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Abstract— Robotic assistants have the potential to greatly
improve our quality of life by supporting us in our daily
activities. A service robot acting autonomously in an indoor
environment is faced with very complex tasks. Consider the
problem of pouring a liquid into a cup, the robot should
first determine if the cup is empty or partially filled. RGB-D
cameras provide noisy depth measurements which depend on
the opaqueness and refraction index of the liquid. In this paper,
we present a novel probabilistic approach for estimating the fill-
level of a liquid in a cup using an RGB-D camera. Our approach
does not make any assumptions about the properties of the
liquid like its opaqueness or its refraction index. We develop
a probabilistic model using features extracted from RGB and
depth data. Our experiments demonstrate the robustness of our
method and an improvement over the state of the art.

I. INTRODUCTION

Autonomous behavior is necessary for domestic service
robots to be effective in their roles. One area in which they
may aid us is the preparation and serving of beverages. In
general dealing with liquids is difficult due to their varying
characteristics and the overwhelming selection available.
However, there are many situations where a domestic service
robot will encounter different liquids making the correct
perception of the liquid’s properties a necessary skill. In this
paper, we consider the challenging problem of estimating
the fill level of a cup filled with an unknown liquid using an
RGB-D camera.

The problem of estimating the fill-level of a liquid is
complicated by the fact that not all liquids behave the same
way when viewed with an RGB-D camera. Depth image
cameras, like the Microsoft Kinect v1 (abbr. Kinect) and
ASUS Xtion PRO LIVE (abbr. Xtion), send a pattern of
infrared light to the surroundings and compare the returned
pattern to a saved one for depth detection. Due to the
refraction of light on the liquid boundary by transparent
liquids, the computed depth values of the liquid height do
not represent the real value. For example a full cup of water
appears a third full if one only looks at the point cloud data
of the liquid level directly. This effect can be seen in Fig. 1.
Opaque liquids on the other hand reflect most of the light
resulting in a reliable liquid height in the point cloud.

In this paper we present a novel probabilistic approach to
determine the fill-level of the liquid in a cup using an RGB-D
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Fig. 1. Example output from an Xtion showing the different views between
image and point cloud. Figure (a) shows the cup filled with water 2 cm from
the rim. Figure (b) shows the corresponding point cloud of the cup with a
refracted bottom that is significantly lower than the water level

camera. Our approach uses several point clouds and images
obtained from a cup filled with a liquid taken from different
viewing angles. Based on these observations, it is able to
determine as to whether the liquid is opaque or transparent,
and what the height of the liquid in the cup is. To achieve
robust estimates, it also determines an approximate index of
refraction for clear liquids.

II. RELATED WORK

The limitations of RGB-D cameras, such as the Kinect
and Xtion, for detecting transparent objects are well known.
Wang et al. [14] combine RGB data and depth data to
localize glass objects in an environment. They do so based
on the refraction and attenuation of a signal passing through
the glass object. Lysenkov et al. [10] use an RGB-D camera
to detect the pose of rigid transparent objects. Using a time-
of-flight camera, Klank et al. [9], provide an approach to
detect transparent objects based on their absorption of light
in certain wavelengths. These papers do not consider liquids,
let alone the detection of liquid height.

The problem of detecting the height of a liquid is also
present in other areas outside of the domestic environment.
In particular, Pithadiya et al. [12] looked at different edge
detection algorithms for detecting whether or not water bot-
tles are over or under filled. However, instead of determining
the actual liquid height, the detected edges are compared to
a reference line to determine this.

For the restaurant industry, Bhattacharyya et al. [2], use
RFID tags for liquid level detection in beverage glasses
and liquor bottles. Dietz et al. [4] use specially designed



glasses and a coil embedded into a table which provides
power and data exchange with the glasses. Gellersen et al.
[7] use augmented coffee cups that are able to sense and
communicate. All of these papers require sensors or tags
attached to the glasses or cups. In contrast, our approach
requires only an RGB-D sensor.

Elbrechter et al. [5] estimate the viscosity of different
liquids used in food preparation. They collect information
on surface changes of a liquid resulting from a pushing
motion and use this to train a classifier. Chitta et al. [3] use
tactile information obtained by manipulating a bottle or can
to determine if they are open or closed and full or empty.
They do not consider the detection of the liquid height.

Morris and Kutulakos [11] use stereo cameras to recon-
struct a refractive surface. To do this, patterns are placed
underneath the liquid surface. This differs from our focus on
cups which typically do not have a pattern on the bottom.

