sB2,2,~ . ,B2,m23~ . ,Br,2»~ . ,Br,mpAZv .. yAm)'Yr—l
1 (St
R2‘1 E (2,2!-“7B2,m2y'-"BI,Z)'-"B[,mr’A23--' ,Am)Yr
FZ,IR2I <(B32,....B3ms,....Br2,... . Br Ay, ... Am)Yeor
Rr-l,er.ll (“(Br,2,- -sBrmpAg,... ,Am)'YZ(r,l)ﬂ
Rp; :
ReRy (A% A)

Fig. 4.20: The corresponding SLD-derivation
This leads us to the following definition.

DEFINITION 4.21 (Corresponding SLD-Refutation):

Singltfl;;:g;se Ll;lss f I;1ef1n1te program and G is a definite goal consisting of a
e G ? = 1,D2,.Q2,D3,Q3,...,D,,Qr be the sequence of input clauses
ogna I?C-refutanon of PU{G} via the left-first computation rule
W.L.L, Lp" as fiefmed above. Then the corresponding SLD-refutation of PU{G
via the left-first computation rule uses the same input clauses in th :
el n the order

fSLD(S) - S, 1=
{Dr’Dr-l,---,Dl,fSLD(Qz),fSLD(Q3),~.-,fSLD(Qr), otherwise. m

4.2. SOUNDNESS AND COMPLETENESS OF GDFC-RESOLUTION 69

Next we demonstrate how to compute a GDFC-refutation out of a given
SLD-refutation. Let us consider the proof of the first literal of the goal
—Ai,...,An. If we apply the left-first computation rule and G; is the first goal
which is shorter than its predecessor, i.e., C; is the first fact in the sequence of
input clauses. Suppose each Cj, 1<i<r, has the form Bj«<Bi,...,Bm;. Then the

r-th goal Gy is
(_(Br-1,2s- .. 9Br-1,mx-l’Bl’-2,2!' .. ,Br-2,m,‘2,~ . 1B1,2s' .. ,Bl,mpA2s- .. aAm)el cee er

Since we use the left-first computation rule, the atoms of this goal are
eliminated from left to right. Suppose Q. is the sequence of input clauses used
to eliminate all literals coming from (Br.i2,...,Brim.)01...0z¢.1y4r (i=1,...,1-1),
where Zo=0 and Z;=IQy.11+...+1Qcl, for i=1,...,r-1. Consequently Gy 1y4r i8

(Bri2s--sBrimpise--sB1.25+--:B1,m1:A250 -, Am)O1.. . 05651y
for i=2,...,r, and Gz yy4r iS
—(A2,...,An)01...05¢ 1y
The complete sequence of input clauses needed to derive Gz py4r 1S
(@ G 01 10

Now the corresponding GDFC-derivation which is also based on the left-
first computation rule can easily be constructed. It follows from the proof of
the completenzss result, that we can use the sequence R; of input clauses, which
is a permutation of the clauses contained in Q;, to eliminate all literals coming
from (Br.i2,...,Brim.i)01...054 1)+, for €ach ie {1,...,r-1}. Lemma 4.15 which
concerns the structure of GDFC-refutations implies that we can use C; as first
input clause. Next we successively use Cj.; followed by Rj., for J=F A
Consequently, the whole sequence of input clauses needed to eliminate the first

literal of G is

Cncr-l 9Rl’- 1 QCI’-21RI‘2’ LEX :C 1 le

This leads to the following definition.

70 CHAPTER 4. GDFC-RESOLUTION

DEFINITION 4.22 (Corresponding GDFC-Refutation):

Suppose P is a definite program and G is a definite goal consisting of a
single atom. Let S=Cj,...,Cr,Qr-1,...,Q1 be the sequence of input clauses used
for an SLD-refutation of PU{G} via the left-first computation rule as defined
above. Then each corresponding GDFC-refutation of PU{G} via the left-first
computation rule w.r.t. LA™ uses the same input clauses in the order fgprc(S),
where

fGDFC(S) - {S, lf I‘=1 !
Cr,Cr1,fGprc(Qr-1),Cr-2,f6DFc(Qr-2)s - - -,C1,fGDEC(Q1), otherwise. m

Both functions defined above allow us to compute sequences of input
clauses used for SLD-refutations out of given GDFC-refutations and vice
versa. The proofs of Theorem 4.16 and Theorem 4.17 imply that both func-
tions are defined for all sequences of input clauses used in a refutation.

We conclude this section presenting a theorem concerning the relationship
between both functions for the computation of corresponding sequences of in-
put clauses. The proof is straightforward. It can be done by induction on the
length of the refutation.

THEOREM 4.23 (Relationship Between fsip and fgprc):

Suppose P is a definite program and G is a definite goal consisting of a
single literal. Suppose the computation rules used for SLD- and GDFC-resolu-
tion always select the leftmost element. Let S be the sequence of input clauses
used for an SLD-refutation of PU{G} and S’ the sequence of input clauses
used for the corresponding GDFC-refutation of PU{G} w.r.t. LA™, Then the
following two equations hold:

S = fsLp(feprc(S))
S’ = fgpre(fsLp(S7))

Informally spoken, fsp is the inverse mapping of fgprc and vice versa. ®

4.3. SUMMARY 7

4.3 Summary

In this chapter we introduced goal-directed forward chaining as a linear
resolution strategy. We showed that the meta-interpreter for goal-directed
forward chaining implements GDFC-resolution. We proved that GDFC-reso-
lution is sound and complete for definite logic programs (Theorem 4.18).
From a practical point of view this means that every answer obtained by a
GDFC-refutation procedure is correct and that a GDFC-refutation procedure
with a fair search rule eventually finds every success branch in a GDFC-tree.
We introduced the notion of corresponding refutations which are based on the
left-first computation rule. We defined two functions mapping a sequence of
input clauses used for a GDFC-refutation to a sequence of input clauses used
for the corresponding SLD-refutation and vice versa. We showed that each of
both functions inverts the other (Theorem 4.23). This result will be important
in the following chapter where we compare the efficiency of GDFC- and SLD-
resolution.

Chapter 5

EFFICIENCY OF GDFC-RESOLUTION

The goal of this chapter is to analyze the efficiency of GDFC-resolution.
For that purpose we compare the number of inferences needed by GDFC- and
SLD-resolution to solve a goal. The first section compares different properties
of SLD- and GDFC-trees. The results presented there are mainly based on
Section 4.2 where we showed that GDFC-resolution is sound and complete for
definite logic programs and introduced the notion of corresponding refuta-
tions. The second section compares the average case complexity of SLD- and
GDFC-resolution for propositional binary Prolog programs. The third section
analyzes the efficiency of GDFC-resolution for taxonomic hierarchies. Finally,
the fourth section determines the efficiency of GDFC-resolution for the proce-
dures to compute the transitive and reflexive transitive closure of directed
acyclic graphs.

5.1 Corresponding SLD- and GDFC-Trees

In the previous chapter we defined GDFC-resolution as a linear resolution
Strategy. The problem of finding a refutation with linear resolution strategies
can also be viewed as a tree-searching problem [12]. The goal is to find one or
some or even all of the success branches in the corresponding search tree.
Consequently the comparison of the complexity of different resolution strate-
gies can be reduced to the question how fast a solution can be found in the cor-
esponding refutation trees. Clearly the efficiency of a strategy depends on the
Size of the refutation tree.

The strongest result of a comparison of GDFC- and SLD-resolution
Would be that one of both is more efficient than the other in every case. The
f0110Wing example, however, demonstrates that this is not true.

74 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION 5.1. CORRESPONDING SLD- AND GDFC-TREES
75

EXAMPLE 5.1 (Corresponding SLD- and GDFC-Trees): &p y a%io o ‘ : ety

Suppose the computation rule used by both strategies is left-first. Let us c
1

consider the following program and suppose the goal is «p. Rule 2 (C4,L4)

|
Rule 2 (Cs,Ls) “

peq.r (Cy) | —qr | _

qés ; ‘ () ‘KS’P> i «<t,p> I

qet (Cs) , “

e (€9 @/ NG Rue4(©L)| Rule4(Cly| |

te— (Cs) ;

\‘ : s vearlie Sty ¢ !

Suppose Lp contains the following link clauses: o ; : by «<q,p> ' I

A \] |

g link(q,p)¢— (L) g Cs Rule3(Cy Rule 3 (Cy) |

b link(s,q)¢ (L2) ‘
Tlink(t,q) (L3) £ er r | il |

link(s,p)¢ (La) failure il A O fail ; . i

link(t,p)< (Ls) ‘ ailure ‘ failure . ‘

gical consequence of this program. Hence SLD-reso-

Clearly p is not a lo
complete SLD- re-

lution and GDFC-resolution w.r.t. Lp have to traverse the
spectively GDFC-tree. Figure 5.2 illustrates that the SLD-tree is smaller than

3 the GDFC-tree. e : ‘ l
i i . (__p g |
el . “

Fig. 5.2: Corresponding SLD- and GDFC-trees e J
!

Now consider the program C il
1 “\C2 . Rule 2(CaLy) i ‘

peqr - (&) | . g

| p<qst (&) : ~qr - Mk gy ‘ g , ‘ i}

: 3 \ 1 : ‘ |

i qe (C3)

c } ‘ . y \
Suppose the goal is «<—p and Lp is 2 G Rule 3 (Cy) Rule 3 (Cy) ‘
2 M
lmk(q,P)‘f“ (L]) 1 G 0 4 A Lo / . “‘
(—
|

failure failure failure failure \

Figure 5.3 shows that now the SLD-tree is larger than the GDFC-tree. ® '
sy
Fig. 5.3: Corresponding SLD- and GDFC-trees ‘

This example shows that there are situations in which SLD-resolution is
more efficient than GDFC-resolution and vice versa. Thus neither of both
strategies is always better than the other.

76 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

In order to analyze the relative merits of both strategies, we subsequently
compare different parameters which influence the size of the refutation trees.
From our point of view good candidates for such an analysis are:

o the length of success branches,

e the number of success branches,

o the length of failure branches and
e the number of failure branches.

The fact that one or more of these properties are smaller for one strategy
justifies the conjecture that this strategy on average is better than the other. In
the remainder of this section we therefore compare these parameters for
GDFC- and SLD-trees. We begin with the length of success branches.

COROLLARY 5.4 (Length of SLD- and GDFC-Refutations):

Let P be a definite program, L a finite link clause program for P and G
be a definite goal. For each SLD-refutation of PU{G} there is a GDFC-refu-
tation of PU{G} w.r.t. Lg" which has the same length and vice versa.]

Proof: The result follows immediately from the fact that every SLD-
refutation has a corresponding GDFC-refutation with the same length and vice
versa (Theorem 4.23). The application of the switching lemmata for SLD- and
GDFC-resolution yields the desired result. =

Next we consider the number of success branches in GDFC- and SLD-
trees. Their number, however, may be infinite. We therefore restrict attention
to non-recursive programs, because the refutation trees are finite for such
programs. The following example shows that there are situations in which the
GDFC-tree contains more success-branches than the SLD-tree.

EXAMPLE 5.5 (Number of Success Branches in SLD- and GDFC-Trees):

Consider the following program

q(a,a)¢ {C)
pX,Y)eq(X,X) (e7))
pX,X)e—q(X,Z) (G)

5.1. CORRESPONDING SLD- AND GDFC-TREES * 71
fin

Suppose the goal is <—p(X,Y) and Lp" contains the following link clauses

link(q(X.X).p(X,Y))e- L)
link(@(X.2).pX K))e= . L)

The refutation-trees coming from: the left-first computation rule are

shown in Figure 5.6 and 5.7 respectively. Whereas the SLD-tree only coritains

two success branches the GDFC-tree contains four: . Bk o |

<p(X.Y)

7N

«—q(X,X) «—q(X,Z) _
Cl C1

O
{X=a} {X=a,Y=a./7=a)

Fig. 5.6: SLD-tree for «p(X,Y)

If we consider the GDFC-tree we realize that it contains success branches
with redundant answers, i.e., answers which are subsumed by answers dis-
played at the end of other success branches. These redundant proofs come
from multiple answers for the goal «link(q(a,a),p(X,Y)). We can use either
L; or Lj to compute an answer. However, using L, we obtain a redundant an-
swer which is subsumed by the answer obtained using L;. Generally, the
source for redundant answers for link goals are link clauses which have a
common instance. A special case of this situation has already been discussed in
Section 3.2 where we suggested to remove link clauses which are an instance

of another. This approach, however, cannot be applied in the example above,

because none of both is an instance of the other. One solution to this problem
could be to replace all link clauses which have a common instance by their
most specific generalization also denoted as the lowest common anti-unificator.

78 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

An algorithm to compute the lowest common anti-unificator is given in [44].
Applying this approach to the example above we obtain the link clause

link(q(X,Y).p(X,Z2))¢

A disadvantage of such a transformation could be that it further reduces
the selectivity of Li". The weaker selectivity, however, has a negative effect to
the efficiency of GDFC-resolution, since it may increase the number of rele-
vant clauses and this way may produce additional failure branches in the
GDFC-trees.

«p(X,Y)
Rule ZV WCM&)
«<q(a,a),p(a,Y)> «<q(a,a),p(a,a)>
Rule 3 ((/ \we 3 (Cs) Rule 3 (Cg/ \ule 3 (Csy)
{X=a} [X—a Y=a} {X-—a Y=a} {X—a Y=a}

Fig. 5.7: GDFC-tree for «p(X,Y)

In the context of propositional programs, however, Lp is finite and all
link clauses in Lp are ground. Therefore, there are no link clauses which have
a common instance. Since the link goals generated during the inference process
are ground, we cannot obtain more than one answer for any link goal.
Consequently, there are no redundant answers for link goals.

COROLLARY 5.8 (Number of Success Branches in SLD- and GDFC-Trees):
Let P be a non-recursive propositional program and G be a goal. Then

each GDFC-tree for PU{G} w.r.t. Lp contains the same number of success
branches as each SLD-tree for PU{G]}.]

5.1. CORRESPONDING SLD- AND GDFC-TREES 79

Proof: Different success branches in SLD-trees differ in the sequence of
input clauses used to derive the empty clause. Since P is a propositional pro-
gram we have at most one answer for each link goal. Thus different success

- branches in a GDFC-tree also differ in the sequence of input clauses, and

Theorem 4.23 implies that there is exactly one corresponding GDFC-refuta-
tion for each SLD-refutation and vice versa. The switching lemmata for SLD-
and GDFC-resolution imply that the number of success. branches is indepen-
dent from the computation rule. Consequently, a GDFC-tree contains the same
number of success branches as an SLD-tree.]

Both results given above show that GDFC- and SLD-trees have the same
number of success branches and that, for each success branch in an SLD-tree,
there is a success branch in a GDFC-tree with the same length and vice versa.
In this context it is worth mentioning that both results are independent from
the computation rule.

Howeyver, the computation rule has great influence on the number and the
length of the failure branches and this way on the size of SLD-trees [46], and it
is clear that this is likewise true for GDFC-trees. Thus, in order to discuss the
last two topics of our list concerning failure branches we have to restrict our-
selves to refutation trees coming from a fixed computation rule. The results
concerning failure branches given below are based on the assumption that the
selection function is left-first. We begin with the length of failure branches and
consider a small example first.

EXAMPLE 5.9 (Failed SLD- and GDFC-Derivations):

Consider the following program:

a<b (Cy)
be-c,d (&)
Ce— (G3)
de—e ‘ ' (Cs)

Suppose G is <a, Lp is

link(b,a)¢«—
link(c,b)«
link(c,a)
link(e,d)«

80 : CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

and the selection rule is left-first. Since P contains no fact B« such that
link(B,d) holds, GDFC-resolution stops with failure when d is selected. SLD-
resolution additionally uses the first and fourth clause sothat GDFC-resolution
in this case detects failure earlier than SLD-resolution. Both finitely failed

trees for «<—a are contained in Figure 5.10. [
«a 4
C Rule 2 (C3)
«b «<c,a>
C, Rule 4 (Cp)
«c,d «d,<b,a>
failure
G
«d
Cy
«—e
failure

Fig. 5.10: Failed SLD- and GDFC-derivations

Example 5.9 demonstrates that failed GDFC-derivations may be shorter
than failed SLD-derivations. The following theorem shows that, for each failed
‘GDFC-derivation via the left-first computation rule, there is a failed SLD-
derivation via the left-first computation rule with at least the same length.

THEOREM 5.11 (Failed SLD- and GDFC-Derivations):

Let P be a propositional program and G be a goal. Suppose the computa-
tion rules always select the leftmost element. Then, for each failed GDFC-
derivation of PU{G} w.r.t. Lp with length Ngpgc, there is a failed SLD-
derivation of PU{G} with length Ns;p=Ngprc. []

To simplify the proof, we first give the following lemma.

5.1. CORRESPONDING SLD- AND GDFC-TREES 81

LEMMA 5.12 (Last Selected Element):

Let P be a propositional program and G be a goal. The last selected ele-
ment of each failed GDFC-derivation of PU{G} w.r.t. Lp, i.e., the selected
element of the last goal of each failed GDFC-derivation is an atom. |

Proof of Lemma 5.12: By contradiction. Suppose <A,B> is the last
selected element in a failed GDFC-derivation. Hence link(A,B) must be a logi-
cal consequence of Lp. Otherwise the subgoal-goal pair <A,B> could not be
generated. Since link(A,B) is true, P must contain a clause with leftmost body
literal A and head A’ such that either A’ equals B or link(A’,B) is a logical
consequence of Lp. Therefore, either Rule 3 or 4 can be applied and <A,B>
cannot be the last selected element.]

Proof of Theorem 5.11: By induction on the length Ngpgc of the
GDFC-derivation.

The inequality clearly holds if Ngprc=0. Nevertheless we show that Nsi.p
may even be strictly greater than Ngpgc. Suppose G is «—A1,A,,...,Aqy. Since
A1 is selected in the first step, P cannot contain a unit clause B« such that ei-
ther link(B,A) holds or B equals A;. If P contains no clause with head A; then
SLD-resolution directly fails. However, if P contains a set {Ey,...,Ey} (w>1)
of non-unit clauses such that the head of E; equals A; and the head of Ei,;
equals the first body literal of Ej, for i=l,...,w-1, but there is no clause the
head of which equals the leftmost body literal of Ey,, SLD-resolution needs w
steps.

Now suppose the result holds for each failed GDFC-derivation of maxi-
mal length Ngprc-1. Suppose G is <Aj,As,...,An and Ax (15k<m) is the left-
most literal whose evaluation fails. Suppose GDFC-resolution needs s steps to
derive G which is

(——Ak,. o8 ,Am

Let us consider the failed derivation of PU{Gs}. We distinguish two
cases. First, there is no fact B« in P such that either link(B,Ay) holds or B is
unifiable with Ay. This case is similar to that discussed in the induction hy-
pothesis. Whereas GDFC-resolution directly stops with failure, the failed SLD-
derivation possibly has length w>0.

82 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

Second, P contains a fact B« such that link(B;,Ag) is a logical conse-
quence of Lp. Note that B; must be distinct from Ay, since the proof of Ay
would succeed otherwise. Therefore, the failed derivation consists of a finite
sequence G, ...,Ggy (t22) of definite forward chaining goals with Gg, as last
goal. Since the last selected element is an atom, t must be greater or equal 2.
Suppose Cgi1,...,Cs4t are the input clauses used in this-derivation. Because
link(B;,Ax) holds, the sequence Cgy1,...,Csyt must contain r clauses Dy,...,D;
(1<r<t) such that D;=B;¢«, the head of D; equals the first body literal of Djy,
for i=1,...,r-1, and the evaluation of one of the body literals of D, fails. Let D;
be of the form Bi"“Bi,lsBila-“aBi,mi (miZD, for i=2,...,r.