Most relevant to our work, Hara et al. [8] investigated
the measurement of opaque and transparent liquids using an
RGB-D camera. They determined a relationship between the
height measured in the depth data and the actual height of the
liquid. However, they were unable to determine the index of
refraction of the liquid from the depth data and they could not
distinguish between a transparent and opaque liquid. These
are crucial aspects in correctly processing the data from an
RGB-D sensor. As a result, they were only able to detect the
presence of a liquid in the cup by checking if the height in
the point cloud is higher than the height of the cup bottom.

The main contribution of this paper is the probabilistic
formulation of the liquid fill-level detection. Furthermore, in
contrast to Hara et al. [8], we are able to handle both opaque
and transparent liquids and do not require the knowledge of
the index of refraction beforehand.

III. PROBABILISTIC APPROACH FOR FILL LEVEL
ESTIMATION

Our main goal is to detect the liquid height h out of RGB
data Drgb and depth data Dd. Since we deal with low cost
RGB-D cameras such as the Kinect and Xtion, considerable
noise is present in these observations. We use a probabilistic
formulation to take the resulting uncertainty into account.
Thus, our goal is to find the most probable height value h
given the data Drgb and Dd. In other words we want to solve
the optimization problem

argmax
h

p(h | Drgb, Dd). (1)

We present two features, Dhe
and Dhr

, which we extract
from Drgb and Dd and which are relevant for robustly esti-
mating the liquid height. For the RGB data, Drgb, we apply
an edge detection algorithm to extract the edge between the
liquid and the cup. The corresponding depth data, Dd, is then
used to associate the detected edge points with height values.
We denote the height values we obtain by the edge detection
as Dhe . In addition, we extract the raw height values, Dhr ,
and viewing angles, Dα, from the depth data Dd (see Fig. 3).
With the help of Snell’s law the liquid height can then be

computed. The whole optimization problem then reads

argmax
h

p(h | Drgb, Dd) = argmax
h

p(h | Dhe , Dhr , Dα).

(2)
With Bayes’ theorem we obtain

p(h | Dhe , Dhr , Dα) =
p(Dhe

, Dhr
| h,Dα)p(h | Dα)

p(Dhe
, Dhr

| Dα)
.

(3)
Due to a lack of prior knowledge we assume the probability
p(h | Dα) to be uniformly distributed in the range of possible
height values, i.e., p(h | Dα) = U([0, hC ])(h), where 0 is
the inner cup bottom and hC is the height of the cup. Next,
we assume the two methods to be independent, i.e.,

p(Dhe
, Dhr

| h,Dα) = p(Dhe
| h,Dα) · p(Dhr

| h,Dα).
(4)

Summarizing, we have to solve the optimization problem

argmax
h∈[0,hC ]

p(Dhe
| h,Dα) · p(Dhr

| h,Dα). (5)

We also look at each model individually in order to compare
them to the combined model. In the following sections, we
will describe how the two probabilistic models are defined.

A. Probabilistic Model for the RGB Data

In this section, we focus on the term p(Dhe
| h,Dα). The

liquid height in a cup is detected using the image and point
cloud from the RGB-D camera taken at approximately the
same point in time. Transparent liquids such as water are
more problematic since it is difficult to distinguish between
cup and liquid. A salient feature that is common for different
liquid and cup combinations is the edge that is formed where
liquid meets cup. The idea is to employ an edge detection
algorithm to determine the height of the liquid.

To keep the approach as general as possible, we locate
the cup by detecting a cylinder in the point cloud using
RANSAC [6]. Next, we determine a circular model of the rim
of the cup and project it into the image. This determines the
area used for the image processing steps. Fig. 2(a) shows the
detected cup rim projected on the image. Next we apply an
edge detection algorithm to the grayscale converted image to
find the edge between the liquid and cup. We use the Scharr
operator for this purpose, as it turned out to yield robust
edge detection results. To mitigate the affects of lighting
conditions (e.g., false edge detection due to reflections), data
was collected for various lighting conditions and view angles.

Next, we generate theoretical liquid height edges in the
image dependent on the height of the cup. This was done
by detecting the cup height and dividing this height into
steps. A circle was generated at each step and projected
into the image. In order to estimate the liquid height, we
determine which generated edge is closest to the detected
edge. Fig. 2(b) shows the detected edge of the liquid in red
and a few of the generated theoretical liquid height edges.

Due to variation in illumination, false edge detections
occur and an accurate liquid height may not be detected
using only one image-point cloud pair. In our experiments
we observed that mainly three different cases are detected.



Besides the true edge between the liquid and the cup, a
shadow caused by the tapering of the inside of the cup (this
was present in all the cups we checked) is detected a few
millimeters below the cup rim. In the case of transparent
liquids, like water and vodka, the cup bottom edge is detected
as well. Due to the refraction of light, the height of the
detected cup bottom seen in the RGB images (denoted with
hcb) depends on the viewing angle α and the true liquid
height h. We model this by introducing two hidden variables
E and V , where E stands for edge and takes the values
{th, cr, cb} = {true height, cup rim, cup bottom}, and V
stands for the visibility of the bottom and takes the values
{v, nv} = {visible, not visible}. Thus, we can model the
height he given by the edge detection through

he =

 h+ νth if E = th
hcr + νcr if E = cr

hcb(h, α) + νcb if E = cb & V = v
, (6)

where hcr denotes the height of the shadow and νth(cr,cb)
denotes Gaussian noise with zero mean. We collect a set of
height values Dhe

= {he,i}Ni=1 and corresponding viewing
angles Dα = {αi}Ni=1 using the RGB-D sensor. Under the
assumption that these data points are independent, we obtain

p(Dhe
| h,Dα) =

N∏
i=1

p (he,i | h, αi) . (7)

According to Eq. (6) and by marginalizing over the hidden
variables E and V , the probability to obtain the height he,i
given the true height value h = hth and the viewing angle
αi is given by a mixture of Gaussians

p (he,i | h, αi) =
∑

x∈{th,cr,cb}
y∈{v,nv}

p(E = x, V = y)·N (he;hx, νx),

where we assume the edge case (E, V ) to be independent of
the tuple (h, αi), i.e., p(E, V | h, αi) = p(E, V ) and we use
p(E = cb, V = nv) = 0. Thus, the probability p (he | h, α)
is given by a mixture of up to three Gaussians.

We use a training dataset to compute the parameters
of the mixture of Gaussians and we employ the Bayesian
information criterion (BIC) [13] to jointly find the optimal fit
for the training dataset with a minimal number of Gaussians.
In Section IV we refer to this model as the RGB model and
optimize it for comparison.

B. Probabilistic Model for Depth Data

Hara et al. [8] showed that given the refraction index of
the transparent liquid and the measured liquid height from
the point cloud, one can compute the real liquid height using
Snell’s law. The drawbacks of this method are that it is not
applicable to opaque liquids and that for clear liquids the
refraction index must be known beforehand.

The Kinect and the Xtion sensors consist of an infrared
projector that illuminates the scene with a speckle pattern and
an infrared camera that detects the pattern. These two parts
are separated by 75mm, referred to as baseline b. The depth
is computed using triangulation. In Fig. 3 we illustrate the

(a) Cup rim (b) Liquid contour (red)

Fig. 2. Example of the RGB feature extraction. Figure (a) shows the rim
of the cup detected in the point cloud and projected into the image. In figure
(b) the red contour is the detected edge for the liquid and the blue contours
represent the theoretical liquid height edges for lower liquid levels
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Fig. 3. Detection of liquid by a depth camera based on triangulation with
refraction of the infrared light

scenario for liquid detection. The light beam is refracted on
the liquid surface to a reflection point R on the cup bottom.
It is then reflected from the cup bottom and again refracted
at the liquid surface and is captured by the infrared camera.
We can thus measure the point M using triangulation. Due to
the refraction on the liquid surface the measured point differs
from the actual reflection point. It was shown by Hara et al.
[8] that in the case where the reflection point R is on the
perpendicular bisector of the baseline b, the projected beam
and the received beam intersect. In the case the reflection
point R is not on the perpendicular bisector, the beams are
skewed and an intersection point does not exist. Hara et al.
[8] also demonstrated that this effect is rather negligible. We
design our experiments in such a way, that the reflection
point R lies close to the perpendicular bisector. In this case
one can assume that the angle α and β in Fig. 3 are equal.
Given the measured point M we can then compute the liquid
level perceived by the RGB-D camera hr = ‖M−R‖, which
stands for raw height and is measured from the point cloud.
We determine the liquid height h from the index of refraction
n, the angle α and the raw height hr. Given this arrangement,
we describe the liquid height h with respect to the measured
liquid height, hr and the index of refraction by

h = hr + hd =
tan(α)

tan(αl)
hd, (8)

where αl denotes the angle of the refracted light beam and hd
is defined by the first equality. Given the true liquid height,



we comput the raw measured height hr according to

hr =

(
1− tan(αl)

tan(α)

)
h. (9)

The value for tan(αl) can be described in terms of α and
the index of refraction for the liquid (nl) through Snell’s law

tan(αl) =
sin(α)√

n2l − sin2(α)
=

cos(α)√
n2l − 1 + cos2(α)

tan(α).