Clearly Ggy1 is
«—<B1,Ax>,Axs1. ., An

Hence Cgy2=D2=B2¢-B71,B23,...,Bom; with B1=B, is used as input
clause so that Gg,2 is

(——BZ.Zv L0 9B2,m29<B2yAk>9Ak+l e e »Am
Since the computation rule always selects the leftmost element, next the
literals B »,...,B2 m, are eliminated. Suppose Q is the sequence of input
clauses used in this derivation. Consequently, after 1Qal steps, Ggiai+2 is
(_'<B29Ak>’Ak+1 gielee ,Am
Suppose Qj is the possibly empty sequence of input clauses used to
eliminate all elements coming from B;>,...,Bim; i.e., between D; and

Dj+1, (i=1...1-1). Let Q; be @ and Q; be the sequence of input clauses used
after Dy.

Whenever Ggiigi+i (i=1,...,r-2) is
(_<BiaAk>aAk+1a- .o 9Am
we use Dj,; as input clause to derive Gg.iqy+i+1 Which is

<Bit12;.-,Bis1,mis1:<Bis1,Ax>,Axs 150 ., Am

If i=r-1 we have to distinguish two cases. If B, equals Ay (Situation 1)
then we apply Rule 3 to derive

5.1. CORRESPONDING SLD- AND GDFC-TREES 83

(—Br,21-~~,Br,m;,Ak+l,-- "A.".!-
Otherv‘vise, we have Situation 2 aﬁd apply Rule 4 té defive
«B;>,... ,Br,,ﬁ,,éB,,Ak>,Ak+1,. i ,Am
For i=1,...,r-2, whenever the actual goal, GS+|Q,|+i;1, is
(“Bi+1.2v---’Bi+1,lﬁi+l’<Bi+l.Ak>“,Ak+1sl--,Am

we eliminate the first m;,;-1 literals using the clauses contained in Q41 to
obtain Gg41Q;,1+i+1 Which is

—<Bir,Ai>,Akits- .. Am

If i=r-1, GDFC-resolution independently from the situation uses the
clauses contained in Q; and stops with failure. Figure 5.13 illustrates this failed
GDFC-derivation of PU{G;)} in more details. The length of the complete
failed GDFC-derivation of PU{G} is

1§
Ngprc = s+r+2.1Qil
i=1

We now construct a failed SLD-derivation of PU{G}. Corollary 5.4
implies that there is a corresponding SLD-derivation of G needing the same
number of steps and the same input clauses as the GDFC-derivation con-
structed above. ' s 9

Let us consider the failed SLD-derivation of PU{Gy}. Since link(Dy,Ay)
holds, P must contain v>0 clauses Di=Bi¢Bi,1,...,Bim;, for i=r+1,...,r+v, such
By equals Ay, Bis1,1 equals B, for i=r+l,...,r+v-1, and B, ; equals By, i.e.
the head of D;. In Situation 1 we have B=Ay and v=0.

Consequently, starting with G5 we can use the clauses Dy, ...,Dyy; as in-
put clauses to derive the goal

B {1 B o, Bra it A B . By 2, F S Briv s Ak 1 4 oo Ay

84 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

Input clauses | Derived goals

(-'AkyAk'}-lv oo ,Am
Cs+l=Dl (—<B lsAk>’Ak+l gece ,Am
Cs42=D2 «B32,....B2m2.<B2,Ar>,Axs 15 5Am
Q2.1 :
Q2.Q2| ‘—<B29Ak>$Ak+lv oo ’Am
Ds «B32,...,B3m13,<B3,Ax>,Aks15- .. s Am
Q3.1 :
Dl‘-l (_'Bl‘- 1,250¢¢ 9Bl’-l,mr.1 ’<Bl’-l 1Ak>Ak+l seee 7Am
Qr1,1 : :
Ql'-l.lQr-ll (_<Br-laAk>vAk+h- --,Am
l)I' (_BT.Z!' (e aBl',mn<BrvAk>’Ak+1,- . -;Am
Qr.l :
Qrion :

failure

Fig. 5.13: Failed GDFC-derivation of PU{Gs} (Situation 2)

Since By, equals By and the head of D; equals the leftmost body literal of
Di.1, for each i€ {1,...,r-1}, Dg,Dy.1,...,D1 can be used as input clauses in the
next r steps. After that the actual goal is g

(_B2,2a' T 9B2,m2s- L ,Br,Zs- 4L ny,mrvBH-l,Zr* s, 9BI‘+V,mx+v7Ak+l’ oince ,Am

Corollary 5.4 implies that there is a corresponding SLD-refutation of
PU{<Bi2,....Bim;} using the same input clauses contained in Q; in a possibly
other order, for i=2,...,r-1. Let us denote the corresponding sequence for each
Q; used for the SLD-refutation by R;. The induction hypothesis implies that
there is a failed SLD-derivation, which uses at least all clauses contained in Qy,
for PU{«B;2,...,Brm,}. Since the last selected element is an atom, this corre-
sponding failed SLD-derivation may be w steps longer. This situation is simi-
lar to that discussed in the induction hypothesis. If we denote this correspond-
ing sequence by R; then the concatenation of the sequences Ry,...,R; gives us
the order in which the remaining input clauses are used before the derivation

5.1. CORRESPONDING SLD- AND GDFC-TREES 85

ends with failure. Note that IR//=IQ;+w. The corresponding failed' SLD-
derivation of PU{Gs} is illustrated in Figure 5.14. '

Input clauses | Derived Goals

(_AkvAk-l-l’ o -.,Am
Dr4v } <'—Br+v,ly---,Br+v,mr+v,Alg+l,n-,Am
Dra1 <‘.Br+1,1‘,- = ’Bl'+;1,l'ﬂr+1,Bl'+2,2v -eosBravimrevsAkilse . »Am ;
D; B 1,Br2,-.. Br.mpBre1,2,- - Brav,mevsAksls- - -»Am
D «B22,....BrmpBre1,2,. - Briv mpvsAkilse - ->Am
Ra2.1 :
R2 Ryl «B32,...,.BrmeBre1,2,- - :Bravimpsvs Akl - »Am
Rr-l ,|Rr.1| FBI‘,Z# (X3 ,Br,mnBHl ,2a O QBI‘+V,mr+v,A2, RO ’Am
Rr,i :
Ry R :

failure

Fig. 5.14: Corresponding failed SLD-de;rivation of PU{Gg}

Based on this construction we can estimate the number Nspp of input
clauses used in the failed SLD-derivation by

T r r
Noprc = s+1+ 2 |Qil < s+r+Y IRl < s+r+v+YIRjl = NsLp
i=1 i=1 i

since RJ=IQ+w (w20). -

Note that it may be the case that there is more than one such correspond-
ing failed SLD-derivation for a given failed GDFC-derivation. This is due to
the fact that there is possibly more than one sequence of input clauses we can
use to construct R; out of Q;. Furthermore, there may be different sequences
with the same properties as Dry,...,Dre1. Since there is exactly one answer for
any link goal generated in the derivation (‘yes’ or ‘no’), each failed SLD-

86 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

derivation can have at most one corresponding failed GDFC-derivation in the
context of propositional programs. The notion of corresponding failed deriva-
tions is specified more precisely in the following definition.

DEFINITION 5.15 (Corresponding Failed SLD- and GDFC-Derivations):

Suppose P is a propositional program and G is a goal. Then the relation
between corresponding failed SLD- and GDFC-derivations w.r.t. Lp via the
left-first computation rule contains all tuples (S,S’) where S and S’ are se-
quences of clauses contained in P satisfying the following conditions:

1) S has the form
Cl seee 9CSle 9D27Q29D31Q39- oo ’Dl'-lsQl'-l rDrsQr

and contains all input clauses used by a failed GDFC-derivation of
PU{G}) via the left-first computation rule w.r.t. Lp as defined in the
proof of Theorem 5.11.

2) S’ has the form
£sL(C1--.Cs)Drsvi- - Dre1,Dere -, D1ESLD(Q2), . FSLD(Qr1), Re
as defined in the proof of Theorem 5.11 where IR/ 21Q,l.]
The next two corollaries directly follow from the proof of Theorem 5.11

and the definition of corresponding failed derivations given above. The first
one compares the length of failure branches and the second one the number of

failure branches.

COROLLARY 5.16 (Length of Failed SLD- and GDFC-Derivations):

Let P be a propositional program and G be a goal. Suppose we always
apply the left-first computation rule. Then each failed SLD-derivation of
PU{G]} is at least as long as its corresponding failed GDFC-derivation of

PU{G} w.r.t. Lp.]

5.1. CORRESPONDING SLD- AND GDFC-TREES 87

COROLLARY 5.17 (Number of Failed SLD- and GDFC-Derivations):

Let P be a non-recursive, propositional program, G be a goal and suppose
we always apply the left-first computation rule. Then there are at least as many
failed SLD-derivations of PU{G} as failed GDFC-derivations of PU{G} w.r.t.
Lp. |

Figure 5.18 sums up the results obtained in this section. If we consider
non-recursive, propositional programs then, independently from the computa-
tion rule, number and length of success branches in GDFC- and SLD-trees are
equal. If we consider only such trees coming from the left-first computation
rule, then GDFC-trees contain at least as many failure branches as correspond-
ing SLD-trees. Furthermore, for each failure branch in a GDFC-tree there is a
failure branch in the corresponding SLD-tree which has at least the same
length. ‘

Topic GDFC < SLD
Length of success branches =
Number of success branches
Length of failure branches
Number of failure branches

IAIA Il

Fig. 5.18: Comparison of different tree properties for non-recursive
propositional programs

This result suggests that GDFC-resolution on average is more efficient
than SLD-resolution for propositional logic programs, because it can be ex-
pected that GDFC-trees are very often smaller than their corresponding SLD-
trees. From a practical point of view it is important to know whether there is
an inevitable overhead in an implementation of GDFC-resolution for proposi-
tional programs which could equalize the reduced number of inferences. The
crucial operation which could cause such an overhead is the evaluation of link
goals, i.e., the selection of possibly relevant clauses. For SLD-resolution pow-

erful compilation techniques are known, which allow an access of the proce- -

dure relevant for the actual goal in constant time [52]. But also for GDFC-
resolution the list of clauses relevant for a given atom or subgoal-goal pair can
be accessed in constant time. This is achieved by indexing schemes which are

88 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

based on the link clauses. For every atom resp. subgoal-goal pair, we store the
list of facts resp. non-unit clauses which are possibly relevant. In Section
6.2 we present an interpreter for goal-directed forward chaining (Program
6.7) which realizes such an indexing on the basis of the first argument index-
ing implemented in most of the commercially available Prolog systems.

The following sections of this chapter are concerned with the question
how much the number of necessary inferences needed with GDFC-resolution
to find one or all solutions of a goal differs from that of SLD-resolution.

5.2 Average Complexities of Propositional Binary Programs

The analysis of the average case complexity of a resolution strategy is a
complex problem, since it requires to argue about a possibly large class of
programs. In addition the result of such a study may be contestable from a
pragmatical point of view, because programs are considered which are irrele-
vant in practice. Both problems may be one of the reasons why ‘so far only
few theoretical work has been done on average complexity of algorithms in
logic’ [37]. From a theoretical viewpoint, however, analytical results concern-
ing the average complexity are important for several reasons. They help to
identify program classes in which a certain behaviour can be expected and they
can be used to explain a behaviour observed in practice.

To confirm our conjecture that GDFC-resolution on average is more ef-
ficient than SLD-resolution for propositional logic programs, we therefore
concentrate on cases where results for SLD-resolution have been achieved. We
consider tree-like, binary, propositional programs, analyze the average case
complexity of finding the first solution of a goal with GDFC-resolution and
compare it with the results presented by Kleine Biining and Lowen [37] for
SLD-resolution. The following definitions are partly taken from this publica-
tion. Throughout this and the following sections the notion complexity denotes
the number of inferences needed.

DEFINITION 5.19 (Binary Program):

A definite program is binary if each of its clauses contains at most one
body literal.]

5.2. AVERAGE COMPLEXITIES OF PROPOSITIONAL BINARY PROGRAMS 89

In this section we consider programs as sequences (and not as sets) allow-
ing that a clause occurs twice in a program. As already mentioned in [37],
programs containing clauses twice generally do not play a role in practice and
most of all programs are not tree-like. But the behaviour of many programs
which are not tree-like can be simulated by tree-like programs containing
clauses twice.

DEFINITION 5.20 (Program Graph):

Let P be a binary propositional program. The program graph Gp for P is
an ordered, directed multi-graph containing an arc (A,B) for each clause
A<BeP. :]

Note that program graphs, in contrast to predicate dependency graphs,
are multi-graphs. Furthermore, the edges going out of a vertex are ordered,
since programs are considered as ordered sequences of clauses.

The previous definition shows that there is a strong relationship between
binary programs and directed graphs. Based on this equivalence we often
speak about graphs instead of programs in the remainder of this section. The
program graphs must be multi-graphs, since we allow clauses to occur twice in
a program. In this context we say (A,B) is an unary arc, if A<B occurs once
in P, and a binary arc, if A<B occurs twice in P.

DEFINITION 5.21 (Tree-Like Program):

A definite program P is tree-like if the predicate dependency graph Dp of
P is a tree. |

In this section we consider tree-like, binary programs only. Furthermore,
we restrict the procedures to contain at most two clauses with a different
predicate symbol in the body. This is not a strong restriction, since every bi-
nary program can be transformed to a program satisfying this condition [37].
Following the approach to transform arbitrary trees into binary trees we sim-
ply replace clauses of the form A« B;, 1<i<n, in P by the 2-n-2 clauses

90 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION
A(—-Bl
A(—X1
X;.1¢-Bi I 2<i<n-1
XX 2<i<n-2
Xn2¢-By

where Xj, 1<i<n-2, are new symbols not occurring in P. Therefore, we
subsequently consider only such trees in which each node has an out-degree of
at most 2. We say a vertex respectively atom A is unary, if there is exactly one
atom B such that A«B occurs in P. A is called binary, if there are exactly two
different atoms B and B’ with A<B and A<-B’ occur in P.

Subsequently we consider three different classes of binary, tree-like pro-
grams which are introduced by the following definition.

DEFINITION 5.22 (Chain, Full Binary Tree and Binary Tree):

Let B be the set of all tree-like, binary, propositional programs modulo
renaming. Since each vertex in the program graph Gp for a program Pe B is
unary, binary or has an out-degree 0, we say B is the set of all binary trees.
CcB is the set of all chains, i.e., Pe C if all vertices in Gp are either unary or
have out-degree 0. FCB is the set of full binary trees, that is, Pe F if each
vertex in Gp is either binary or has out-degree 0.

For each ®e {C,F,B}, ®(n)c® denotes the class of all programs contain-
ing n vertices. With root(P) we denote the root of the tree.]

The fact that we consider each element of B as a representative of the
equivalence class, containing all programs which are equivalent modulo re-
naming, allows us to omit the labels of vertices in the program graphs. Figure
5.23 shows one example for each of the three program classes considered here.

There is a strong relation between the process of finding an SLD-refuta-
tion of PU{G} and a search through the program graph Gp, if G is a single
literal goal. Let us suppose the facts are linked to the corresponding vertices
by additional edges. Thus SLD-resolution corresponds to a left-first depth-first
search with backtracking through Gp starting from the node corresponding to
G. Accordingly, applying GDFC-resolution is to start with a fact node from
which there is a path to G and traversing Gp bottom-up until G is reached. The
number of inferences needed equals the number of edges traversed.

5.2. AVERAGE COMPLEXITIES OF PROPOSITIONAL BINARY PROGRAMS 91

Fig. 5.23: Chain, full binary tree and binary tree

THEOREM 5.24 (Worst Case Complexity of SLD-Resolution):

Suppose P is a chain, binary or full binary tree. The worst case complex-
ity WESK(P) of finding the fi i i ion i
y WsLD(P) ot finding the first solution of root(P) with SLD-resolution is

it 2"-2, if Pe C(n)
WSEb(P) < ¢ n-2", if Pe F(2+n-1)
3-2"-2, if Pe B(n)]
Proof: For chains we show by induction on n that WdlSy(P)<2"-2.
Clearly the worst case is that P contains no facts. The inequation is correct if
n=1. Now suppose the result holds for n-1. If Pe C(n) then
WEh(P) <2+ 2:(2"12) = 2071 4 42=27_2

The results for binary and full binary trees have been shown in [37]. =

THEOREM 5.25 (Worst Case Complexity of GDFC-Resolution):

Suppose P is a chain, binary or full binary tree. The worst case complex-
ity WESke(P) of finding the fi i i ion i
GDrc(P) of finding the first solution of root(P) with GDFC-resolution is

|
|

92 , CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

ﬁrst

Wbk n, if Pe F(2:n-1)

n, if Pe C(n)
(P).s { _
n, if Pe B(n) !]
Proof: The worst case is that GDFC-resolution selects a fact which lies at
the end of the longest path from root(P). The maximum depth of a chain or a
binary tree with n vertices is n-1. A full binary tree with 2:n-1 vertices has
exactly n leaves and maximum depth n-1. Thus the distance from a fact to the
root can be n maximally. |

Even if programs without facts are only interesting from a theoretical
point of view, they can be helpful for the comparison of both strategies. The
following two theorems concern the average case complexity of SLD- and
GDFC-resolution for programs without facts.

THEOREM 5.26 (SLD-Resolution for Programs without Facts):

Let @€ {C,F,B}, ®(n)c® be the set of all programs containing n vertices
and @(n) be the subset of ®(n) containing all programs without any facts. Then
the average case complexity ASh(p(n)) of finding the first solution for the

root with SLD-resolution is exponential.]

Proof: See [37].]

THEOREM 5.27 (GDFC-Resolution for Programs without Facts):

Let ®€ {C,F,B}, ®(n)c® be the set of all programs containing n vertices
and @(n) be the subset of ®(n) containing all programs without facts. Then the
average case complexity Ag'ﬁ‘l:c((p(n)) to find the first solution for the root

with GDFC-resolution is 0.]

Proof: Since the programs in @(n) contain no facts, neither Rule 1 nor
Rule 2 can be applled to the first goal. Thus GDFC-resolution performs no in-
ferences. u

Next we consider binary trees allowing that facts occur at the leaves only.
First we compute the average case complexity for the set of programs which
only differ from a full binary tree without facts in the set of facts added for
the leaves.

5.2. AVERAGE COMPLEXITIES OF PROPOSITIONAL BINARY PROGRAMS 93

DEFINITION 5.28 (Binary Trees with Facts at the Leaves):

Suppose Pe F(2:n-1) is a program without facts. Then the set Fy(P) of bi-
nary trees with facts at the leaves for P contains all programs we obtain from
P by adding facts for the leaves.

LEMMA 5.29 (Number of Binary Trees with Facts at the Leaves):

Let Pe F(2:n-1) be a program without facts. Then [Fy(P)I=2".

Proof: The result follows from the fact that P has n leaves [37]. =

THEOREM 5.30 (Average Case Complexity of SLD-Resolution for Fy(P)):

Suppose Pe F(2:n-1) is a program without facts. The average case com-
plexity of Fi(P) using SLD-resolution is

ASFH(F(P) < 2n-1)2 5

Proof: See [37].]

THEOREM 5.31 (Average Case Complexity of GDFC-Resolution for Fy(P)):

Suppose Pe F(2-n-1) is a program without facts. The average case com-
plexity of Fi(P) using GDFC-resolution is

ABSE(Fi(P)) < (—2“"3 .

Proof: It is easy to verify that there are 2™! programs in Fi(P) contain-
ing a certam fact. Since there are n facts, we have to compute the average over
n-2™141 programs. Let D; be the distance from fact i to the root, that is the
length of the path from the root to the corresponding fact plus one. Thus

Zan-—E D;

ASrc(Fy(P)) = ,,1
n2"+1 i=1 n i

i 9
94 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION 5.2. AVERAGE COMPLEXITIES OF PROPOSITIONAL BINARY PROGRAMS 5

the average depth is linear in the worst case. For example, the left and right

‘snakes’ illustrated in Figure 5.33 both have a linear average depth of facts and

n ! ; thus represent this worst case. But which upper bound can we expect on aver-
e n:(@F3) 0

2D;i< > 1 . age?

i=1

To show the result we prove by induction on n that

Suppose n=1. Then the fact has depth 1 so that D;=1<1. Now suppose
n>2. Let P1e F(2:m;-1) and Pe F(2-m»-1) be the left respectively right sub-
tree of the root, i.e., m;1 and my>1 are the number of leaves in the left resp.
right subtree as shown in Figure 5.32.

Fig. 5.33: Left and right ‘snake’
mj map

Fig. 5.32: Left and right subtree
THEOREM 5.34 (Average Upper Bound for Full Binary Trees):

Furthermore, let Dj; be the depth of fact i (1<i<m;) in the left subtree ' The average value of AGSkc(Fi(P)) taken over all Programs Pe F(2-n-1)

and D, the depth of fact j (1<j<m;) in the right subtree. Thus : which contain no facts is bounded by O(Vn). , . m
n iy oo ‘ Proof: The result follows from the fact that the average depth over all
YDi=YDii+YDei+n< binary trees with 2-n-1 vertices is bounded by O(Vn) [39]. . m

i=1 i=1 i=1

: The fact that the upper bound for the average case complexity of GDFC-
my-(m;+3) mo-(mo+3 ; - :
: 21 ik fo N L= resolution for Fj(P) is smaller than that of SLD-resolution does not mean that
this is also true for each binary tree P. Moreover, it is possible to characterize
n-(n+3) Lot <n-(n+3) ' subclasses of F for which SLD-resolution on average is more efficient than
2 TR Gl i) %) ; GDFC-resolution.
since n-1-mj;-my<0. .

EXAMPLE 5.35 (Average Complexities for Right Snakes):

The previous theorem shows that there is a linear upper bound for the av- {
erage case complexity of GDFC-resolution for binary trees with facts. This : Let Se F(2-n-1) be a right snake without facts which has unary edges
upper bound is given by the average depth of the facts. It is easy to verify that] only. Then

96 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION
ASPh(F(S)) < 4

Alist (g (g >n+3n2
AGDrc(Fi(S)) CREYSH)

For the average case complexity of SLD-resolution we have

ASEBE(S) = 202 + 221 2= 2‘2‘3+Zn 2ti=

(\®)

23, 4. i) P =44 203-20-4_y T o4
2n 2“ n

On the other hand, the average case complexity of GDFC-resolution for
Fi(S) is

A8Brc(Fi(P)) = 2,,1 72 ZD
Thus
AlSL (By(P)) > gt zn: Do g aaon! Ziin 2+3n-2

D;=
Lnk1) S 2% (e]) 2 2-(n+1)

Whereas the upper bound for the average case complexity of SLD-reso-
lution is 4, we have a linear lower bound for GDFC-resolution. .]

This result, however, only has negligible influence on the general com-
parison of both approaches for propositional binary programs, since the right
snakes with unary vertices are a very small subset only. Moreover, if we allow
binary edges, then the average number of inferences needed with SLD-resolu-
tion may significantly increase even for the right snake. In contrast to that, the
average case complexity of GDFC-resolution remains unchanged, because it
does not depend on the type of the edges.

The previous example demonstrates a weakness of GDFC-resolution. The
reason for the better average case complexity of SLD-resolution for right
snakes with unary edges is that SLD-resolution always visits all leaves in the
order of their distance from the root. Facts which are close to the root are
used first and therefore carry more weight than the others. For GDFC-resolu-

5.2. AVERAGE COMPLEXITIES OF PROPOSITIONAL BINARY PROGRAMS 97

tion, however, all facts have equal weights so that not always the fact with the
smallest depth is selected.

This matter of fact also plays a role if we consider binary trees and allow
to add facts not only for the leaves of the tree. In contrast to the situation dis-
cussed above we even can add facts for symbols which are also defined by
rules. This has the effect that complete subtrees may be cut off for SLD-reso-
lution depending on the position of the facts in the clause sequences of the pro-
cedures. For example, if we add a fact for the root of P as first clause, then
SLD-resolution needs only one inference. If we consider all possible assertions
of facts then SLD-resolution needs 360 steps on average (Kleine Biining and
Lowen have shown in [37] that it is bounded logarithmically, but this upper
bound can easily be strengthened). It is straightforward to see that we have a
similar situation as discussed above. GDFC-resolution has a linear upper
bound, since facts which are close to the root are not automatically preferred.

In the context of propositional programs, however, it seems not to be a
realistic situation from a practical point of view that facts may be added for
each procedure. In contrast, it is more reasonable to expect that the number of
facts to be added or the number of procedures to which they can be added is
restricted. In this case the amount of subtrees cut off is decreased, so that the
average case complexity of SLD-resolution increases. The complexity of
GDFC-resolution, however, remains unchanged under these restrictions.

5.3 Complexities of Taxonomic Hierarchies

In the previous section we considered binary, tree-like, propositional
programs and analyzed the average case complexity of SLD- and GDFC-reso-
lution to find the first solution of the root of the tree. For this problem we
obtained a linear upper bound for the average case complexity of GDFC-reso-
lution. However, it is not less important to consider how both approaches be-
have if one is interested in all solutions.

For that purpose we consider a special subclass of datalog programs used
for the representation of taxonomic hierarchies. In many applications, the
possibly structured objects denoting individuals or sets form a taxonomic hier-
archy [55]. The tree-like taxonomic divisions of animals discussed in Chapter 1
are a common example. Such hierarchies play an important role in the context

98 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

of frame systems in which they are used to inherit properties of structured
objects along specializations [8].

According to Montini [54] there is a straightforward top-down approach
frequently used to describe taxonomies in logic programs. A class is repre-
sented as an unary predicate symbol. For each membership of an object to a
class, there is one clause

class_name(object_name)«—
Furthermore, there is one clause

class_name(C)«
subclass_name(C)

for each class-subclass relation (for an instance of this scheme see
Example 1.1).

Subsequently we consider the average case complexity of SLD- and
GDFC-resolution to find the first and all solutions of a query for the root of
the hierarchy. For the sake of simplicity we consider tree-like, binary taxo-
nomic hierarchies only. Furthermore we assume that the trees are full and all
leaves have the same depth, that is, the trees are balanced. In the remainder of
this section P, denotes a program implementing a full, binary and balanced
taxonomic tree consisting of 2"-2 rules.

THEOREM 5.36 (Average Complexities of Finding the First Solution):

Let P, be a program implementing a full, binary and balanced taxonomic
tree consisting of 2"-2 rules and G be a goal for the root of the hierarchy
which has at least one solution. Then SLD-resolution always needs at least as
many inferences as GDFC-resolution to find the first solution of G, since the
following relationships hold for the best, average and worst case complexities
of both approaches:

BESkc(Pn) = ASSkc(Pn) = WEBkc(Pn) =1

n < BEFL(P,) < ASEH(P,) < WEPH(P,) = 2™-1 @

5.3. COMPLEXITIES OF TAXONOMIC HIERARCHIES 99

Proof: If we use GDFC-resolution we start with a relevant fact for G
which must exist since G has a solution. The depth of the taxonomic tree is
n-1. Since all leaves have the same depth and we need one additional inference,
we have n inferences in the best, average and worst case. Now let us consider
what happens if we use SLD-resolution. Clearly the best case is that the left-
most branch in the SLD-tree is a success branch. Since this leaf has depth n,
the best case for SLD-resolution is n. In the worst case the rightmost branch is
the only success branch so that we have to traverse the whole SLD-tree which
has exactly 2"-1 arcs. o

THEOREM 8§.37 (Average Complexities of Finding All Solutions):

Let Py be a program implementing a full, binary and balanced taxonomic
tree consisting of 2"-2 rules and let G be a goal for which there are m>1 solu-
tions. Then the best, average and worst case complexities of finding all solu-
tions with GDFC- and SLD-resolution are

B&brc(Pn) = A8brc(Pn) = Wibrc(Pr) = mn
B p(Py) = A¥p(Py) = Wil n(P,) = 2"-24m -

Proof: Since G has m solutions, the GDFC-tree for P,U{G} contains ex-
actly m success branches which have length n. Furthermore, the tree contains
no failure branches. Thus GDFC-resolution needs m-n inferences to find all
solutions of G, in the best, average and worst case.

To find all solutions with SLD-resolution we have to traverse the com-
plete taxonomic tree which requires 2"-2 steps. For each solution we addi-
tionally need one inference. Thus the total number of inferences needed to find
all solutions in the best, average and worst case is 2"-2+m. ®

Based on these results we now can give an answer to the question in which
situations we should use GDFC-resolution to compute all solutions for the root
of the tree. In order that GDFC-resolution is more efficient than SLD-resolu-
tion m-n must be less than 2°-2+m. This is equivalent to the following inequa-
tion:

100 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

In the context of datalog programs, however, we have to respect that
there may be an inherent overhead for GDFC-resolution coming from the in-
creased unification costs and the costs for the selection of relevant facts. Let us
again consider the last four clauses of the meta-interpreter for goal-directed
forward chaining (Program 2.1). In the third clause we unify the head of the
unit clause with the selected literal. In the fourth clause, however, we have to
unify two atoms, since we have to solve «link(A,B). In the fourth clause we
unify the atoms in the subgoal-goal pair with the leftmost body literal and the
head of the input clause. Finally, in the last clause we have to unify three
atoms. Thus, we on average have to unify two atoms per clause whereas we
only have to unify one atom in the third clause of the standard interpreter for
pure Prolog (Program 2.2). One therefore could roughly estimate the unifica-
tion overhead of GDFC-resolution by a factor of two. However, the total
amount of the additional unifications in practice depends on the size of the
atoms to be unified, and we will see in Section 6.2 that the effective degree of
this overhead may be so small that it can be ignored. Still, in order to respect
that both approaches require a different amount of unifications let us suppose
that ¢ on average is the factor by which the unification costs of GDFC-resolu-
tion differ from that of SLD-resolution. Thus, the total costs of GDFC-resolu-
tion are c:m-n which results in

il

m
cn-1

Accordingly, if N is the number of rules then GDFC-resolution is more
efficient than SLD-resolution if

N
< Clog)

approximately.

A further interesting question is, how these result change if we consider
inverted trees such as Example 1.3. An inverted tree is obtained from a tree by

- inverting all arcs. Suppose we are interested in all objects belonging to a cer-

tain top level class. Clearly the number of inferences needed with SLD-resolu-
tion is bounded by m+n where n is the depth of the tree and m is the number
of solutions. In contrast to that the upper bound for GDFC-resolution is
m-(n+1), since GDFC-resolution traverses the whole path from the leaf to the
top-level class for each solution. Even if GDFC-resolution does no unnecessary

5.3, COMPLEXITIES OF TAXONOMIC HIERARCHIES 101

inferences it is always less efficient than SLD-resolution if the query has more
than one solution.

5.4 Complexities of Transitive Closures

A procedure commonly used to compare the efficiency of different
strategies is the ancestor relationship [4]. We discussed the corresponding pro-
cedure in Example 3.40. This procedure equals the procedure computing the
transitive closure of a directed graph:

PX,Y)ee(X,Y) (&)
p(X,Z)¢e(X,Y).p(Y,Z) (&)

The relation to compute the reflexive and transitive closure of a directed
graph is very similar:

p(X,X)¢ (D1)
P(X,Z)(“C(X,Y),P(er) (DZ)

Throughout this section, we assume that the link clause program in both
cases is

link(e(X,Y),p(X,Z2)) <

The link clause coming from C; is useless, because it is subsumed by that
coming from C;. We furthermore assume that GDFC- and SLD-resolution
both apply the left-first computation rule.

To analyze the complexity of finding all solutions with GDFC- and SLD-
resolution we have to respect all four binding patterns of goals for the transi-
tive and reflexive, transitive closure of e/2, namely ff, fb, bf and bb [81]. The
term fb means that the first argument of the atom is free and the second is
bound.

To avoid the préblem of infinite loops, we assume that the underlying
graphs are acyclic. Furthermore, we assume that all tuples in e/2 are ground
and that each arc occurs only once in /2.

[
|
i

102 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

With dow(v) we denote the out-degree of each node in the graph, that is,
the number of facts in the relation e containing v in the first argument posi-
tion. Accordingly, di;(v) is the in-degree of v, i.e., the number of unit clauses
in /2 with v in the second position.

LEMMA 5.38 (Binding Pattern bf for the Transitive Closure):

Let v be a node in the directed acyclic graph specified by €/2. Suppose
dow(v) is the out-degree and vy,...,Vaq,(v) are the successor nodes of v. Suppose
the goal for the procedure to compute the transitive closure of /2 is «p(v,X),
which has the binding pattern bf. Then the number of inferences needed to
find all solutions with SLD- resp. GDFC-resolution, CE{D resp. CE’;EDFC, via the
left-first computation rule is determined as follows:

2, if dou(v) =

be v) = dour v)
Sto(v) 2-dout(Vv) + 2 + Cbsm(vl) otherwise

0, if dou(v) = 0

C¥pre(v) = Joae)
- Cépre(v) 3-dou(Vv) + ﬁct(’;fDFC(Vi)a otherwise n
=1

Proof: Consider the SLD-tree for «—p(v,X). Since there are only two
clauses in P which can be used as input clauses, the root node has exactly two
successor nodes. While the left one contains the goal «—e(v,X) we have the goal
(—e(v Z),p(Z,X) in the right one. If v has out-degree 0 then both nodes are
failure nodes. Otherwise, if dou(v)>0 then each of these goals has dgy(v) suc-
cessor nodes. Whereas the left node has nodes representing the empty clause as
successor nodes, the successor nodes of the right node are of the form
«p(vi,X), where i€ {1,...,dou(v)}. Figure 5.39 shows the first three levels of
this SLD-tree. :

Now consider the GDFC-tree for <—p(v,X). If the out-degree of v is 0,
then there are no relevant facts for G so that the root node has no successor
nodes. Otherwise, we have dow(V) relevant facts and the root has dgy(v) suc-
cessor nodes of the form «<e(v,vi),p(v,X)>, for i=1,...,douw(v). Since there
are two non-unit clauses fitting to each subgoal-goal palr, each of these nodes
has two successor nodes, the left one containing the empty clause and the right
one containing the goal <—p(v;,X). Thus the GDFC-tree contains 3-dgy(v) arcs

5.4. COMPLEXITIES OF TRANSITIVE CLOSURES 103

plus the number of arcs needed to solve each of the goals «p(v;,X), for
i=1,...,dout(v). The first three levels of this tree are illustrated in Figure

5.40. ' []
«—p(v,X)
—e(v,X) 7(vY),p<(<
/ «p(v1,X) P(Vdou (1> X)
{X-Vl} X_vdouz(v)}

Fig. 5.39: The first three levels of an SLD-tree for the binding pattern bf

—p(v,X)

v

«—<e(v,v1),p(v,X)> —<e(V,Vdouv))-P(V,X)>

N e

<p(v1,X) P (Vo (v X)
=V1} {X—Vdom(V)}

Fig. 5.40: The first three levels of a GDFC-tree for the binding pattern bf

104 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

LEMMA 5.41 (Binding Pattern bb for the Transitive Closure):

Let v and w be two arbitrary nodes of the directed acyclic graph defined
by the binary relation e/2. Suppose dow(v) is the out-degree and vy,...,Vdgu(v)
are the successor nodes of v. Then the SLD- resp. GDFC-tree for the goal
«p(v,w) coming from the left-first computation rule contains Cg‘f,D(V,W) resp.

C¥pc(v,w) arcs where

dout v)
dour(Vv) + 2 + ﬁcg‘ﬁn(vi,w), if e(v,w)e ¢ e/2
i=1
doug v)

dour(v) + 3 + 2 C8p(vi,w), otherwise

C¥p(v,w) =

and

dout v)
2-dou(v) + 2CBbrc(vi,W), if e(v,w)e— ¢ e/2

Cobre(v,w) = iy
ut(v)

2-dou(v) + 1 + 2 C¥hre(vi,w), otherwise »
i=1

Proof: Let us first analyze SLD-resolution. The root node has two suc-
cessor nodes, namely «e(v,w) and «e(v,Y),p(Y,w), coming from C; and C,.
If ¢/2 contains the fact e(v,w)« then the left node has exactly one successor,
else it is a failure node which has no successors. The right node has exactly
douw(v) successor nodes of the form «p(v;,w), for i=1,...,dou (V).

If we use GDFC-resolution, then the root node of the GDFC-tree has
dou(V) successor nodes «<e(v,v;),p(v,w)>, for i=1,...,dou(v). If e(v,w)c—¢e/2
each of these nodes has exactly one successor node <—p(vj,w) coming from the
application of Rule 4 with C; as input clause. If e(v,w)«ee/2 then the node
with vi=w additionally has a successor node containing the empty clause, since
we also can apply Rule 3 using C; as input clause. u

LEMMA 5.42 (Binding Pattern ff for the Transitive Closure):

Suppose e/2 defines a directed acyclic graph and consists of n facts.
Suppose vi and wj, i€ {1,...,n}, are the nodes occurring in the first respectively

5.4. COMPLEXITIES OF TRANSITIVE CLOSURES 105

second argument position of the i-th fact. Then the number of inferences
needed to find all solutions of the goal «—p(X,Y) with SLD- resp. GDFC-reso-
lution via the left-first computation rule, C&; p(X,Y) resp. Cprc(X,Y), is:

n
Clip(X,Y) = 2:n + 2 +3,CYi n(wi)

g=1
- f
Clpre(X,Y) = 31 +_21C'(J}DFC(Wi)
£
If the goal is «p(X,X) then C p(X) and CEppc(X) are

n
Clip(X)=n+2 +;Cl§‘]’.D(Wi,Vi)
i=

Cpre(X) = 2:n +2, Clbrc(Wi.vi)]

Proof: Suppose the goal is «—p(X,Y). Again the root of the SLD-tree has
exactly two successors, namely «—e(X,Y) and «e(X,Z),p(Z,Y). Since le/2l=n,
the left node has exactly n successor nodes which contain the empty clause. The
right node also has n successors of the form «p(w;,Y) which have the pattern
bf. Now suppose the input goal is «—p(X,X). Then the second level of the SLD-
tree contains the goals «—e(X,X) and «e(X,Z),p(Z,X). Whereas the left one
has no successor, since the underlying graph is acyclic, the right node has n
successors of the form <—p(wj,v;) which have the binding pattern bb.

Let us now consider the GDFC-tree for «<—p(X,Y). The root node has ex-
actly n successors since there is a link from each tuple in /2 to the input
query. Each of these nodes has exactly two successors, the first one coming
from an application of Rule 3 with C; as input clause, the second one produced
by an application of Rule 4 with C; as input clause. Whereas we obtain the
empty clause in the first case, we obtain the goal «—p(w;,Y), for i=1,...,n, in
the second case. If the goal is <—p(X,X), then the root has n successors of the
form < <e(v;,w;),p(v;i,v;)> each of which has exactly one successor of the form
<p(Wi,vi). u

106 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

LEMMA 5.43 (Binding Pattern fb for the Transitive Closure):

Suppose the goal is «p(X,v) where v is an arbitrary node occurring in
the directed acyclic graph specified by the binary relation e/2. Suppose e/2
consists of n facts e(u;,w;)«, for i=1,...,n. Suppose v has in-degree diy(v) and
V1s.--,Vdin(v) are the direct predecessors v. Then the number of inferences
needed to find all solutions with SLD- resp. GDFC-resolution via the left-first
computation rule, C§I}_D(v) resp. Cg)DFC(V), is:

n
CHo(™) =2 + din(v) + n +2.C¥p(Wi,v)
i=1

n
C8brc(v) = din(v) + 20 +_ZIC‘(’;"DFc(wi,v) -
=

Proof: The root of the SLD-tree for «p(X,v) has two successors,
namely «e(X,v) and «—e(X,Y),p(Y,v). The left node has exactly diy(v) succes-
sors, one for each direct predecessor of v. The right node, however, has n suc-
cessors, since e(X,Y) unifies with all unit clauses in e/2. The resulting goals
are «—p(w;,v), for i=1,...,n, which have the binding pattern bb.