(10)
Substituting Eq. (10) into Eq. (9) results in

hr =

(
1− cos(α)√

n2l − 1 + cos2(α)

)
h := f(cos(α);nl, h).

(11)
In practice, measuring the angle and the raw height exactly

is difficult, since there is typically a lot of noise. For example,
it can be introduced by the unevenness of the surfaces such
as the cup bottom, which affects the reflection of the light.
Furthermore, there is inherent noise in the point clouds
captured by the RGB-D camera. The depth resolution of the
Kinect and Xtion varies from a few millimeters in the near
range (50 cm) to a resolution of about 20 cm in the far range
(8m), see Andersen et al. [1]. Taking the noise into account
we reformulate Eq. (11) as

hr = f(cos(α) + να;nl, h) + νr, (12)

where νr, να denote noise terms for the raw height hr and
angle α respectively, and f corresponds to

f(x; y, z) =

(
1− x√

y2 − 1 + x2

)
z.

We assume the noise νr and the noise να to be normally
distributed, with zero mean and covariances σr and σα
respectively. We approximate Eq. (12) with help of the first
order Taylor expansion along the dimension x and obtain

hr = f(cos(α);nl, h) +∇xf(cos(α);nl, h)να + νr. (13)

The right hand side ∇xf(cos(α);nl, h)να + νr is normally
distributed with zero mean and the variance is given by σ =
σ(nl) := (∇xf(cos(α);nl, h))2 σα + σr, where

∇xf(x; y, z) =
(
1− y2

)
z

(y2 − 1 + x2)
3
2

.

In our experiments we observed that opaque liquids do
not act like refractive liquids for the Kinect and Xtion but
instead as non-refractive material (nl = ∞). We model this
behavior by introducing the binary hidden variable T , which
stands for transmittance, and takes the values {op, cl} =
{opaque, clear}. In the case of opaque liquids Eq. (12) reads
as

hr = h+ νr. (14)

Given these state equations, we are now able to model
p(Dhr

| h,Dα). First of all, we assume the data points to

be independent, giving

p(Dhr | h,Dα) =

N∏
i=1

p (hr,i | h, αi) . (15)

Since the transmittance T of the liquid is not known before-
hand, we marginalize over this hidden variable and obtain

p (hr,i | h, αi) =
∑

x∈{op,cl}

p (hr,i | h, αi, T = x) p(T = x),

(16)
where we assume independence between the tuple (h, αi)
and the transmittance, i.e., p(T = x | h, αi) = p(T = x).
We marginalize over the index of refraction nl and obtain

p (hr,i | h, αi, T )

=

[ˆ
p (hr,i | nl, h, αi, T ) dP (nl | h, αi, T )

]
.

(17)

In the case of clear liquids we assume its refractive index
to lie in the range of [nL, nH ]. In the experiments we chose
[1.33, 1.47], which is not a substantial restriction since most
household liquids fall in this range. Furthermore, we assume
the refractive index to be uniformly distributed, i.e.,

dP (nl | h, αi, T = cl) = U(nL, nH)(nl). (18)

As mentioned above, opaque liquids act like non-refractive
solids (nl =∞), which can be modeled by a delta distribu-
tion

dP (nl | h, αi, T = op) = δ∞(nl). (19)

With help of Eq. (12) and Eq. (13), we obtain

p (hr,i |h, αi, T =cl)=

nH 

nL

N (hr,i; f(cos(αi);nl, h), σ) dnl,

p (hr,i |h, αi, T =op)=N (hr,i;h, σr) .