The root «p(X,v) of the corresponding GDFC-tree has n successor nodes
of the form «<e(u;,w;),p(uj,v)>. Since v has din(v) direct predecessors it
din(v) times must be possible to apply Rule 3 with C; as input clause which
produces the empty clause. Furthermore we n times can apply Rule 4 with C,
as input clause. This yields n successors of the form <p(w;,v) with binding
pattern bb. u

THEOREM 5.44 (Complexities for the Transitive Closure):

Suppose P is a program containing the specification of a directed acyclic
graph and the two clauses C; and C, defining the transitive closure of the
graph. Furthermore suppose we always apply the left-first computation rule.
Then GDFC-resolution is more efficient than SLD-resolution, that is, the
GDFC-tree for PU{G} w.r.t. {link(e(X,Y),p(X,Z)<—} contains less arcs than
the corresponding SLD-tree for each goal G for p/2. []

107

5.4. COMPLEXITIES OF TRANSITIVE CLOSURES

Proof: To prove the theorem we show by inducti.on.that GDFC-resolu-
tion is more efficient than SLD-resolution for all four binding patterns.

Let ﬁs begin with the binding pattern bf. Suppose Vv is a terminal node,
i.e., dou(v)=0. It follows from Lemma 5.38 that

0 = C¥prc(v) < Clip(v) = 2

Now suppose doy(v)>0 and the inequation holds for all direct successors
of v. Thus

) ; dout(v) & ,
C¥prc(v) = 3-dow(v) + 2 Clpre(vi) <
1=l

i dout(v)
Iule) B oy = b
3dou(¥) + A(CHLDV)1) < 2au) +2 + 2CHip(v) = CEo(¥)

=

Next we consider the bindiné pattern bb. Suppose the query is _<—[Z(;/,_w).
If we assume that v is a terminal node, i.e., dou(v)=0, then Lemma 5.41 im-

plies that !
0 = Clbre(v,w) < Clp(v,w) = 2
Next suppose the inequation is trué for all direét successors of v. Suppose
s=0 if e(v,w)«¢e/2 and s=1, otherwise. Consequently
dout(v)

Clbre(v,w) = 2:dou(V) + s + ;C%"Dpc(vi,w) <

 douv) i ¢
2-dow(v) + s + 2 (C8p(vi,w)-1) <

i=1

doul(v)
dou(V) + 2 + 5 + XCRp(vi;w) = C&p(v,w)

i=1

The next binding pattern is ff. Here we have to distinguish two cases:

n n i
S p(wi)-1) < CsLpX,Y)
Clpre(X,Y) = 3:n +§cafm(wi) <3n +§(csw<w.) 1) < Cén(

108 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

and

Chore(X) = 20+, Chro(wi,vi) < 21 +X(CRp(wWivi)-1) < CLp(X)

i=1 i=1

The last case concerns the pattern fb:

C8brc(v) = din(v) + 2:n +§IC%"DFc(wi,v> <

din(v) + 2:n +2,(C8 p(wi,v)-1) < CHp(v) .
i=l ;

This result is very important since it suggests that GDFC-resolution, in-
dependently from the structure of the underlying directed acyclic graph, al-
ways needs fewer inferences than SLD-resolution to compute all answers for a
query to the ancestor relation. In the following example we address the ques-
tion which scale the difference between both strategies may have.

EXAMPLE 5.45 (Transitive Closure for Full, Balanced, Binary Trees):
Suppose e/2 specifies a full and balanced binary tree consiéting of depth n.

Furthermore suppose v is the root and the input query is < p(v,X). Lemma
5.38 implies that

L 2ifin =10
CsLp(n) = {6 + 2-CsLp(n-1), otherwise

[0, ifn=20
Coprc(n) = {6 + 2-Coprc(n-1), otherwise

This is equivalent to
CsLp(n) = 82" -6
Coprc(n) = 6-2" - 6

Thus

5.4. COMPLEXITIES OF TRANSITIVE CLOSURES 109

lim -CsLo®@) _ i 826 _4
= Cgprc@) "< 6:2"-6 '3

Since

Csip(n) > %

Caprc(n)
for n>1, GDFC-resolution is at least 25% better than SLD-resolution. =

In the remainder of this section we compare the efficiency of both strate-
gies for the procedure to compute the reflexive, transitive closure. Again we
consider trees coming from the left-first computation rule and begin with the
binding pattern bf.

LEMMA 5.46 (Binding Pattern bf for the Reflexive, Transitive Closure):

Let v be a node in the directed acyclic graph specified by e/2 where
dow(v) is the out-degree and V1,...,Vdou(v) are the successor nodes of v. Suppose
the goal for the procedure to compute the reflexive, transitive closure of e/2 is
«p(v,X), which has the binding pattern bf. Then the following two formulas
specify the size of the SLD- resp. GDFC-tree coming from the left-first com-
putation rule, DE{D resp. DE’;poc, for this goal:

dout(v) bE
DY p(v) = dou(v) + 2 + ;Dsm(vi)
1=

3 dout v)
D¥prc(v) = 2-dow(v) + 1 + 2. DEprc(vi) u

i=1

Proof: Again we first analyze the behaviour of SLD-resolution. Since the
goal is «p(v,X), the root of the SLD-tree has two successor nodes, the left one
coming from D; and the right one coming from Da. While the left node con-
tains the empty clause and therefore has no children, the right node has the
form «e(v,Y),p(Y,Z) which has exactly dout(v) children corresponding to the
direct successors of v in the underlying graph.

On the other hand the root of the GDFC-tree for «—p(v,X) has 1+dou(V)
children coming from D, and the dou(V) direct successors of v. Whereas the

110 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

first one contains the empty clause, the other nodes contain the goal
—<e(v,vi),p(v,X)>, for i=1,...,dou(v). Except the first, each of these nodes has
exactly one successor of the form «p(v;,X) which comes from an application
of Rule 4 using D; as input clause. u

Since the proofs of the following lemmata directly correspond to that of
the previous lemma, we omit them for the sake of brevity.

LEMMA 5.47 (Binding Pattern bb for the Reflexive, Transitive Closure):

Let v and w be two arbitrary nodes of the directed acyclic graph defined
by the binary relation e/2. Suppose dow(v) is the out-degree and vi,...,Vdeu(v)
are the successor nodes of v. Then the SLD- resp. GDFC-tree for the goal
«p(v,w) coming from the left-first computation rule contains D& (v, w) resp.
DE’;"DFC(V,W) arcs where

dout(v)
dow(v) + 1 + DSLD(vl,w) if v&w

DY p(v,w) = d;,l(v)

dout(v) + 2 + Y D8 p(vi,w), otherwise
i=1

and

d()ul.v
2-dou(v) + ZDGDFc(v.,w) if vew

D®rc(v,w) = i=1
GDFC(V,W) U

2-dou(v) + 1 + 2Dgbrc(vi,w), otherwise ~ m

i=1

LEMMA 5.48 (Binding Pattern ff for the Reflexive, Transitive Closure):

Suppose e/2 specifies a directed acyclic graph and consists of n facts
where v; and wj, ie {1,...,n} are the nodes occurring in the first respectively
second argument position of the i-th fact. Then the SLD- resp. GDFC-tree for
the goal «—p(X,Y) coming from the left-first computation rule has DgLD(X,Y)
respectively DgDpc(X,Y) arcs, where

5.4, COMPLEXITIES OF TRANSITIVE CLOSURES 111

DI p(X,Y) =n+2 +2D‘s’w(w,)

i=1

n
DEprc(X,Y) = 2n + 1 +2 D¥prc(wi)

3=\
If X and Y are the same variable, i.e., the goal is «—p(X,X), then DgLD(X)

and DEprc(X) are

n
DEp(X) = n + 2 + 2 D p(wi,vi)
=

H n
DEprc(X) = 20 + 1+, DEbrc(Wi,vi) "
i=1

LEMMA 5.49 (Binding Pattern fb for the Reflexive, Transitive Closure):

Suppose the goal is <—p(X,v) where v is an arbitrary node occurring in
the directed acyclic graph specified by the bmary relation e/2 Suppose €/2
consists of n facts e(uj,w;)<, for i=1,...,n. Let DSLD(V) and DGDFC(V) be the
number of inferences needed to find all predecessors of v with SLD- resp.
GDFC-resolution applying the left-first computation rule. Then

n
D& p(v) = 2 + n +2 D& p(wi,v)
i=1

n
D&orc(v) = 1 + 2:n +2, DE¥brc(wi,v) |
i=1

THEOREM 5.50 (Complexities for the Reflexive, Transitive Closure):

Suppose P is a program containing a specification of a directed acyclic
graph in the binary relation ¢/2 and the two clauses D; and D, defining the re-
flexive, transitive closure of the graph. Furthermore suppose we always apply
the left-first computation rule. Then GDFC-resolution is more efficient than
SLD-resolution, because, for each goal G for p/2, the GDFC-tree for PU{G}

112 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

5.4. COMPLEXITIES OF TRANSITIVE CLOSURES 1418

w.r.t. {link(e(X,Y),p(X,Z)<] is exactly by one arc smaller than the corre-

n
sponding SLD-tree. = n+2 +_21,(Dl(’;fDFC(Wi)+1) = DEprc(X,Y) + 1
&

Proof: Again we show this result by induction.

On the other hand, if both variables are the same, then

Let us begin with bf. Suppose v is a terminal node, i.e., doy(v)=0. Lemma
5.46 implies that

n
DELp(X) = n + 2 + 2 D8 n(wi,vi) =

i=1

DY p(v) = 2 = D¥prc(v) + 1

n
n + 2 +3,(D¥brc(wivi+1) = DEprc(X) + 1
i=1

Now suppose the result holds for all successor nodes of v. Consequently

dout(v) dout(v)
DYLo(v) = dow(v) + 2 + 2 DYp(vi) = dow(V) + 2 + 2(D¥prc(vi)+1) =

i=1 i=

Finally, we analyze the binding pattern fb. As a consequence of Lemma
5.49 we compute

dout v)
2-dou(V) + 2 + ID"G‘DFc(vo = D8prc(v) + 1

n
D& p(v) = 2 + n +2. D& p(wi,v) =
i=1

Now suppose the binding pattern is bb, v and w are two arbitrary nodes
and dow(v) is the out-degree v, where vy,...,V4,,v) are its successor nodes. Let
s=0 if v#w and s=1, otherwise. Let us assume that v is a terminal node, i.e.,
dou(v)=0. Lemma 5.47 implies that

n
2 + 0+, (D¥brc(Wi,v)+1) = DEprc(v) +1 n
=1

=

Thus, GDFC-resolution also is more efficient than SLD-resolution for the
reflexive transitive closure. Since we did not assume anything about the struc-
ture of the underlying graph, this result holds for arbitrary directed acyclic
graphs.

DY p(v,w) = 1 + s = D&brc(v,w) + 1

Now suppose the result holds for all successor nodes of v. Thus

doul(v)
D& p(v,W) = dow(v) + 1 + 5 + Y. D¥p(vi,w) =
i=1

5.5 Summary

dout(v)
dow(V) + 1+ 5+ X (DEbrc(vi,wH+1) = DEbrc(v,w) + 1

i=

In this chapter we considered the efficiency of GDFC-resolution compar-
ing it with SLD-resolution. We showed that corresponding success branches in
GDFC- and SLD-trees have the same length (Corollary 5.4). We considered
propositional programs and proved that GDFC- and SLD-trees contain the
same number of success branches (Corollary 5.8), that the failure branches in
GDFC-trees are not longer than the corresponding failure branches in SLD-
trees (Corollary 5.16), and that GDFC-trees contain not more failure branches
than SLD-trees (Corollary 5.17). However, the fact that the length and the
number of the failure branches may be smaller in GDFC-trees than in SLD-

Next we consider the binding pattern fb. In the case where both variables
in the input query are different, Lemma 5.49 suggests that

n
D{p(X,Y) =n+2 +2;,D‘s’io(wo =
=

114 CHAPTER 5. EFFICIENCY OF GDFC-RESOLUTION

trees gives rise to the conjecture that GDFC-resolution on average is more ef-
ficient than SLD-resolution.
. A i | | Chapter 6 ' il
| We considered tree-like, binary, propositional programs and analyzed the fm“
\ complexity of finding the first solution with SLD- and GDFC-resolution for . M\
H certain subclasses. Even if GDFC-resolution is not always better than SLD- il
resolution it is worth applying GDFC-resolution, since it has a linear worst EXPERIMENTAL RESULTS .w | |
case complexity (Theorem 5.25). SLD-resolution, in contrast, may need expo- ‘ I

nentially many steps on average (Theorem 5.24). The reason for this signifi- |
cant improvement is that each fact in the program produces a solution for the
root of the tree, so that no backtracking is needed using GDFC-resolution.
SLD-resolution, however, possibly has to traverse the whole tree which con-
tains exponentially many paths from the root to the leaves.

The previous chapter presented theoretical results concerning the com- “‘
plexity of goal-directed forward chaining for several classes of propositional “
and datalog programs. The results suggest in the first instance, that GDFC- |
resolution on average is better than SLD-resolution for propositional pro- |

‘ Furthermore we considered taxonomic hierarchies which can be imple- grams, and in the second, that it may even be more efficient for some standard | ,\

‘ mented by binary datalog programs. We compared the efficiency of GDEC- datalog programs. The aim of this chapter is to present the results of experi- “
mental studies made to find out the scale of the difference between SLD- and

|
‘ and SLD-resolution for full, binary and balanced taxonomic trees which are : ; {1919 ‘.‘ ‘
GDFC-resolution. The first section presents experimental results confirming M

closely related to the tree-like propositional programs. Accordingly, we ; T i ;
showed that GDFC-resolution is optimal for computing the first solution for the conjecture that GDFC-resolution is more efficient than SLD-resolution for

' ! propositional programs. The second section considers the ancestor relationship

the root of the taxonomic tree; the number of inferences needed depends lin- Erer : Tt i J ;
1 early on the depth of the tree (Theorem 5.36). In contrast to that SLD-resolu- and the specification or the reflexive trar‘lsmve closure of dlfected acyclic \ ‘
graphs. It demonstrates by means of experiments that the meta-interpreter for ‘

i tion may need exponentially many steps. We then analyzed the complexity of ! b 1 :] 7
i computing all solutions for the root of the tree. We showed that GDFC-reso- goal-directed forward chaining with respect to the effecnye runtime behaviour ‘
' lution is more efficient than SLD-resolution if the query has less than approx- & o efficient than the interpreter for pure Prolog. This shows that GDFC- |
’ imately N/(c-log(N)) solutions, where c is the unification overhead of GDFC- ‘ resolution is a serious alternative to SLD-resolution even in the context of it
‘ resolution and N is the number of arcs in the taxonomic tree. However, if the datalog programs. The last section investigates the space saving obtained by the |<“
taxonomic hierarchy corresponds to an inverted tree, then SLD-resolution is link clause optimization for propositional programs and its lflﬂ‘fe,nc_e to the ef- il
P better than GDFEC-resolution if there are at least two solutions. ficiency of both strategies. It presents experimental results indicating that the ;;M;
‘ ‘ link clause optimization produces considerable space savings. A further inter-
|

4 Finally we analyzed the complexity of both strategies for the well known esting result is that the reordering of body literals has a positive effect to the

' procedures to compute the transitive respectively reflexive transitive closure " efficiency of GDFC- and SLD-resolution.

” of directed acyclic graphs. We proved that GDFC-resolution is always more
i efficient than SLD-resolution if we consider the size of the corresponding 1

| refutation trees (Theorems 5.44 and 5.50). ! I
. : 6.1 Efficiency for Propositional Programs i i
1‘ To sum up, the results obtained in this section imply that GDFC-resolu- }

f" tion gives promising improvements with respect to the number of inferences In order to confirm the conjecture that GDFC-resolution on average is ““‘ﬂ"
4 needed to evaluate several types of propositional and even datalog programs. A more efficient than SLD-resolution for propositional logic programs, we ran- il |
‘ comparison of the effective runtime behaviour of the meta-interpreters for domly generated a set of sample programs and counted the number of logical [iﬂ;

pure Prolog and goal-directed forward chaining is the subject of the following “
- chapter. ' B Al

i
i
:

\

\

116 CHAPTER 6. EXPERIMENTAL RESULTS

inferences needed to find all solutions for a certain set of goals, i.e., we
counted the number of arcs of corresponding SLD- and GDFC-trees. Clearly it
is essential to consider a sufficiently large number of programs to obtain reli-
able results. As well as for analytical results, however, one could argue that
some or even many of the programs occurring as samples are irrelevant in
practice. One way to weaken this argument is to generate only such programs
which are ‘reasonable’ from their syntactic structure.

First, we consider non-recursive programs only, because recursion is un-
desired and unnecessary in the context of propositional program; it leads to
infinite loops on one hand and does not extend the expressiveness on the other
hand. Second, we consider only programs without predicates whose solution
requires too much redundant derivations. The reason. for this restriction is,
that it is worth using extensions such as lemma generation or even other reso-
lutions strategies eliminating redundant derivations whenever there are a lot of
them. Therefore, we allow to specify a limit defining the maximum number of
inferences which may be needed to solve a goal.

For technical reasons we only consider programs which can be decom-
posed into a set of predicates defined by non-unit clauses only (intentional data
base symbols or IDB symbols) and a set of predicates defined by unit-clauses
only (extensional data base symbols or EDB symbols). Put another way, we do
not allow that a procedure is simultaneously defined by facts and rules.
Fortunately, it is possible to rewrite each program as an ‘equivalent’ program
which can be decomposed w.r.t. the EDB and IDB sy(mbols [4].

The syntactic structure of a propositional program additionally depends
on the following parameters: the number of EDB and IDB symbols as well as
the length and number of the rules used to define a procedure. Therefore, the
program generator we have implemented allows us to adjust the following pa-
rameters:

e the number Ngpg of EDB symbols,

e the number Njpg of IDB symbols,

» the distribution of the number of rules per IDB symbol,
e the distribution of the length of the rules and

e the limit for the number of inferences.

Whereas the first distribution specifies the probability that an IDB symbol
is defined by a certain number of rules, the second defines the probability that
a rule has a specific length. We considered three distinct samples consisting of

6.1. EFFICIENCY FOR PROPOSITIONAL PROGRAMS 117

programs with normal, long and many rules. The specific values of the corre-
sponding distributions are contained in Figure 6.1.

normal 1 2 3 4 5 6 7 8

rule length }10.1 0.5 0.3 0.08]0.02
rule number}{ 0.2 0.4 0.3 0.08 [0.02 °

long rules |1 2 3 4 5) 6 7 8
rule length [0.15 |0.2 0.2 0.15 |0.12 [0.09]0.06 |0.03
rule number}0.2 0.4 0.3 0.08 [0.02

many rules f1 . 2 3 4 S 6 20 8

rule length [0.1 0.5 0.3 0.08]0.02
rule number[[0.15 [0.18 [0.2 - |0.18 |0.13 [0.09 |0.05 |0.02

Fig. 6.1: Distributions for normal, long and many rules

We proceeded as follows: for different ratios Nepp/Nipp we generated a
sample of programs. For each program, we stepwise increased the number of
facts, i.e., the number of EDB symbols set to true, and measured the size of
the GDFC- and SLD-tree for each IDB symbol. We then computed the relative
improvement R of GDFC-resolution w.r.t. SLD-resolution. Suppose ITsppl is
the size of the SLD- and ITgprc! the size of the GDFC-tree, then R is computed
by the following formula

R = 'TsLpl-Teprcl
ITsLpl

Figure 6.2 shows the mean values over 85.000 goals for Ngpp=40 and
Nipg=10 with a limit of 150 inferences. The X-axis represents the number of
provable IDB symbols in percent and the Y-axis R, the mean value of relative
improvement in percent obtained using GDFC-resolution. The horizontal bars
represent the interval of the standard deviation.

This shows that GDEC-resolution on average is more efficient than SLD-
resolution in nearly the whole range. For example, if no IDB symbol is prov-
able, then the speed-up is nearly 90%, and if 50% of the IDB symbols can be

118 ‘CHAPTER 6. EXPERIMENTAL RESULTS

solved, then GDFC-resolution needs about 25% fewer inferences than SLD-
resolution to find all solutions. -

Relative improvement

-20% T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
: Provable IDB symbols

Fig. 6.2: Average relative improvement

The function describing the relationship between the number of provable
IDB symbols and the number of facts has a slightly sigmoid shape. Figure 6.3
illustrates this dependency for the distribution normal with Ngpp=40 and
NIDB=10*

The X-axis represents the number of facts and the Y-axis the average
number of provable IDB symbols in percent. Thus, if 50% of the EDB sym-
bols are true, then on average 40% of the IDB symbols are provable and
GDFC-resolution on average is 25% faster than SLD-resolution.

An interesting question concerning the function which describes the rela-
tive improvement is, how its shape changes if we modify the input parameters
of our program generator. Here we have the quite interesting result that it is
largely independent from the ratio Ngpg/Nipg and different numbers Ngpp and
Nipg with a fixed ratio Ngpp/Nipgp (see Figures 6.4 and 6.5).

6.1. EFFICIENCY FOR PROPOSITIONAL PROGRAMS 119

100%

80%

60%

40% —L}

Provable IDB symbols

20% :
0% o—7F8 :'l T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Provable EDB symbols

Fig. 6.3: Dependency between provable EDB and IDB symbols

100%

5 80% —fe

£ 4%

S 60% 8o

S Jrspetoy

{="

£ 40% Qe% o 40/10

- $

o @Q

E 20% o 40/20

g | 0 8Qp, g,

& 0% SRy © 40/30
’20% LR G il) T I L} R S SRR

0% 20% 40% 60% 80% . 100%

Provable IDB symbols

Fig. 6.4: Relative improvement depending on the ratio Nepp/Nips

However, the improvement slightly depends on the distributions defining
the expected length and number of rules. Figure 6.6 shows that the relative
improvement increases with the number of rules and decreases with the length
of the rules for the ratio Nepp/Nipg=40/20 and a limit of 250 inferences.

| 120

CHAPTER 6. EXPERIMENTAL RESULTS

100%
g 80% —
E -
ol
=%
g 40% o 40/20
E !)
g 20% o 60/30
] 4
& 0% o 80/40

-20% L L L | LSS A | | . L il B

0% 20% 40% 60% 80% 100%
Provable IDB symbols

Fig. 6.5: Relative improvement depending on Nepg and Nipp

Magura describes further experiments in his diploma thesis [50]. For ex-

ample, he also compares the efficiency of both strategies if the task is to find
the first solution only. The results suggest that there is no significant differ-
ence to the results obtained for the computation of all solutions.

¢ 100%
f A +
,E‘i 80% 1%
2 6% +BZ
2 | %,
=y a
g 40% ugg %o o normal
3 20% i 2.4 w'ﬁ o long rules
g 0] Yo ogg' £
& 0% g'a"1 © many rules
_20% LI LB]l i LELEL | g L
0% 20% 40% 60% 80% 100%
Provable IDB symbols

! Fig. 6.6: Influence of the distributions to the relative improvement

6.1. EFFICIENCY FOR PROPOSITIONAL PROGRAMS 121

To sum up, the experimental results confirm the conjecture that GDFC-
resolution on average is more efficient than SLD-resolution for propositional
programs.

6.2 Efficiency for Datalog Programs

In 5.4 we proved that GDFC-resolution always needs fewer inferences
than SLD-resolution to compute all answers of goals for the procedure defin-
ing the ancestor relationship which equals the definition of the transitive clo-
sure of a directed, acyclic graph. The question we want to give an answer to in
this section is, whether or not GDFC-resolution is also more efficient than
SLD-resolution w.r.t. the effective runtime behaviour.

Since there is no efficient implementation of GDFC-resolution like Prolog
for SLD-resolution, we compare the performance of the standard interpreter
for pure Prolog with that of Program 2.6 which realizes a more efficient im-
plementation of GDFC-resolution than Program 2.1 (see Section 2.2)!

However, there are further ways to improve this meta-interpreter. From
the viewpoint of efficiency it is disadvantageous that it always scans the whole
sequence of facts respectively rules, because the information about potentially
relevant clauses, which is stored in the link clauses, is not exploited already
during the selection. This is due to the fact that Program 2.6 first retrieves a
clause before it checks by means of the link goal whether or not this clause is
relevant.

One approach to overcome this shortcoming is to reverse the order of
both goals in the third and fifth clause of the interpreter. Since many Prolog
systems provide first argument indexing [52] it additionally is reasonable to
reverse the order of the arguments in the link clauses. However, using this
scheme we still need two goals to retrieve a relevant clause. Fortunately there
is a straightforward approach to transform the program so that a join of the
clauses in P and the link clauses in LE™ is realized.

1) For each fact A« in P and each link clause link(B,C)« in Lnref
with 6=mgu(A,B), P’ contains the clause fact(C,A)0«.

122 CHAPTER 6. EXPERIMENTAL RESULTS

2) For each non-unit clause A«Aj,...,A, in P and each link clause
link(B,C)¢ in LE™™f with 6=mgu(A,B), P’ contains the unit-clause
rule(C,A,(Ay,...,Ap))<. If n=1 then we set n=2 and A,=true.

A clause fact(A,B)« is interpreted as: ‘B is true and possibly relevant for
A’. This allows us to retrieve relevant clauses in one step and in constant time
if the underlying Prolog system provides first argument indexing. The disad-
vantage of this approach is that P’ contains as many copies of a clause in P as
there are corresponding link clauses. However, we can assume that, in an effi-
cient implementation of GDFC-resolution, the copying of clauses is not neces-
sary since the access is supported by index structures realized on a low level of
the implementation. A further speed-up may be obtained by extending this in-
dexing scheme to the leftmost body literal of each non-unit clause.

The meta-interpreter needed to interpret the programs obtained by this
transformation comprises Program 6.7.

gdfc_solve(true)¢«—

gdfc_solve((A,B))«—
gdfc_solve(A),
gdfc_solve(B)

gdfc_solve(G)«
fact(G,F),
subgoal(F,G)

subgoal(G,G)«

subgoal(F,G)«
rule(G,G1,(F,B)),
gdfc_solve(B),
subgoal(G1,G)

Program 6.7: GDFC-meta-interpreter used for the benchmarks

Accordingly, we use a variant of the standard meta-interpreter for pure
Prolog which comprises Program 6.8. To avoid the re-compilation of com-
piled clauses, we store all clauses in a binary relation cl/2 where the head of
each clause is stored in first argument position. By means of first argument in-
dexing possible input clauses can be accessed very fast.

6.2. EFFICIENCY FOR DATALOG PROGRAMS 123

solve(true)«

solve((A,B))«
solve(A),
solve(B)

solve(A)(—
cl(A,B),
solve(B)

Program 6.8: SLD-meta-interpreter used for the benchmarks

To compare the efficiency of both interpreters, we randomly generated
directed acyclic graphs following the constant density model which is one of
the most frequently encountered probability models for random graphs [9].
For a fixed number n of nodes and a fixed density 0<d<I, each graph only
contains arcs of the form (u,v) with u<v where each arc exists with probability
d. We then measured the runtime needed to find all solutions of the following
five goals:

«pX,Y) pXX) «pOn-1) «p0,X) «p(X,n-1)

Figure 6.9 shows the average runtime tsyp and tgprc in milliseconds
obtained for the evaluation of these five goals with SLD- and GDFC-resolution
for 100 randomly generated graphs with n=100 and d=0.05. This and all fol-
lowing benchmarks described in this section were carried out with Quintus
Prolog 3.0 on a SUN 4/470 under SunOS Release 4.1. In Quintus Prolog, pro-
cedures are indexed on their first argument [60]. D denotes the mean value of
the runtime difference, ITsypl and ITgprcl the average tree sizes and S the av-
erage number of solutions for the particular query.

In order to analyze the reasons for this improvement, which lies in the
range between 45 and 55 percent, we have to consider the behaviour of
Program 6.8. The problem is that it always scans the sequence of the arcs in
e/2 twice, once in the first and once in the second p/2 clause. Program 6.7, in
contrast, scans this relation only once and then attempts to apply one of the two
rules in p/2. Whereas the first clause checks whether the edge found is a solu-
tion, the second clause is used to produce longer paths out of every edge. Thus,
by using Program 6.7 we halve the number of selections.

124 CHAPTER 6. EXPERIMENTAL RESULTS

6.2. EFFICIENCY FOR DATALOG PROGRAMS 125

head of GDFC-resolution discussed in Section 5.3 indeed can be ignored for
these examples.

—pX,Y)| «p(X.X)| «p(0,99)] «p0,X)| «p(X,99)
tsLp 3264 3248 153 155 3236
tGDEC 1749 1458 69 86 1438
D 1515 1790 84 69 1798
ITspl 10468 7852 380 498 7977
ITeprcl 7850 85233 254 372 5358
S 2617 0 6 124 125

Fig. 6.9: Runtime for the transitive closure

In order to obtain the same behaviour with the standard Prolog inter-
preter we have to specify the transitive closure based on the procedure defin-
ing the reflexive transitive closure (see Program 6.10) which results in a more
efficient but less natural variant. Thus, goal-directed forward chaining, in

contrast to Prolog, realizes an efficient evaluation of the natural specification
of the transitive closure.

pP(X,Z)e(X,Y),q(Y,Z)

q(X, X))
q(X,Z)—e(X,Y),q(Y,Z)

Program 6.10: Efficient implementation of the transitive closure

Figure 6.11 summarizes the results we obtained comparing the evaluation
of Program 6.10 with SLD-resolution and the evaluation of the standard def-
inition of the transitive closure with GDFC-resolution for 100 graphs of the
same type as in the previous benchmark. Even if SLD-resolution always needs
only one inference more than GDFC-resolution, the latter is considerably bet-
ter for the second third and fifth query. A comparison of the efficiency of
both strategies for the reflexive, transitive closure leads to similar values. The
result of a sample consisting of 100 graphs with density 0.05 is illustrated in
Figure 6.12. Whereas this effect has not been observed with LPA MacProlog
3.5 on an Apple Macintosh using the optimizing compiler [31], where SLD-
resolution indeed is faster for the reflexive, transitive closure, it is stronger
with the optimizing compiler of LPA Prolog Professional [48] on an IBM PC.
Nevertheless, the benchmarks demonstrate that the possible unification over-

—p(X,Y)| «pX,X)| «p0,99)| «p(0,X)| «p(X,99)
tsLD 1761 1735 83 85 1733
tGDEC 1811 1477 73 91 1482
D -50 258 10 -6 251
ITsLpl 8127 5418 269 394 5541
ITGpEc 8126 5417 WX, X)268 393 5540
S 2709 0 6 131 123

Fig. 6.11: Comparing the performance of SLD-resolution for the optimized

transitive closure with that of GDFC-resolution for the standard version

—p(X,Y)| «pX,X)| «p(0,99)| «p(0,X)| «p(X,99)
tsLD 1714 1687 79 85 2028
tGDEC 1664 1399 68 81 1495
D 50 288 11 4 538
ITsLpl 7880 5254 259 379 5382
ITGprcl 7879 5253 258 378 5381
S 2627 1 6 127 129

Fig. 6.12: Runtime for the reflexive, transitive closure

GDFC-resolution, however, is not always more efficient for datalog pro-
grams than SLD-resolution. Figure 6.14 shows the mean values taken for the
same generation procedure over 100 directed acyclic graphs defined by par-
ent/2 with 70 nodes and density 0.05. This procedure is defined in Program
6.13. Again we have the situation that SLD-resolution always needs one infer-
ence more than GDFC-resolution, but now SLD-resolution on average is about
6% faster than GDFC-resolution.

126 CHAPTER 6. EXPERIMENTAL RESULTS

sg(X, X))

sg(X,Y)
parent(X,Xp),
Sg(xvaP)’
parent(Y,Yp).

Program 6.13: The same generation procedure

—sg(X,Y)| sg(X,X)| «sg(0,69)] «sg(0,X)|«sg(X,69)
tsLD 4404 3774/ 252 303 3510
tGDEC 4739 4092 269 327 3728
D -335 -318 -17 -24 -218
ITsLpl 13440 10022 633 824 9322
ITgprc! 13439 10021 632 823 9321
S 4119 702 0 191 1

Fig. 6.14: Runtime for the same generation procedure

6.3 Effectivity of the Link Clause Optimization

In this section we are going to analyze the degree of the space saving ob-
tained by our approach to reduce the number of link clauses (Algorithm 3.33).
For that purpose we again used the program generator described in the first
section of this chapter. We generated a set of sample programs and counted the
number of link clauses before and after the optimization. Figure 6.15 illus-
trates how the number of link clauses and rules depends on the number Nipp of

IDB symbols, if Ngpp=100. We used the normal distribution for the rule
length and rule number.

For example, if Njpp=200 then we have about 460 rules and 1500 link
clauses on average. However, if we apply Algorithm 3.33 then the average
number of link clauses reduces to fewer than 650, so that we have a space
saving of more than 55%. This indeed is a considerable reduction of the re-
quired space. If we consider that the number of IDB symbols is a lower bound

6.3. EFFECTIVITY OF THE LINK CLAUSE OPTIMIZATION 127

for: the ‘optimum number of link clauses, then the average number of link
clauses obtained by Algorithm 3.33 must be closer to the optimum than to the
average number obtained without optimization.

1600

1400

1200

1000

800 ¢ rules

Clauses

o not optimized

] Py + o optimized
Le_*;
®

Trritr {3 it R T o s VL R L LML P ¢

0 50 100 150 200 250

400

200

et s e v s L

IDB symbols

Fig. 6.15: Average number of link clauses before and after optimization

An important by-product of Algorithm 3.33 is that the programs pro-
duced as output often are more efficient than the original ones. Magura
demonstrates that the evaluation of the resulting programs may require about
10% fewer inferences. This holds not only for GDFC-resolution but also for
SLD-resolution [50]. There may be different reasons for this speed-up. One of
them is easy to understand, if we remember the basic idea of Algorithm. 3 .33:
we always select such literals which produce the fewest link clauses in the
transitive closure. The size of the transitive closure, however, largely depends
on the length of the paths in the set of link clauses. Thus the reduction 'of the
number of link clauses in the transitive closure corresponds to the selection of

literals producing short paths.

If we consider the behaviour of SLD-resolution in the context of proposi-
tional programs, then the only source of failure is that there is no fact for the
selected EDB symbol. Because the link clause optimization reduces the length

128 CHAPTER 6. EXPERIMENTAL RESULTS

of the derivation up to the first goal the leftmost literal of which is an EDB
symbol, a failure occurs earlier in the derivation.

For GDFC-resolution the link clause optimization moves such literals to
the leftmost position which only need a small number of iterations of the sec-
ond subgoal/2 clause. Hence, the number of inferences carried out before the
next atom of the input goal is selected is reduced. Lemma 4.15 implies that
failure can only occur if an atom is selected. Consequently, if we assume that
each atom of the query is provable with the same probability, then the number
of inferences carried out before a failure occurs is generally reduced.

These considerations suggest that a further speed-up may be obtained for
propositional programs by sorting the literals in the clause bodies according to
the number of link clauses they add to the transitive closure.

6.4 Summary

In this chapter we presented experimental results concerning the effi-
ciency comparison of GDFC- and SLD-resolution and the quality of the link
clause minimization procedure. The results for propositional programs con-
firm the conjecture that GDFC-resolution on average is more efficient than
SLD-resolution. The improvements are promising, especially if the amount of
deducible information is relatively small. This is largely due to the results pre-
sented in Section 5.1 where we showed that GDFC-trees contain fewer and
smaller failure branches than their corresponding SLD-trees.

Concerning the computation of the transitive of directed acyclic graphs
we presented experiments demonstrating that the meta-interpreter for GDFC-
resolution may be nearly twice as fast as the standard three-clause interpreter
for pure Prolog. But even if we specify the transitive closure so that SLD-
resolution only needs one inference more than GDFC-resolution for each
query, then the meta-interpreter for pure Prolog remains slower than the
meta-interpreter for goal-directed forward chaining. We obtained similar re-
sults for the reflexive transitive closure. Even if there are procedures for
which SLD-resolution is better than GDFC-resolution, the results are very
promising, since they demonstrate that the intrinsic unification overhead of
GDFC-resolution sometimes can be ignored. Moreover, they give rise to ex-

6.4. SUMMARY 129

pect that GDFC-resolution may be very efficient for a possibly large class of
datalog programs.

Finally we analyzed the efficiency of our approach to minimize the num-
ber of link clauses for propositional programs. The experiments demonstrate
that the space saving may be more than 50%. An interesting by-product of this
space reduction is that it simultaneously leads to a runtime improvement up to
10% for GDFC- as well as for SLD-resolution.

Chapter 7

TERMINATION OF GDFC-RESOLUTION

If we identify the termination of the query evaluation process with the
finiteness of the refutation tree, then it is generally undecidable in the presence
of recursive programs with function symbols whether or not the evaluation of
a particular query for a definite program terminates. This follows from the
fact that every Turing computable function can be computed by a definite logic
program [3, 73]. In this context, however, top-down strategies benefit from
the fact that procedure definitions are generally top-down. This means, that the
structure of terms simplifies top-down, whereas it complicates bottom-up.

An exception to this is the somewhat artificial bottom-up specification of
the digits given with Program 7.1. In this example bottom-up procedures
terminate, while top-down approaches generally go into an infinite loop.
Cohen and Feigenbaum [16] as well as Kifer and Lozinskii [36] use similar ex-
amples to disuss the pros and cons of forward and backward chaining.

digit(X)«
digit(s(X))
digit(s(s(s(s(s(s(s(s(s(OMMM))<—

Program 7.1: Bottom-up specification of the digits

Bottom-up specified procedures, which generally have a finite fixed
point, do not occur frequently in practice. Moreover, most of the recursive
procedures, such as the append procedure, have an infinite fixed point and are
specified top-down. Yamamoto and Tanaka [90] already mentioned, that their
approach sometimes does not terminate. One therefore could speculate that
GDFC-resolution as well as other bottom-up approaches cannot deal with top-
down specified procedures.

|

132 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

Our goal in this chapter is to develop a variant of GDFC-resolution which
always terminates when SLD-resolution does. Since the structure and finiteness
of the refutation trees largely depends on the computation rule we restrict at-
tention to the left-first computation rule in this chapter. A further precondition
is that GDFC-resolution uses the link clause program Lp instead of a finite link
clause program LE". Since Lp may be infinite, we have to compute the transi-
tive closure Linkp dynamically at runtime. Following the definition of
Yamamoto and Tanaka this can be done by Program 7.2. Consequently, we
have to replace the link goals in our meta-interpreter by bottom_up_link/2
goals which are evaluated after adding the link clauses in Linkp.

bottom_up_link(S,G)«
link(S,G)

bottom_up_link(S,G)«
link(S,S,),
bottom_up_link(S;,G)

Program 7.2: Bottom-up computation of the transitive links

The disadvantage of this definition is that it computes all atoms for which
a particular atom may be relevant for - and there may be infinitely many of
them - in a bottom-up manner. At runtime the first argument of each call of
the bottom_up_link/2 procedure is bound, so that terms occurring in the first
argument of the recursive bottom_up_link/2 call are generally more compli-
cated for top-down specified procedures. Consequently the termination of the

evaluation of bottom_up_link/2 goals cannot be guaranteed for programs such
as the append procedure.

top_down_link(S,G)«
link(S,G)

top_down_link(S,G)«
link(S1,G),
top_down_link(S,S;)

Program 7.3: Top-down computation of transitive links
If we consider the fact that at runtime also the second argument of each

bottom_up_link/2 goal is bound, namely to the actual goal, then this problem
can be solved easily. The idea is to compute all atoms that are possibly relevant

133
CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

for the goal in a top-down manner. This approach, vt/hich is declaratively
equivalent to the bottom-up approach, is implemented with Program s

LEMMA 7.4 (Termination of top_down_link/2):

Let P be a program and A be an atom such that the SLD-tree for
PU{«A} w.r.t. the left-first computation rule is finite. Then each goal for the

procedure top, down_link/2 where the second argument is bound to A termi-

|
nates too.