Summarizing, the probability p(Dhr | h,Dα) is equal to

N∏
i=1

[
p(T = cl) ·

nH 

nL

N (hr,i; f(cos(αi);nl, h), σ) dnl

+ p(T = op) · N (hr,i;h, σr)
]
. (20)

One might also be interested in finding the refraction
index and transmittance of the liquid. To avoid clutter in
the equations, we combine both variables in a variable r,
which stands for refractiveness. Thereby, in the case of a
clear liquid, r is equal to the refraction index n and in
the case of an opaque liquid it is equal to ∞. We use the
following approximation

p(Dhr | h,Dα) ≈ argmax
r∈[nL,nH ]∪{∞}

p(Dhr | h, r,Dα). (21)

In addition to the optimization problem of Eq. (5), we
optimize this individual model for comparison in Section
IV, where this model is referred to as DEPTH. Based on the



approximation given in Eq. (21) we obtain the optimization
problem

argmax
h∈[0,hC ]

r∈[nL,nH ]∪{∞}

N∏
i=1

N (hr,i; f(cos(αi); r, h), σ) . (22)

We can write the equation in closed form due to the limits
lim
y→∞

f(x; y, z) = z and lim
y→∞

σ(y) = σr. We are interested

in solving this optimization problem in order to find the index
of refraction of the liquid.

IV. EXPERIMENTS

We restricted the liquids tested to the following: water,
vodka, oil, cola, apple juice, orange juice and milk. These
liquids are common in a household and represent the varying
properties of liquids that make height detection so difficult.
Vodka is visually the same as water but has a different
index of refraction and olive oil has a more distinct index
of refraction from water. Milk and orange juice are opaque
liquids, mainly reflecting the infrared pattern off the surface.
This implies that the height measured in the point cloud
accurately represents the actual height of the liquid. Cola on
the other hand, appears opaque in the images, but behaves
like a transparent liquid in the point cloud. Like water, vodka
and apple juice, it refracts the infrared pattern.

We used two typical coffee mugs in our experiments, but
our methods can easily be extended to other kinds of cups.
To make the experiments more manageable, we collected
data for a fixed set of liquid heights defined as a fraction
of the fullness of the cup. For the cups that we used, we
defined a full cup as a liquid height 2 cm from the rim. In
addition to the full level, we collected data at one-quarter full,
one-half full and three-quarters full, which were determined
based on the full height value. We collected two different
datasets. For dataset one, we used a fixed construction, along
which the camera was moved. This resulted in accurate depth
estimations. For this dataset, the lighting conditions were
suboptimal, reducing the effectiveness of the RGB method.
Dataset two was collected through moving the camera by
hand. The depth measurements were not as good as with
the fixed construction. However, the light conditions were
improved resulting in better edge detection. At each height
for each liquid, there were 12 runs recorded for dataset one
and 10 runs for dataset two. Each run contained around 50
image-point cloud pairs.

1) Liquid Level Estimation: We compare our joint model
based on Eq. (5) for liquid level estimation and refer to it
as RGB DEPTH. Our joint model combines two individual
probabilistic models which we use as a comparison to em-
phasize the advantage of using a joint model. As mentioned
before, these are referred to as RGB (see Eq. (7)) and
DEPTH (see Eq. (20)). We compare our models with that of
Hara et al. [8] in which we assume the index of refraction to
be that of water, i.e., 1.33, since it is not possible to determine
the index of refraction using their method. This is referred
to as HARA14 in the tables. Furthermore we compare with

a naive approach assuming that the point cloud height is
correct (i.e., just using hr). This is denoted as RAW.

Table I shows the total and percentage errors of the
estimated heights to the ground truth. We take the mean and
standard deviation over all liquids and filling levels. Overall
the combined model outperforms the state of the art.

TABLE I
FLUID LEVEL ERROR

Dataset one

Method µ± σ [mm] µ± σ [%]

RGB DEPTH: 3.1± 4.1 6.7± 10.0

RGB: 9.0± 11.2 18.6± 24.6

DEPTH: 4.0± 5.0 9.7± 16.1

HARA14: 10.9± 11.9 25.6± 33.3

RAW: 25.2± 18.4 46.6± 29.6

Dataset two

Method µ± σ [mm] µ± σ [%]

RGB DEPTH: 7.6± 13.2 33.6± 68.8

RGB: 10.6± 17.4 32.8± 61.5

DEPTH: 8.3± 12.4 35.8± 66.3

HARA14: 19.0± 16.1 64.0± 75.8

RAW: 17.0± 17.4 39.7± 34.0

The fluid level estimation differs between the individual
liquids and fill levels. In Table II we show the errors, in
percentage of the full cup level, from the estimated height
values for all liquids and height levels from both datasets
we collected. As mentioned above, the method from Hara
et al. [8] is not able to detect if the liquid is opaque or not,
which explains the large differences for the opaque liquids.
In contrast to the work of Hara et al. [8], our method is able
to approximately compute the refraction index of the liquid.
This explains the good results for oil, which has a refraction
index of 1.47, which is very different to the assumed one of
1.33 for the method of Hara et al. [8]. The usage of 1.33
also explains why Hara et al. [8] perform better for water.