Proof: It follows from the definition of tqp_down_link/Z that tt;le evalr-t
uation of each goal where the second argume.nt is b(.)unc? to A equatllf tdat Pz; :
of the SLD-derivation from the root to the first derivation whereA e efl.'l\;te
goal is shorter than its predecessor. Since the SLD-tree for Pu{‘ « i :ts‘ 1tn n:
there are no infinite derivations so that the top-down computation ot the tra

i]
sitive links also terminates.

gdfc_solve(true)<—

gdfc_solve((A,B))«
gdfc_solve(A),
gdfc_solve(B)

gdfc_solve(B)«
clause(B,true)

gdfc_solve(B)«
clause(A,true),
top_down_link(A,B),
subgoal(A,B)

subgoal(A,B)«
clause(B,(A,Body)),
gdfc_solve(Body)

subgoal(A,B)«
clause(C,(A,Body)),
top_down_link(C,B),
gdfc_solve(Body),
subgoal(C,B)

Program 7.5: A variant of the meta-interpreter based on top-down links

134 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

A disadvantage of this top-down computation is that it possibly does not
terminate for bottom-up specified procedures such as Example 7.1. In this case
the goal «top_down_link(digit(s(0)),digit(0)) first produces the answer kyesi
and then loops forever. From our point of view this is no important disadvan-
tage since, as already mentioned, bottom-up specified procedures occur rarely
in practical applications. In this chapter we consider a variant of Program 2.6
which calls top_down_link/2 goals instead of link/2 goals. This meta-inter-
preter is defined in Program 7.5.

THEOREM 7.6 (Termination of GDFC-Resolution):

Suppose P is a definite program and G is a goal. Suppose SLD- and
GDFC-resolution both apply the left-first selection function. If the evaluation
of PU{G} with SLD-resolution terminates then it also terminates with GDFC-
resolution using the top-down computation of possibly relevant atoms.]

Proof: To prove this theorem we show that the meta-interpreter for
goal-directed forward chaining based on top-down computed transitive links
(Program 7.5) cannot go into an infinite loop if the meta-interpreter for pure
Prolog (Program 2.2) does not.

Since SLD-resolution terminates, every top_down_link/2 goal occurring
in a derivation terminates. Consequently, the procedures gdfc_solve/1 and sub-
goal/2 are the only possible source of non-termination. Our goal is to show
that there is a corresponding recursive call of the solve/1 procedure for each
recursive call of the gdfc_solve/1 respectively subgoal/2 procedure.

Suppose A is an atom and «gdfc_solve(A) is the actual goal. We consider
such recursive calls of gdfc_solve/1 which come from either n-1>0 applica-
tions of the sixth followed by one application the fifth clause, or n>1 applica-
tions of the sixth clause. Let C=B<«Bj,...,Bn be the input clause used in the n-
th step and suppose the recursive call is «—gdfc_solve(B,...,Bn)0.

If we have the first situation then A and B are unifiable so that, starting
with «solve(A), we reach <solve(Byi,...,Bm)y after a finite number of steps,
since SLD-resolution terminates. Next B is selected. Because B;0 is a logical
consequence of P and SLD-resolution terminates we after a finite number of
steps derive the goal <solve(B,...,By)c with the property that (Bs,...,Bm)0 is
an instance of (Bs,...,Bm)0.

CHAPTER 7. TERMINATION OF GDFC-RESOLUTION 135

Now suppose we have the second situation. Hence there must be a transi-
tive link from B to A. Since SLD-resolution terminates, we need a finite num-
ber of steps to derive «solve(By,...,Bp)Y using the clauses also used to con-
§tmct the transitive link. Clearly B;0 is an instance of Byy. Consequently, there
1s an answer ¢ for «—solve(B1)y such that (Bj,...,B)0 is an instance of
(Ba,...,Bm)o.

Thus, in both situations there is a recursive call «solve(Bs,...,Bn)o such
tl}ﬁﬁ (B2,...,Bm)0 is an instance of (By,...,Bn)o. Consequently, for each recur-
sive call of gdfc_solve/1 there is a corresponding recursive call of solve/1.

Let s now consider the recursive subgoal/2 procedure and suppose the
non-termination is caused by a sequence of recursive calls of this relation.
Stanir}g with the goal «subgoal(B,A)8) where B« is a fact in P, for which
there is a transitive link to A producing the answer 0y, all recursive calls have
the form <subgoal(B;,A6;), i1, where A®; is more specific than A8;.; and
each B is a logical consequence of P. Because SLD-resolution terminates ap-
plying the left-first computation rule and since there is a transitive link from
each B; to A, it must be possible to derive a goal «solve(A;) where A, is an
instance of B; for each B;. This can be done using the non-unit clauses in P
Pse.d to construct the corresponding transitive link. Consequently, if there is an
infinite sequence of recursive subgoal/2 calls then there also must be an infinite
sequence of solve/1 calls. .

' Consequently, if the evaluation of <—solve(A) terminates, then the evalua-
tion of <—gdfc_solve(A) using Program 7.5 also terminates.]

With respect to this termination behaviour, there is a strong parallel to
tl_le system graph approach proposed by Kifer and Lozinskii in [36]. Since the
filters used to select relevant clauses are pushed top-down through the system
graphs, this approach terminates for many top-down specified procedures.

: From the previous theorem it follows that the termination of SLD-reso-
lution is a sufficient condition for the termination of GDFC-resolution using
fOI.)-down computed transitive links. The following example demonstrates that
1t is not admissible to replace this implication by an equivalence, i.e., the ter-

mination of GDFC-resolution is not a sufficient criterion for the termination
of SLD-resolution.

136 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

EXAMPLE 7.7 (Termination of SLD- and GDFC-Resolution):
Suppose P consists of only one clause, namely
p<p

and suppose G is «p. Whereas every SLD-tree for PU({G} contains an
infinite branch, every GDFC-tree is finite since P contains no fact. u

This leads to the following theorem.

THEOREM 7.8 (Termination of GDFC- and SLD-Resolution):

If we apply the left-first computation rule, then the class of programs for
which SLD-resolution terminates is a proper subset of the class for which
GDFC-resolution using top-down computed links terminates. [

Proof: The result follows from Theorem 7.6 and Example 7.7. [

An interesting by-product of Theorem 7.6 is that termination proofs for
SLD-resolution can be adopted for GDFC-resolution. We explain this at the
example of the automatic termination proof technique for Prolog recently de-
veloped by Pliimer in [57, 58, 59]. His approach can be applied to definite
programs which are well-moded, normalized and free of mutual recursion. A
program is normalized if no variable occurs more than once in a literal.
Whereas the last two properties are syntactic restrictions only, the well-mod-
edness is a dynamic property. Pliimer adopted the definition of well-moded-
ness from Dembinski and Maluszynski [18]. Well-modedness informally
means, that a certain set of input arguments is guaranteed to be ground before
a procedure is called, and that a set of further arguments is guaranteed to be
ground after a successful evaluation of a procedure. Thus, the well-modedness

always is only valid for a fixed and static computation rule (for example for
Prolog’s left-first strategy).

The basic idea of Pliimer’s approach is to prove that the size of the terms
occurring in certain argument positions of recursive body literals always is
smaller than in the head of the clause. The size of the terms is measured by
linear term norms. In the context of bottom-up evaluation the presence of

137
CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

i i s must be
rmination proofs implies that the size of the terms in the head alway
t;-eater than in the recursive body literals.

THEOREM 7.9 (Termination Proofs for GDFC-Resolution):

i G
Suppose P is well-moded, normalized and free of n}utu?l recurs;o;lofne(;d‘
. uplpsatisfying the modes. Suppose there is a term1nat19n];goDoF i
5 fgzre occurring in G. Then the evaluation of PU{G} with
proc

tion llSlng eft'flxst COIIIputathﬂ I'Llle and top"down Computed tIa.llSltlve
1 ﬂle 1

- tion
Proof: Since SLD-resolution terminates for PU{G}, GDFC-resoluti .
terminates too.

i ion for top-

The price for this termination behaviour of GDFC—resolutul)ir:‘k dausgs

d S| efiﬁed programs is that we have to compute the necessa:ymize o
o(fw:hne tp;ansitive closure dynamically at runtime. In order to opti

nks it clearly is possible to use memo fa-

i i itive li
computation of the transi . o
Itfll:s“cBut egen if we store solutions of top_down_link/2 goals and

i i i i cess.
when they are needed this remains a time consuming pro

i ich allows us
An interesting question is whether there is any approac{l; v;h:::n:tely b
ifi s. Unfo ;

to use LE" instead of Lp for top-down s.peC{fled program sk

:no LA" the termination of SLD-resolution 1s no longer a e el

1fng th: termination of GDFC-resolution. This has. two reasons: sl i
dm;ived with GDFC-resolution w.r.t. L™ are possibly more gener:

e

infini atoms
derived with SLD-resolution and second there may be infinitely many
which are relevant for the selected element.

. - finy.
EXAMPLE 7.10 (Non-Termination of GDFC-Resolution using Lp):

Suppose P is

n-at(O)(——
nat(s(X))<nat(X)

Paris

link(nat(X),nat(s(Y)))¢

138 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

and G is «—nat(s(0)). Whereas SLD-resolution terminates, GDFC-resolu-
tion goes into an infinite loop repeatedly calling subgoal/2 goals after giving
the answer ‘yes’. The reason is that each atom nat(s"(0)) (n>0) is a possibly
relevant subgoal for nat(s(0)). Thus we can eliminate the body literal of the
second nat/1 clause by each of these atoms since the resulting head nat(s“”(O))
also is possibly relevant.]

One solution to this problem could be to exploit the bounded term size
property which says that there is a function f(n) such that, for each input with
size n, no terms with size greater than f(n) occur during the evaluation. Since
each program for which there is a termination proof satisfies the bounded
term size property [58, 84], the size of the atoms possibly relevant for the goal
must be limited. Thus, if termination proofs are available, the extension of the
meta-interpreter which forces a failure whenever the linear predicate
inequalities are violated guarantees the termination. The approach described in
Heidelbach’s diploma thesis [30], which is based on dynamic size checks, builds
a first step towards this direction. :

For bottom-up defined procedures, however, we still can use Li" instead
of Lp, because the termination of the derivation is guaranteed by the simplifi-
cation of the terms from the recursive body literals to the head.

The main disadvantage of the approaches discussed above is that they re-
quire additional operations at runtime, which both, the dynamic computation
of the transitive links and the operations needed to stop the inference if the size
of the derived terms exceeds a certain level, are very time consuming.
Practical experiments show that indeed this overhead decreases the efficiency
of GDFC-resolution so that SLD-resolution is generally more efficient (if it
terminates). The optimization of these approaches or the development of alter-
native strategies to improve GDFC-resolution for recursive programs contain-
ing function symbols is an important field of future research.

In this context it is worth mentioning that Theorem 7.6 also holds if Lp is
finite and we use Lp instead of top-down computed transitive links.
Consequently, if Lp is finite the meta-interpreter for goal-directed forward
chaining (Program 2.1) terminates whenever the meta-interpreter for pure
Prolog (Program 2.2) does. Thus, especially in the context of datalog pro-

grams the efficiency of GDFC-resolution is combined with an improved ter-
mination behaviour.

CHAPTER 7. TERMINATION OF GDFC-RESOLUTION 139

Motivated by the fact that the class of programs for which' SLD-resolution
terminates is a proper subset of the class of programs for‘whl_ch GDFC-reso-
lution terminates, one now could ask if it is easier to decide wpether GDF(;-
resolution’ goes into an infinite loop than it is for SLl?-resolutlon. Cleafly in
the context of definite programs this problem is undecidable. However, m'the
context of propositional programs there are problen}s concerning the t§mlrtxl?-
tion of the query evaluation process which are decidable. Let us consider the
following problem denoted as the special loop-test problem:

DEFINITION 7.11 (Special Loop-Test Problem for SLD-Resolution):
Input: A be a propositional program P and a goa} G.

Question: Does a depth-first search' through the S'Ll.)-Free for Pk‘J{G}
coming from the left-first computation rule go into an infinite 1opp without
failing finitely or reaching a success node? ,]

Kleine Biining, Lowen and Schmitgen addressed this. problem in [38]
where they showed: that it is decidable in O(n) wh.ere n is the number ‘of
clauses in P. The following lemma addresses the special loop-test problem for
GDFC-resolution. ' j

LEMMA 7.12 (Special Loop-Test Problem for GDFC-Resolution):

Let P be a propositional program and G be a goal. SuI.)pos-e we apply the
left-first computation rule. Then it is decidable in polynomial time whethe}' or
not a depth-first search through the GDFC-tree for PU{G} w.r.t. Lp goes into
an infinite loop before it finds the first node containing the empty clause or

]
finitely fails.

Proof: To show the result we modify the interpreter for goal-directed
forward chaining (Program 2.1) so that each clause in P is used &‘u most m+1
times as input clause where m is the number of predicate symbols in P.

For that purpose we introduce an extension table,. sim?lar to th'fxt one used
in the ET algorithm [19], containing two lists. The first list contains the el‘c—
ments selected but not solved in the branch currently tra‘versed.' The second list
contains the elements already evaluated together with theu'.truth vz.llues.
Whenever we select an element not contained in any of the two lists we simply

140 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

add it to the list of selected elements and proceed as usual. At the moment
where it is solved or even failed we remove it from the list of selected ele-
ments and add it together with its truth value to the list of evaluated elements.
Since left-first computation rule is a local selection rule [86] which always se-
lects one of the most recently introduced literals, GDFC-resolution is in a loop
and we can stop the derivation reporting that GDFC-resolution loops, if we
select an element which is contained in the list of selected elements. Suppose
we select an element contained in the list of evaluated goals. If its status is true,
then nothing remains to be done with it and we proceed with the next goal.
Otherwise, if its status is false then we force backtracking. Hence, if the eval-
uation of the input query with this approach succeeds or finitely fails then the
depth-first search through the GDFC-tree cannot go into an infinite loop.

Let us now consider the complexity of this loop-checking. Suppose n
(m<n) is the number of clauses in P. Since we store the result of the evaluation
of each selected element in the extension table, every element is evaluated at
most once. Each non-unit clause can be used as input clause for at most m sub-
goal-goal pairs. In the case where the head of the clause unifies with the right
atom of the subgoal-goal pair we, supposed that Lp contains the corresponding
link clause, can apply Rule 3 as well as Rule 4. The same holds for the unit
clauses in P: there are at most m atoms each unit clause may be relevant for.
However, if the fact and the selected atom are the same and Lp contains a link
clause where this atom occurs on both sides then we can apply Rule 1 as well
as Rule 2. Consequently each clause is used at most m+1 times as input clause.
Consequently, the complexity of the special loop-test problem for GDFC-reso-
lution is bounded by O(n?). »

Kleine Biining et al. furthermere considered the following problem de-
noted as the general loop-test problem:

DEFINITION 7.13 (General Loop-Test Problem for SLD-Resolution):

Input: A be a propositional program P without facts.

Question: Is there a set of facts F and a goal <~ A such that a depth-first
search through the SLD-tree for PUFU{«A} coming from the left-first com-
putation rule goes into an infinite loop without failing finitely or reaching a
success node?]

CHAPTER 7. TERMINATION OF GDFC-RESOLUTION 141

By a reduction of the 1-in-3SAT Problem Kleine Biining et al. showed
that the general loop-test problem is NP-complete for SLD-resolution in the
context of propositional programs [38]. The following theorem shows that it is
also NP-complete for GDFC-resolution.

THEOREM 7.14 (General Loop-Test Problem for GDFC-Resolution):

Let P be a propositional program and G be a goal. Suppose we apply the
left-first computation rule. Then it is NP-complete to decide whether there isa
set F of facts and an atom A such that a depth-first search through the GDFC-
tree for PUFU{«A} w.r.t. Lp goes into an infinite loop before it finds the
first success branch or fails finitely. L

In order to prove that the general loop-test problem is NP-hard W€ bor-
row the idea of Kleine Biining et al. to reduce the 1-in-3SAT problem of
propositional calculus formulas which unfortunately is NP-hard [65].

DEFINITION 7.15 (1-in-3SAT-Problem):

Input: A propositional formula ¢ in conjunctive normal form consisting
of n clauses with three literals per clause where each literal is positive.

Question: Is there a truth assignment T for ¢ such that exactly oné literal
is true in each clause? u

Proof of Theorem 7.14: First it is easy to verify that general Joop-test
problem is in NP. We simply choose A and F non-deterministically and solve
the special loop-test problem for PUFU{«A}. Lemma 7.12 implies that this
can be done by a polynomially bounded algorithm.

Let (p=(A1,1VA1,2VA1,3)/\.../\(An,l\’An_2VAn’3) with AiJ pOSitiVe literals
be given. Let s,Sp,...,Sn be n+2 distinct symbols not occurring in @. We now
construct the corresponding program Py in the following way: for each clause
(Ai,1vVAi2VA; 3) (1<i<n), Py contains a procedure :

142
CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

Si-1¢-Ai1,Ai2 C

Si-1¢-Ai1,Ai3 Cl
Si-1¢-Aj2,Ai1 C2
Si-1<-Ai2,Ai 3 C3
Si-16-Ai3,Ai 1 C4
Si-16-Ai3,Ai2 C:
Si-l"—Ai,l,Si C

Si-l(—Ai'z,Si C7
Si-16-A; 3,8 C:

Furthermore Py, contains the clauses

Sné—S,80
S¢—

rithm('llve;élzotvlélshconsttrrluctlon can be done by a polynomially bounded algo-
o gy Ssu ol:av 4 at Qe 1-m-3S1‘XT if and only if there is a goal G and a
g 1 hc 1tfat‘the depth-flfst search through the GDFC-tree for
figitel ! e e_t-flrst computation rule and w.r.t. Lp, goes into an in-

oop before it finitely fails or reaches a leaf containing t(;le empty claus1(:l

i {lLet us first con§ider the link clause program Lp, for P,. For each
: h,...,n} ar.xd each‘ je {1,...,3} it contains one link cla:;se link‘;;‘\-~ i
urthermore, it contains the clause link(s,s)¢«. bifi 155,

Now suppose there is a truth assi
‘ assignment T={Aj,...,A <
such that exactly one literal is true in each clause o[f q]) Thenm} iy
L A : we set A:=sy and

tmthz;il;;:?,stlgxi:f GDF:C—derlvation of a goal «sj_1, 1<i<n. Since 7 is a
AR e e cor31tams.exactly one literal from each clause there can
he o trfle th,..., } with the property that A;j« is in F. Since
i ;‘;tiy i su, e root node «s;.; of the GDFC-tree for PoUFU({ s}
o A (;(}:fssor node, namely «<A; j»Si-1>. Since the clauses are
g ,C .1s n((i)cg: has exactly three successor nodes coming from
8i-1. Since onl);J -(l)’ne 21-;[:;;1 is6:iugr;11r;;2f: (t:;) righ:l)l Relibiymesders Aopains
from the first two clauses directly lead to ?:islire.efigs\?:\f:‘r)r :soi:ilzch: mi::i
s +j

derive the goal «s;. Fi :
gy g si- Figure 7.16 shows the first three levels of this GDFC-tree

143

CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

€—Sj.1

—<Ai2,8i-1>
<Al <Ai3 s
failure failure

Fig. 7.16: The first three levels of a GDFC-tree for Pq,uFu{(——si.l}

Letus now consider whét happens if the actual goal is <$n. The only fact
relevant for sy is s<—. Consequently we apply Rule 2 which results in the goal
«<sp,s>. Next we can apply only Rule 3 using the clause $p¢—S,So t0 derive the

goal «So.

1 is a truth assignment such that exactly one literal is true

Consequently, if
the GDFC-tree for

in every clause, then a depth-first search through
PyUFU{<so} goes into an infinite loop.

Now suppose there is a goal <A and a set of facts F such that a depth-
first search through the GDFC-tree for PoUFU({ A} goes into an infinite
loop before it reaches a success branch or finitely fails. Clearly the answer for
a refutation of Pq,uFu{(—A} for each A {80,51,...,5n} would always be ‘yes’
or ‘no’, since the corresponding GDFC-tree is finite. Therefore, let us assume
that A€ {$0,515.++»Sn}. If F i8 {A1,...,An<] then we define the truth assign-
ment as T:={BI B occurs in ¢ and B« is contained in F}.

In this case we use the clauses s« and sp¢—$,So to derive
....;n}. Clearly we only go
Cg and Co. Consequently,
...n} such that A;j is
it cannot be possible that

.,Cg can be evaluated successfully. Otherwise, the eval-
{1,2,3} for

Suppose A iS Sp.
«s0. Now suppose A is si.1, for an arbitrary i€ {1,
into an infinite loop using one of the clauses Cs,
there must be at least one je {1,2,3} for each ie ks
contained in F. Since we scan the clauses top-down,

one of the clauses Cj,..
uation of «s;.1 would succeed. Hence, there can be at most one je

144 CHAPTER 7. TERMINATION OF GDFC-RESOLUTION

each ie {1,...,n} such that A;j¢ is contained in F. Thus T contains exactly one
atom from each clause in ¢. This completes the proof of the theorem. u

The previous theorem shows that it is not easier to decide the general
loop-test problem for GDFC-resolution. Unfortunately, there is a strong ar-
gument opposing the conjecture that there are problems which are easier to
decide for GDFC-resolution. Basically, we can transform each program P to a
program P’ so that GDFC-resolution indeed provides the same behaviour as
SLD-resolution. For each clause A«<Ay,...,A, (n=21) we simply introduce an
auxiliary symbol A’ and insert it as the leftmost body literal which yields
A«A’Aj,...,An. We furthermore add the fact A’ to P’. If we apply the left-
first computation rule, then the calls of gdfc_solve/l applying the meta-inter-
preter for goal-directed forward chaining are exactly the same as the calls of
solve/1 applying the standard interpreter for pure Prolog. In Section 3.1 we
already demonstrated that, using this approach, GDFC-resolution simulates the
behaviour of SLD-resolution. If we compare the proof above with that for
SLD-resolution given in [38] then s is such an auxiliary predicate. Thus, the
introduction of auxiliary predicates seems to be a good and general means to
show that decision problems such as the general loop-test problem have the
same complexity for GDFC- and SLD-resolution.

Chapter 8

RELATED WORK

The first topic discussed in this chapter is how GDFC-resolution relates to
other approaches for bottom-up evaluation. We consider the field of deductive
databases and analyze the applicability and efficiency of GDFC-resolution for
this area. The second section concerns an approach to choose the optimal rule
direction for LLNR-resolution.

8.1 Deductive Databases

The design and implementation of efficient inference algorithms, which
are more efficient than resolution for large programs, is one of the most im-
portant research areas in the field of deductive database systems [24, 82].
Gallaire [23] comprehensively discusses the notion of deductive databases
which are motivated by the desire to integrate database technology and logic.
Possible application areas of deductive databases deal with massive amounts of
data and need a query facility more powerful than that of typical query lan-
guages [79, 81].

One rough classification of the query processing strategies (see [4] for an
excellent overview) is based on the direction of the rule application: top-down
vs. bottom-up. Many of the top-down approaches such as QRGT [81], OLD-
resolution [76] and ET [19], which is similar to QSQR [4], are an extension of
SLD-resolution; they store encountered goals and computed answers and re-
use them when they are needed. These strategies avoid redundant derivations
and, in contrast to Prolog, are complete for datalog programs.

Most of the bottom-up approaches are based on the ‘semi-naive’ fixed
point procedure which likewise is an optimized version of the ‘naive’ strategy.
The naive approach for definite logic programs, realized by Algorithm 8.2,

146 CHAPTER 8. RELATED WORK

implements the mapping Ts defined on S-Herbrand interpretations which are
introduced in [20, 45]. In contrast to the standard definition of Herbrand inter-
pretations which are based on ground atoms, S-Herbrand interpretations pos-
sibly contain non-ground atoms. Accordingly, By and Uy are the non-ground
counterparts of the standard definition of the Herbrand base and universe. The
following definition is due to Falaschi et al. [20].

DEFINITION 8.1 (The Mapping Ts):

: Let P be a definite program. The mapping Ts on the set of S-Herbrand
interpretations, associated to P, is defined as Ts(I) = {A81 3A«B;,...,B,eP,
3Bi,...,Biel, and 30=mgu((By,...,B,),(Bi,...,B})}. m

Falaschi et al. show that Ts is monotonic and continuous which implies
that Ts has a least fixed point. They furthermore show that this denotational
characterization is equivalent to its model-theoretic pendant, the least S-model.

ALGORITHM 8.2 (Naive Evaluation):

Input: A definite program P.
Output: The least fixed point which is the minimal S-Model Mg of P, if it
is finite. If the least fixed point is infinite, then the output is an infinite

sequence of approximations which approach the least fixed point as a
limit.

1).,. B=@.

2) Repeat F:=FUAF, where AF={A®| there is a clause A«<B;,...,B, in
P, a sequence of atoms Bi,...,Bp in F and a most general unifier

6=mgu((By,...,Bn),(Bi,...,B;)) such that AO is not subsumed by an
atom if F}, until AF=0. n

This definition of the naive strategy is more general than that given in
[81]. Ullman assumes that P is safe so that all atoms in the fixed point are
ground. In this case the naive approach implements the function Tp defined in
[46] which is a mapping between standard Herbrand interpretations. For safe
programs the naive and semi-naive approaches can be implemented more effi-
ciently, since unification can be replaced by matching and the subsumption
check can be replaced by a duplicate check.

8.1. DEDUCTIVE DATABASES 147

Maher and Ramakrishnan describe an improvement of the subsumption
check for the semi-naive procedure. In [51] they show that; for many pro-
grams, it suffices to check whether any atom was produced in the previous it-
eration, and they develop techniques to prove this property.

The main drawback of the naive approach lies in the duplication of work;
in every round, we have to evaluate each rule body against all facts. The basic
principle of the semi-naive approach is motivated by the observation that, at
each iteration, new atoms can only be produced using at least one atom ob-
tained in the previous iteration. Therefore, the semi-naive approach exploits
the differential AF, using in every round at least one B{ which was derived in
the previous round. ;

Compared with top-down approaches, the pure semi-naive approach lacks
a feature to select relevant clauses. In the last years many researchers ad-
dressed this problem to the effect that very promising approaches to eliminate
this shortcoming were developed. Some of these optimizations are the system
graph approach of Kifer and Lozinskii, described in [33, 34, 36], magic sets,
introduced by Bancilhon et al. in [5], generalized supplementary magic sets,
presented by Beeri et al. in [6] and magic templates described by
Ramakrishnan in [61]. The last three approaches are rewriting strategies which
transform a logic program P into a program P’, which is equivalent to P w.r.t.
the top-level goal and can be evaluated efficiently with the semi-naive ap-
proach. Recently Ullman [80] compared the result of the magic set optimiza-
tion with the QRGT algorithm. In his paper with the title

‘BOTTOM-UP BEATS TOP-DOWN FOR DATALOG’

he shows that the magic set approach is never worse than any top-down
approach developed so far by more than a constant factor. Thus, all the advan-
tages so far associated with top-down evaluations only can also be offered by
bottom-up evaluation.

In this context it is an interesting question how GDFC-resolution com-
pares to these bottom-up approaches. First we have to mention, that GDFC-
resolution is a tuple at a time approach which possibly does a lot of redundant
derivations. This excludes GDFC-resolution (as well as SLD-resolution) from
being an efficient strategy for very large databases. In his diploma thesis
Heidelbach [30] demonstrates how extension tables implemented in ET" can be
used to reduce the number of redundant derivations and to make GDFC-reso-
lution sound and complete for datalog programs if the left-first computation

148 CHAPTER 8. RELATED WORK

rule with depth-first search is applied. But, as the following example shows,
this approach does not completely eliminate redundant derivations.

EXAMPLE 8.3 (Elimination of Redundant Derivations):
Suppose P is

per1,q
r<-s
qer
S¢—

and G is «p. Let us consider the GDFC-derivation for PU{G} in which
all solved atoms are stored in an extension table and reused when they are
needed. Clearly the next goal in the derivation is <<s,p>. Using the second
clause we derive <—<r,p>. The next derived goal is <—q. Again we use the fact
s<— and derive «<s,q>. In the next step we use the second clause which yields
«<r,q>. Finally, we derive the empty empty clause using the third clause. The
fact that r occurs twice on the left side of a subgoal-goal pair indicates that r is
proved twice in this derivation. Thus, even the use of extension tables does not
prevent GDFC- resolutlon from making redundant derivations. In contrast to
that, using the ET" algorithm r is proved only once.]

An interesting observation is that the query processing strategy APEX for
deductive databases, which is due to Lozinskii [49], is strongly related to
GDFC-resolution, because a slightly modified version of it realizes a set ori-
ented extension of GDFC-resolution. APEX uses migration sets to focus on
relevant clauses where all terms occurring as arguments are assumed to be
distinct variables. Thus, the rules in P have the form

A(——Al,...,An,El,...,Em

where A,Aj,...,A, are atoms containing distinct variables as arguments
and Eg,...,Ey are equalities between the variables in A,Aj,...,A, or between
variables and constants. A migration set of X, mig(X), is defmed by all terms
to which X can migrate:

8.1. DEDUCTIVE DATABASES

DEFINITION 8.4 (Migration Sets):
If P contains a clause
PEMIX B9 gl sy, Of 3050 Iy

then Ye mig(X). If there are two atoms such that their unifier contains a
substitution X=Y then Ye mig(X). If Ye mig(X) and Ze mig(Y) then
Ze mig(X). [

A fact p(Y1=cy,...,Yn=cy) with variables Yj,...,Y, and constants c;,...,c,
is relevant to q(...,X;=d;,...) if there is a je {1,...,n} such that Yje mig(X;) and
cj=di. In contrast to the link clauses this notion of relevance directly depends
on the data flow and not on the order of literals.

Bancilhon and Ramakrishnan argue in [4] that APEX which is illustrated
with Algorithm 8.5 is a mixed approach. This is motivated by the fact that step
2) is a classical bottom-up step, while the recursive calls to APEX in step 3)
also occur in top-down approaches such as SLD-resolution. ?

ALGORITHM 8.5 (APEX):

Input: A program P and a single literal goal G=«A.
Output: All answers to G, if APEX terminates.

1) Compute R, the set of all facts relevant for A.

2) For each rule C in P and each combination of facts in R satisfying
the body of C, compute the resulting rule head and insert it into R.
Terminate if no new facts can be produced.

3) If C=B«B4y,...,B, is a non-unit clause in P and B’« is a fact in R
which is unifiable with B; (1<i<n) by mgu 6, then solve all auxiliary
queries < B;0, for j=1...n and j#i, using the facts in P. After gen-
erating all answers to each goal «<—B;8, execute C augmenting R by
the newly produced facts and go to 2).]

The parallelism between APEX and GDFC-resolution is obvious. To ex-
tend GDFC-resolution to a relation at a time approach, we make the following

|
|
{
:

150 CHAPTER 8. RELATED WORK

changes: in step 1) we apply the link clauses to compute relevant facts, and in
step 3) we always have j=1, since each relevant fact B’«— can only be unifiable
with B;. In both steps we additionally have to check whether R is augmented
by any facts, since we can stop if this is not the case. Note that the data flow
between the head and the leftmost body literal represented by the equalities has
to be made explicit in order to obtain link clauses with optimal selectivity.

Bancilhon and Ramakrishnan demonstrate in different benchmarks that
APEX is dominated by the magic set approach for the transitive closure and

.has a comparable performance for the same generation procedure. This

demonstrates that GDFC-resolution, even if it is not designed especially for
this purpose, can be extended to an efficient evaluation strategy for deductive
databases. In this context it is important to mention that the supplementary
magic set approach is more efficient than this relation oriented extension of
GDFC-resolution. The disadvantage of the set-oriented variant of GDFC-reso-
lution is that it weakly supports sideways information passing; the answers ob-
tained for «<—B;0 are not exploited to restrict the search space for Bj.16. In the
supplementary magic set approach sideways information passing is realized by
supplementary relations and in the system graph approach by dynamic filtering
[35]. However, it is worth mentioning that the link clauses are query indepen-
dent. A further interesting property is that we do not place the frequently oc-
curring restriction, that the program is safe, i.e., that all variables occurring in
the head also occur in the body. Moreover, if we implement sideways infor-
mation passing then we even can deal with built-in predicates for arithmetic.

8.2 Choosing the Rule Direction

Treitel and Genesereth [77] address the question which rule direction
should be chosen. They considzr LLNR-resolution which is a restricted form
of LL-resolution. LL-resolution is a specialized version of the standard binary
resolution; complementary literals, which are resolved away, must each be the
first or leftmost in their respective clauses. In LLNR-resolution additionally
the order of the literals appearing in the resolvent is specified. At each deriva-
tion, the relative positions of two literals from the same parent clause are in-
herited. The literals of the parent clause whose leftmost literal is negative are
put in the place of the negative literal which was resolved away.

8.2. CHOOSING THE RULE DIRECTION 151

If all clauses are Horn and all non-unit clauses have their positive literal at
the leftmost or rightmost position, then LLNR-resolution behaves very similar
to backward or forward chaining: if all positive literals are in the leftmost
position, then LLNR-resolution realizes backward chaining and otherwise
forward chaining.

They address the question which set of non-unit clauses R, where R is the
set of rules, is the optimal set to be used forward, i.e., re-written with the
positive literal at the end of the clause. R¢ must realize a coherent strategy
which means that if a rule is evaluated forward then all its predecessors are.
The coherence property is motivated by the fact that under a coherent strategy
all of the forward inferences can be done before any of the backward ones.
The resulting facts of the forward chaining process can be stored and used as
the basis for the backward inferences. Optimality is defined by the sum of the
times taken by all the forward and backward inferences.

The authors show that it is NP-hard to find the optimal R¢ if P is a datalog
program. If there are no rules generating duplicate answers, then the optimal
set can be found in polynomial time [77]. Simultaneously they present an poly-
nomially bounded algorithm to choose an optimal coherent strategy for datalog
programs without duplicate answers.

One of the benefits available from this approach is that it provides an au-
tomatic choice of the optimal strategy. In most of the cases the efficiency of
different strategies is compared considering particular procedures such as the
transitive closure (ancestor) or the same generation example only. However,
since GDFC- and SLD-resolution differ in several points from their corre-
sponding LLNR-resolution variants, this approach cannot easily be adopted to
choose between GDFC- and SLD-resolution. For example, the forward chain-
ing component of LLNR-resolution contains no mechanism to focus on rele-
vant clauses. In contrast to GDFC-resolution, LLNR-resolution stores all de-
duced facts and can re-use them when they are needed. From our point of view
it is an important direction for future research to investigate automatic ap-
proaches to choose the optimal strategy between GDFC- and SLD-resolution
statically as well as dynamically on the basis of the results for LLNR-resolu-
tion.

Chapter9 s 1. pa

CONCLUSIONS

' This dissertation discusses an approach-to goal-directed forward chaining
for logic programs which Yamamoto and Tanaka introduced in 1986. In their:
paper they proposed a translation approach and mentioned two open problems
with it.: The first one coricerns the termination problem: “In the case of first.
order predicate ‘logic, recursive rules are sometimes harmless. However, we
have not yet solved the problem -of how to determine-what kinds of recursion
this systém can and cannot handle.” wpteotrih: il st

Goal-directed forward chaining focuses on relevant clauses by means of
link clauses which are generated out of the program being interpreted. These
link clauses cause the second problem: ‘Another problem is the huge number
of link clauses that are obtained when'the transitive relations are enumerated at
the time of translation. Although it is possible to determine the transitive rela-
tion at the time of execution, this makes the systemslower.’ Lo

We first addressed the problem with the link clauses. We showed that it is
generally undecidable for a definite program whether or not the transitive clo-
sure of the link clauses is finite. We presented an approach to obtain a finite
number of more general link clauses for recursive programs with function
symbols: By renaming variables in the link clauses, which excludes cyclic-data
flow through structured terms, we guarantee that the process to generate the
transitive data structure at compile time terminates. We furthermore showed
that, especially for propositional programs, the number of link clauses in the
transitive closure can be reduced by moving appropriate literals to the leftmost
position in the body of non-unit clauses. Concerning the complexity of this
problem’ 'we proved that it is NP-hard to find an optimal selection of literals.
We presented a simple algorithm which approximates the optimum. In exper-
imental studies we found out that this approach on average leads to consider-
able space savings. feaEa : : :

154 ‘CHAPTER 9. CONCLUSIONS

‘Based on a meta-interpreter we introduced GDFC-resolution as linear
resolution strategy for goal-directed forward chaining. We showed that
GDFC-resolution is sound and complete for definite logic programs. This re-
sult is important from the viewpoint of the semantic-integration of goal-di-
rected forward chaining for logic programs. It suggests that the operational
semantics of SLD-resolution-is not affected by-the transformation which real-
izes this approach-on top of Prolog.

A large part of this dissertation is concerned with the efficiency of
GDFC-resolution. We compared the efficiency of GDFC-resolution with SLD-
resolation and showed that neither of both approaches is always better than the
other. We compared different properties of SLD- and GDFC-trees for
propositional programs. We obtained the result that the number and size of
success branches are the same and that an SLD-tree contains at least as many
failure branches as the corresponding GDFC-tree, where each failure branch
in an SLD-tree is at least as long as the corresponding failure branch in the
GDFC-tree. These results give rise to the conjecture that GDFC-resolution on
average is more efficient than SLD-resolution for -propositional logic pro-
grams. We described experimental studies confirming this conjecture.

We furthermore analyzed and compared the average case complexity of
GDFC-resolution with that .of SLD-resolution for propositional binary Prolog
programs. We showed that the number of resolutions needed by GDFC-reso-
lution in the worst case depends linearly on the number of non-unit clauses,
whereas SLD-resolution on average may need exponentially many steps. Even
if GDFC-resolution is not always better than SLD-resolution for this program
class, it provides the great benefit that it guarantees sufficient efficiency for
the whole class.

We also considered different datalog programs and showed that GDFC-
resolution is very efficient for taxonomic hierarchies. This result is important
since it demonstrates that GDFC-resolution in fact offers the efficiency which
generally is expected for the bottom-up evaluation of taxonomic hierarchies.

We considered the procedure defining the ancestor relationship and
showed that GDFC-resolution always needs fewer inferences than SLD-resolu-
tion. We also presented experiments, in which we compared the runtime effi-
ciency of the meta-interpreters for GDFC- and SLD-resolution. The scale of
the improvement goes beyond that what could be expected based-on the theo-
retical-results. The reason for this efficiency of goal-directed forward chaining
is that the facts representing the parent relationship are scanned half as often as

155
CHAPTER 9. CONCLUSIONS

it is done using Prolog. We also considered the procedure defining the reflex-
ive transitive closure of directed acyclic graphs. -We proved that GD_FC-reso-
lution likewise is better for this procedure, since it always needs one inference

less than SLD-resolution.