2) Distinction between liquids: In this experiment we
used the estimated refractiveness from the optimization prob-
lem Eq. (22) to distinguish between the liquids. We restrict
ourselves first to the classification between clear liquids and
later on we show how well we can classify between clear and
opaque liquids. For the evaluation we compare two different
liquids with their refractiveness, denoted by {r1, r2}, known
beforehand. For the classification, we compare looking up
the refraction indexes of the liquid to learning the value from
training data. For each test run we use all but this run for
training and first compute the angle and raw height values
{Dhr

, Dα}.
Table III contains the classification rate for the real and

trained refraction index values for the five transparent liquids
we collected. We use the maximum value of Eq. (22)
optimized over the refractive indices {r1, r2} instead of the
whole range [nL, nH ]∪{∞} to classify the unknown liquid.



TABLE II
FLUID LEVEL ERROR IN %

Height 25% 50%

Liq.
Meth. HARA14 RGB DEPTH HARA14 RGB DEPTH

Water 9.6± 5.1 9.7± 11.0 6.2± 6.0 2.9± 3.9

Vodka 9.4± 4.0 4.9± 5.5 13.7± 2.8 9.0± 10.6

Olive Oil 16.5± 3.8 6.0± 4.6 23.4± 6.9 14.0± 3.2

Cola 19.8± 1.2 6.3± 5.9 22.2± 0.7 7.5± 4.6

Apple juice 18.6± 2.3 7.2± 5.8 20.3± 0.9 2.9± 2.2

Orange juice 62.1± 2.2 60± 1.7 67.6± 0.1 5.7± 1.1

Milk 67.6± 2.8 52.8± 2.6 65.9± 1.1 4.1± 2.4

Height 75% 100%

Water 4.6± 4.4 5.3± 2.4 4.7± 4.9 10.9± 5.5

Vodka 6.2± 5.0 6.6± 11.6 9.6± 22.9 8.8± 21.3

Olive Oil 20.3± 6.4 4.7± 3.1 16.7± 0.9 3.3± 3.4

Cola 1.9± 0.9 8.9± 5.8 4.5± 1.0 14.3± 1.0

Apple juice 2.5± 0.7 1.8± 1.5 12.3± 2.0 3.5± 2.9

Orange juice 41.5± 1.1 1.9± 2.0 16.7± 0.9 0.9± 1.1

Milk 41.2± 1.0 1.6± 1.8 16.4± 0.8 1.0± 0.9

TABLE III
CLASSIFICATION RATE IN %

real n
trained n Water Vodka Olive Oil Cola Apple Juice

Water - 54.28 61.36 76.47 85.29
Vodka 45.71 - 80.00 80.00 80.00
Olive Oil 68.18 80.00 - 94.12 82.35
Cola 32.35 84.00 94.12 - 79.17
Apple Juice 50.00 60.00 67.65 50.00 -

The bold values denote the classification results, which are
statistically significantly better than random guesses under
the significance level of 5%. The refraction index of olive oil,
i.e., 1.47, differs from the four other clear liquids, which have
a refraction index in the range of [1.33, 1.37]. This explains
the better classification results for olive oil. Opaque liquids
like milk and orange juice do not act like refractive material
under the Kinect, but rather like materials with an infinite
refractive index. For the comparison between transparent
and opaque liquids we use the refractiveness given by the
optimization problem Eq. (22) and classify a liquid as opaque
if its refractiveness is ∞. In Table IV one can see the
classification rates between opaque and transparent liquids
for different filling levels. For all heights we obtain classifi-
cation results, which are statistically significantly better than
random guesses under the significance level of 1%.

V. CONCLUSION AND FUTURE WORK

We presented a novel probabilistic model for determining
the heights of liquids in a cup based on data obtained from
a widely available RBG-D camera. The model combines
information from both RGB and depth data for liquid height
detection. Our model works without prior knowledge of

TABLE IV
OPAQUE VS. TRANSPARENT LIQUID

Fluid Level Classification rate in %

25% 68.97

50% 73.21

75% 97.59

100% 94.29

All heights 86.42

the liquid’s physical properties like its opaqueness or its
refraction index. In fact, our method is able to distinguish
between opaque and transparent liquids. With this model,
domestic service robots will be able to determine if a cup is
empty or partially filled. This is important for tasks such
as pouring and determining constraints when picking up
and transporting a cup. For future work, we are looking at
extending our models to transparent containers such as a
glass cup.
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