These results suggest that GDFC-resolutiop even fpr datalog programs
may be more efficient than SLD-resolution. Since until now goal-dlr.ec‘ted
forward chaining has only been implemented on top of Prolog, an efficient
implementation of this calculus providing a similar or even better performance
than Prolog may be one field of future research.

We furthermore compared GDFC-resolution with bottom-up approaches

' coming from the field of deductive databases. We demonstrated that there is a

strong relationship between the APEX m‘et‘hod an.d GDFC-resolutlor} which is
expressed by the fact that a slightly modified \‘za.rnant (?f APEX reahze§ fxrs?t-
oriented extension of goal-directed forward cha.mmg. S.mce not all p.ossﬁ.n 1t;le.s
for an improvement such as sideways information passing are exploited in ¢ 1115
approach, it is less efficient than the supplementary magic set 'app.roa; .
However, the fact that it is query independent sets up a strong motivation for

future research in this area.

Assuming that GDFC- and SLD-resolution l?oth apply the left-first com-
putation rule we showed that GDFC-resolution using top-down compute:d links
always terminates if SLD-resolution does. Mf)reover, the class of definite pro;~
grams for which SLD-resolution terminate§ is a proper subset of t.he classth 0
programs for which GDFC-resolution termmates.'However, the price for his
termination behaviour is that, at least for recursive programs with func.t1on
symbols, we have to compute the necessary transitive links at runtlrpe.
Unfortunately this computational overhead generally n.lakes SLD-resolution
more efficient for such programs. However, if we cqn§1der datalog programs
only, then the transitive closure of the link clauses is finite so that we can com-
pute it statically. Consequently, at least for da}talog programs the better termi-
nation behaviour can be achieved without loosing efficiency.

To sum up, this dissertation analyzes goal-directeid forw.ar.d chaining fr%r-n
different viewpoints which concern aspects of se{n;.mncs, eff¥c1ency and verifi-
cation. It shows that goal-directed forward chammg combines many adv'an-
tages generally associated to top-down approaches leth })ottom-up evalu?tlol}.
The semantically clean integration of GDFC-resolution into SLl?-resolutlonlxs
accompanied with the performance of a bottom-up approach. Simultaneously,

156 4 CHAPTER 9. CON_CLUSIONS

GDFC-resolution provides a better termination behaviour than SLD-resolu-
tion.

In the field of deductive databases the question which is the optimal infer-
ence direction has intensively been discussed in the last decade. One result of
this research is that bottom-up approaches are more efficient than top-down
approaches for large datalog programs. Now this dissertation demonstrates
that GDFC-resolution at least in the context of datalog programs can be a seri-
ous alternative to SLD-resolution. This suggests that SLD-resolution is not al-
ways the resolution strategy of choice and that it is worth to intensify the re-
search on alternative control strategies for logic programs.

REFERENCES

1. Abramson, H. and Dahl, V. Logic Grammars, Springer Verlag (1989).

2. Apt, K.R. Introduction to Logic Programming. Tech. Rept. CS-R8826,
Centre for Mathematics and Computer Science, Amsterdam,
Netherlands, 1988.

Borger, E. Berechenbarkeit, Komplexitdt, Logik, Vieweg (1985).

4. Bancilhon, F. and Ramakrishnan, R. An Amateur’s Introduction to
Recursive Query Processing Strategies. In Proceedings of the Fifth
ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems, ACM-Press, 1986, pp. 16-52.

5. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J.D. Magic Sets and
Other Strange Ways to Implement Logic Programs. In Proceedings of
the Fifth ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems, ACM-Press, 1986, pp. 1-15.

6. Beeri, C. and Ramakrishnan, R. On the Power of Magic. In Proceedings
of the Sixth ACM SIGACT SIGMOD SIGART Symposium on Principles
of Database Systems, ACM-Press, 1987, pp. 269-283.

7. Benkerimi, K. and Lloyd, J.W. A Procedure for the Partial Evaluation
of Logic Programs. Tech. Rept. TR-89-04, Department of Computer
Science, University of Bristol, 1989.

8. Binot, J.L., Burgard, W., De Zegher, 1., Donner, D., and Michaux, G.
Integration of a Frame Based Extension in a Prolog Environment. In
Proceedings of the First PROTOS Workshop, Morcote, Switzerland,
Appelrath, H.J., Cremers, A.B., and Schiltknecht, H., 1989, pp. 10-28.

9. Bollobds, B. Random Graphs, Academic Press (1985).

10. Brownston, L., Farrell, R., Kant, E., and Martin, N. Programming
Expert Systems in OPSS: An Introduction to Rule-Based Programming,
Addison-Wesley Publ. Comp., Inc. (1985).

11. Bry, F. Query Evaluation in Recursive Databases: Bottom-up and Top-
down Reconciled. In Proceedings First International Conference on
Deductive and Object-Oriented Databases, Kyoto, Japan, 1989.

12. Chang, C.L. and Lee, R.C.T. Symbolic Logic and Mechanical Theorem
Proving, Academic Press (1973).

158

13.
14.
] LSS5
16.
17.

18.

19.

20.
21.
22.
23.

24.

25!

REFERENCES

Charniak, E. and McDermott, D. Introduction to Artificial Intelligence,
Addison-Wesley Publ. Comp., Inc. (1985).

Clark, K.L. and Mc Cabe, F.G. Prolog: A Language for Implementing
Expert Systems. Machine Intelligence 10 (1982), pp. 455-475.

Clocksin, W.F. and Mellish, C.S. Programming in Prolog, Springer
Verlag (1981).

Cohen, P.R. and Feigenbaum, E.A. The Handbook of Artificial
Intelligence, William Kaufmann Inc., Vol. 3 (1982).

Cooper, T. and Wogrin, N. Rule-Based Programming with OPSS5,
Morgan Kaufmann Publishers, Inc., Los Altos, California (1988).

Dembinski, P. and Maluszynski, J. And-Parallelism with Intelligent
Backtracking for Annotated Logic Programs. In Proceedings of the
International Symposium on Logic Programming, Boston, IEEE
Computer Society Press, 1985, pp. 29-38.

Dietrich, S.W. Extension Tables: Memo Relations in Logic
Programming. In Proceedings of the International Symposium on Logic
Programming, San Francisco, California, Warren, D.S. and Haridi, S.,
IEEE Computer Society Press, 1987, pp. 264-272.

Falashi, M., Levi, G., Martelli, M., and Palamidessi, C. Declarative
Modeling of the Operational Behaviour of Logic Languages. Theoretical
Computer Science 69 (1989), pp. 289-318.

Forgy, C.L. Rete: A Fast Algorithm for the Many Pattern / Many Object
Pattern Match Problem. Artificial Intelligence 19 (1982), pp. 17-37.

Furukawa, K. and Fujita, H. Deriving an Efficient Production System by
Partial Evaluation. In Proceedings of the North American Conference
on Logic Programming, Cleveland, Ohio, Lusk, E.L. and Overbeek,
R.A., The MIT Press, 1989, pp. 661-674.

Gallaire, H., Minker, J., and Nicolas, J.M. Logic and Databases: A
Deductive Approach. ACM Computing Surveys 16, 2 (June 1984), pp.
153-185.

Gardarin, G. and Valduriez, P. Relational Databases and Knowledge
Bases, Addison-Wesley Publ. Comp., Inc. (1989).

Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide
to NP-Completeness, W. H. Freeman and Company, San Francisco
(1979).

REFERENCES 159

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Genesereth, M.R. and Nilsson, N.J. Logical Foundations of Artificial
Intelligence, Morgan Kaufmann Publishers, Inc., Los Altos, California
(1987). ‘

Graham, I. Inside the Inference Engine. In Expert Systems - Principles
and Case Studies. Chapman and Hall Computing, Forsyth, R., pp. 57-83,
1989.

Harary, F. Graph Theory, Addison-Wesley Publ. Comp., Inc. (1969).

Hayes-Roth, F. Rule-Based Systems. Communications of the ACM 28, 9
(1985), pp. 921-932. ‘

Heidelbach, M. Behandlung spezieller Probleme bei der
forwdrtsgerichteten Auswertung logischer Programme, Diploma thesis,
in German, University of Dortmund, 1990.

Johns, N. and Spenser, C., LPA MacProlog Reference Manual, Logic
Programming Associates Ltd., London.

- Johnson, D.S. Approximation Algorithms for Combinatorial Problems.

Journal of Computer and System Sciences 9 (1974).

Kifer, M. and Lozinskii, E. Query Optimization in Logical Databases.
Tech. Rept. 85/16, Department of Computer Science, SUNY at Stony
Brook, 1985.

Kifer, M. and Lozinskii, E.L. Filtering Data Flow in Deductive
Databases. In International Conference on Database Theory, Rome,
ltaly, Ausiello, G. and Atzeni, P., Springer Verlag, 1986, pp. 186-202.

Kifer, M. and Lozinskii, E.L. A Framework for an Efficient
Implementation of Deductive Database Systems. In Proceedings of the
Sixth Advanced Database Symposium, Tokyo, Japan, 1986.

Kifer, M. and Lozinskii, E.L. Implementing Logic Programs as a
Database System. In Third International Conference on Data
Engineering, Computer Society Press, 1987, pp. 375-385.

Kleine Biining, H. and Lowen, U. Towards Average Complexity of
Propositional Binary Prolog Programs. Fundamenta Informaticae 13
(1990), pp. 387-399.

Kleine Biining, H., Léwen, U., and Schmitgen, S. Equivalence of
Propositional Prolog Programs. Journal of Automated Reasoning 6
(1990), pp. 319-335.

Knuth, D.E. The Art of Compuier Programming - Fundamental
Algorithms, Addison-Wesley Publ. Comp., Inc., Vol. 1, 2 (1973).

160

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

REFERENCES

Koseki, Y. Amalgamating Multiple Programming Paradigms in Prolog.
In‘'Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, Milan, Italy, McDermott, J., Morgan Kaufmann Publishers,

Inc., Los Altos, California, 1987.

Kowalski, R.A. Predicate Logic as a Pfogramming Language. In Proc.
IFIP Congress, Stockholm, North Holland, 74, pp. 556-574.

Kowalski, R.A. Algorithm = Logic + Control. Communications of the
ACM 22 (1979), pp. 424-436.

Kowalski, R.A. Logic for Problem Solving, North-Holland, Amsterdam
New York Oxford (1979).

Lassez, J.L., Maher, M.J., and Mariott, K. Unification Revisited. In
Deductive Databases and Logic Programming. Morgan Kaufmann
Publishers, Inc., Los Altos, California, Minker, J., pp. 587-626, 1987.

Levi, G. Models, Unfolding Rules and Fixpoint Semantics. In
Proceedings of the Fifth International Conference on Logic
Programming, Kowalski, R.A. and Bowen, K., 1988, pp. 1649-1665.

Lloyd, J.W. Foundations of Logic Programming, Second Extended
Edition, Springer Verlag (1987).

Lloyd, J.W. and Shepherdson, J.C. Partlal Evaluatlon in Logic
Programming. Tech. Rept. TR-87-09, Department of Computer Science,
University of Bristol, 1987.

LPA Prolog Professional Reference Manual, Logic Programming
Associates Ltd., London.

Lozinskii, E.L. Evaluating Queries in Deductive Databases by
Generating. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, Aravind, J., Morgan Kaufmann Publishers,
Inc., Los Altos, California, 1985, pp. 173-177.

Magura, N. Experimentelle Untersuchungen zur Beurteilung der
Effizienz von zielgerichtetem forward-chaining, Dlploma thesis, in
German, University of Dortmund, 1991.

Maher, M.J. and Ramakrishnan, R. Déja Vu in lepomts of Logic
Programs. In Proceedings of the North American Conference on Logic
Programming, Cleveland, Ohio, Lusk, E.L. and Overbeek, R.A., The
MIT Press, 1989, pp. 963-980.

Maier, D. and Warren, D.S. Computing with Légic - Logic
Programming with Prolog, Benjamin/Cummings (1989).

REFERENCES 161

53.

54.

55,

56.
Ligjit

58.

59,

60.

61.

62.

63.

64.

65.

66.

Matsumo, Y., Tanaka, H., Hirakawa, H., Miyoshi, H., and Yasukawa, H.
BUP: A Bottom-Up Parser Embedded in Prolog. New Generation
Computing 1, 2 (1983), pp. 145-158.

Montini, G. Efficiency Considerations on Build-In Taxonomic
Reasoning in Prolog. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Milan, Italy, McDermott, J.,
Morgan Kaufmann Publishers, Inc., Los Altos, California, 1987.

Nilsson, N.J. Principles of Artificial Intelligence, Springer Verlag
(1982).

O’Keefe, R.A. The Craft of Prolog, The MIT Press (1990).

Pliimer, L. Termination Proofs for Logic Programs, Ph.D. dissertation,
University of Dortmund, 1989.

Pliimer, L. Termination Proofs for Logic Programs, Springer Verlag,
Lecture Notes in Artificial Intelligence, 446 (1990).

Pliimer, L. Termination Proofs for Logic Programs Based on Predicate
Inequalities. In Proceedings of the Seventh International Conference on
Logic Programming, Szeredi, P. and Warren, D.H.D., The MIT Press,

. 1990,

Quintus Prolog Reference Manual, Quintus Computer Systems, Inc.,
Mountain View, California.

Rémakrishnan, R. Magic Templates: A Spellbinding Approach to Logic
Programs. In Proceedings of the Fifth International Conference on
Logic Programming, Kowalski, R.A. and Bowen, K., 1988, pp. 140-
159

Robinson, J.A. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM 12, 1 (1965), pp. 23-41.

Rosen, B.K. Robust Linear Algorithms for Cutsets. Journal of
Algorithms 3 (1982), pp. 205-217.

Rossi, G. Uses of Prolog in Implementation of Expert Systems. New
Generation Computing 4 (1986), pp. 321-329.

Schaefer, T.J. The Complexity of Satisfiability Problems. In
Proceedings of the Tenth ACM Symposium on Theory of Computing,
1978, pp. 216-226.

Shintani, T. An Approach to Speeding Up the Prolog-based Inference
Engine KORE/IE. In Logic Programming: Proceedings of the Fourth
International Conference, Lassez, J.L., The MIT Press, 1987, pp. 284-
297.

162

67.

68.

69.

70.
71.

72.

73
74.

75

76.

T

78.

795

80.

81.

REFERENCES

Shintani, T. A Fast Prolog-Based Production System KORE/IE. In
Proceedings of the Fifth International Conference on Logic
Programming, Kowalski, R.A. and Bowen, K., 1988, pp. 26-41.

Speckenmeyer, E. On Feedback Problems in Digraphs. Tech. Rept. 264,
Department of Computer Science, University of Dortmund, 1988.

Speckenmeyer, E. On Feedback Problems in Digraphs. In Proceedings
of the Fifteenth Workshop on Theoretic Concepts in Computer Science,
Rolduc, Netherlands, Springer Verlag, 1989.

Stamm, H., private communication, 1991.

Sterling, L. and Shapiro, E.Y. The Art of Prolog: Advanced
Programming Techniques, The MIT Press (1986).

Sterling, L. and Beer, R.D. Metainterpreters for Expert System
Construction. Journal of Logic Programming 6 (1989), pp. 163-178.

Tarnlund, S. Horn Clause Cdmputability. BIT 17 (1977), pp. 215-226.

Takeuchi, A. and Fujita, H. Competitive Partial Evaluation - Some
Remaining Problems of Partial Evaluation. New Generation Computing
6 (1988), pp. 259-2717.

Tamaki, H. and Sato, T. Unfold/Fold Transformations of Logic
Programs. In Proceedings of the Second International Conference on
Logic Programming, Térnlund, S., 1984, pp. 127-138.

Tamaki, H. and Sato, T. OLD Resolution with Tabulation. In
Proceedings of the Third International Conference on Logic
Programming, 1986, pp. 84-98.

Treitel, R. and Genesereth, M.R. Choosing Directions for Rules. Journal
of Automated Reasoning 3 (1987), pp. 395-431.

Ullman, J.D. and Van Gelder, A. Efficient Tests for Top-Down
Termination of Logical Rules. Journal of the ACM 35, 2 (1988), pp.
345-373.

Ullman, J.D. Principles of Database and Knowledge-Base Systems,
Computer Science Press, Vol. 1 (1988).

Ullman, J.D. Bottom-Up Beats Top-Down for Datalog. In Proceedings
of the Eighth ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems, ACM-Press, 1989, pp. 140-149.

Ullman, J.D. Principles of Database and Knowledge-Base Systems,
Computer Science Press, Vol. 2 (1989).

REFERENCES 163

82. Ullman, J.D. The Theory of Deductive Database Systems. In
COMPCON, IEEE Computer Society Press, 1990, pp. 496-502.

83. ngische Programmierung und Wissensreprdsentation: Implementierung
einer Entwicklungsumgebung, University of Dortmund, Project Group
128 (PEPP), Final Report, 1988, in German.

84. Van‘ Gelder, A. Negation as Failure Using Tight Derivations for General
Logic Programs. Journal of Logic Programming 6 (1989), pp. 109-133.

85. Vasey, P, flex Expert System Toolkit, Logic Programming Associates
Ltd., London.

86. Vieille, L. Recursive Query Processing: The Power of Logic.
Theoretical Computer Science 69 (1989), pp. 1-53.

87. Warrpn, D.H.D. Efficient Processing of Interactive Relational Database
Queries Expressed in Logic. In Proceedings of the Seventh International
Conference on Very Large Data Bases, Morgan Kaufmann Publishers,
Inc., Los Altos, California, 1981.

88. Waterman, D.A. A Guide to Expert Systems, Addison-Wesley Publ.
Comp., Inc. (1986).

89. Winston, P.H. Artificial Intelligence, Addison-Wesley Publ. Comp., Inc.
(1984).

90. Yamamoto, A. and Tanaka, H. Translating Production Rules into a

Forward Reasoning Prolog Program. New Generation Computing 4
(1986), pp. 97-105.

INDEX

1-in-3SAT 141
APEX 149
arc
binary 89
unary 89
backward chaining 1
chain 90
computed answer 53
feedback arc set 33
forward chaining 2
GDEFC-
derivation 53
failed 53
goal 52
refutation 53
corresponding 70
resolution 52; 54
resolvent 53
tree 56
goal-directed forward chaining
a meta-interpreter for 10; 14;
131
a transformation approach for 13
hitting set 39
link clause program 22
finite 36
reflexive 22
reflexive finite 36
link clauses 21
bottom-up computed 132
top-down computed 132
link graph 37
literals
selection of 38
LL-resolution 150

LLNR-resolution 2; 150
loop-test problem
general 140; 141
special 139
migration graphs 30
migration sets 149
naive evaluation 2; 146
predicate dependency graph 42
production system 2
program
binary 88
normalized 136
tree-like 89
well-moded 136
program graph 89
Prolog 1
S-Herbrand interpretations 146
semi-naive evaluation 2; 147
SLD-
refutation
corresponding 68
resolution 1
subgoal-goal pair 51
recursive 51
tree
binary 90
full binary 90
unique path property 46
unit-resolution 2
vertex
binary 90
unary 90

CURRICULUM VITAE

Name: Wolfram Burgard

Date of birth: 8 February 1961

Birthplace: Gelsenkirchen

7.9.67 - 2.7.71 Primary school

16.8.71 - 12.5.80 Secondary school

12.5.80 Examination at the Gymnasium Hammonense, Hamm

Study of computer science at the University of
Dortmund

Diploma in computer science

13.10.81 - 23.4.87

| 23.4.87
. 27.4.87- 30.9.90 Scientific employee at the department of computer
. science of the University of Dortmund

since 1.10.90 Scientific employee at the department of computer
science of the University of Bonn

