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Abstract— Robust object recognition is a crucial ingredient
of many, if not all, real-world robotics applications. This paper
leverages recent progress on Convolutional Neural Networks
(CNNs) and proposes a novel RGB-D architecture for object
recognition. Our architecture is composed of two separate
CNN processing streams – one for each modality – which are
consecutively combined with a late fusion network. We focus
on learning with imperfect sensor data, a typical problem in
real-world robotics tasks. For accurate learning, we introduce
a multi-stage training methodology and two crucial ingredients
for handling depth data with CNNs. The first, an effective
encoding of depth information for CNNs that enables learning
without the need for large depth datasets. The second, a data
augmentation scheme for robust learning with depth images by
corrupting them with realistic noise patterns. We present state-
of-the-art results on the RGB-D object dataset [15] and show
recognition in challenging RGB-D real-world noisy settings.

I. INTRODUCTION

RGB-D object recognition is a challenging task that is at
the core of many applications in robotics, indoor and outdoor.
Nowadays, RGB-D sensors are ubiquitous in many robotic
systems. They are inexpensive, widely supported by open
source software, do not require complicated hardware and
provide unique sensing capabilities. Compared to RGB data,
which provides information about appearance and texture,
depth data contains additional information about object shape
and it is invariant to lighting or color variations.

In this paper, we propose a new method for object
recognition from RGB-D data. In particular, we focus on
making recognition robust to imperfect sensor data. A sce-
nario typical for many robotics tasks. Our approach builds
on recent advances from the machine learning and computer
vision community. Specifically, we extend classical convolu-
tional neural network networks (CNNs), which have recently
been shown to be remarkably successful for recognition
on RGB images [13], to the domain of RGB-D data. Our
architecture, which is depicted in Fig. 1, consists of two
convolutional network streams operating on color and depth
information respectively. The network automatically learns
to combine these two processing streams in a late fusion
approach. This architecture bears similarity to other recent
multi-stream approaches [21], [23], [11]. Training of the
individual stream networks as well as the combined archi-
tecture follows a stage-wise approach. We start by separately
training the networks for each modality, followed by a third
training stage in which the two streams are jointly fine-
tuned, together with a fusion network that performs the final
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Fig. 1: Two-stream convolutional neural network for RGB-
D object recognition. The input of the network is an RGB
and depth image pair of size 227 × 227 × 3. Each stream
(blue, green) consists of five convolutional layers and two
fully connected layers. Both streams converge in one fully
connected layer and a softmax classifier (gray).

classification. We initialize both the RGB and depth stream
network with weights from a network pre-trained on the
ImageNet dataset [19]. While initializing an RGB network
from a pre-trained ImageNet network is straight-forward,
using such a network for processing depth data is not. Ideally,
one would want to directly train a network for recognition
from depth data without pre-training on a different modality
which, however, is infeasible due to lack of large scale
labeled depth datasets. Due to this lack of labeled training
data, a pre-training phase for the depth-modality – leveraging
RGB data – becomes of key importance. We therefore
propose a depth data encoding to enable re-use of CNNs
trained on ImageNet for recognition from depth data. The
intuition – proved experimentally – is to simply encode
a depth image as a rendered RGB image, spreading the
information contained in the depth data over all three RGB
channels and then using a standard (pre-trained) CNN for
recongition.

In real-world environments, objects are often subject to
occlusions and sensor noise. In this paper, we propose a data
augmentation technique for depth data that can be used for
robust training. We augment the available training examples
by corrupting the depth data with missing data patterns
sampled from real-world environments. Using these two
techniques, our system can both learn robust depth features
and implicitly weight the importance of the two modalities.



We tested our method to support our claims: first, we
report on RGB-D recognition accuracy, then on robustness
with respect to real-world noise. For the first, we show that
our work outperforms the current state of the art on the
RGB-D Object dataset of Lai et al. [15]. For the second, we
show that our data augmentation approach improves object
recognition accuracy in a challenging real-world and noisy
environment using the RGB-D Scenes dataset [16].

II. RELATED WORK

Our approach is related to a large body of work on both
convolutional neural networks (CNNs) for object recognition
as well as applications of computer vision techniques to
the problem of recognition from RGB-D data. Although a
comprehensive review of the literature on CNNs and object
recognition is out of the scope of this paper, we will briefly
highlight connections and differences between our approach
and existing work with a focus on recent literature.

Among the many successful algorithms for RGB-D object
recognition a large portion still relies on hand designed
features such as SIFT in combination with multiple shape
features on the depth channel [15], [14]. However, following
their success in many computer vision problems, unsuper-
vised feature learning methods have recently been extended
to RGB-D recognition settings. Blum et al. [3] proposed an
RGB-D descriptor that relies on a K-Means based feature
learning approach. More recently Bo et al. [5] proposed
hierarchical matching pursuit (HMP), a hierarchical sparse-
coding method that can learn features from multiple channel
input. A different approach pursued by Socher et al. [22] re-
lies on combining convolutional filters with a recursive neural
network (a specialized form of recurrent neural network) as
the recognition architecture. Asif et al. [1] report improved
recognition performance using a cascade of Random Forest
classifiers that are fused in a hierarchical manner. Finally,
in recent independent work Schwarz et al. [20] proposed to
use features extracted from CNNs pre-trained on ImageNet
for RGB-D object recognition. While they also make use
of a two-stream network they do not fine-tune the CNN
for RGB-D recognition, but rather just use the pre-trained
network as is. Interestingly, they also discovered that simple
colorization methods for depth are competitive to more
involved preprocessing techniques. In contrast to their work,
ours achieves higher accuracy by training our fusion CNN
end-to-end: mapping from raw pixels to object classes in a
supervised manner (with pre-training on a related recognition
task). The features learned in our CNN are therefore by
construction discriminative for the task at hand. Using CNNs
trained for object recognition has a long history in computer
vision and machine learning. While they have been known
to yield good results on supervised image classification tasks
such as MNIST for a long time [17], recently they were
not only shown to outperform classical methods in large
scale image classification tasks [13], object detection [9]
and semantic segmentation [8] but also to produce features
that transfer between tasks [7], [2]. This recent success story
has been made possible through optimized implementations

for high-performance computing systems, as well as the
availability of large amounts of labeled image data through,
e.g., the ImageNet dataset [19].

While the majority of work in deep learning has focused
on 2D images, recent research has also been directed towards
using depth information for improving scene labeling and
object detection [6], [10]. Among them, the work most
similar to ours is the one on object detection by Gupta
et al. [10] who introduces a generalized method of the
R-CNN detector [9] that can be applied to depth data.
Specifically, they use large CNNs already trained on RGB
images to also extract features from depth data, encoding
depth information into three channels (HHA encoding).
Specifically, they encode for each pixel the height above
ground, the horizontal disparity and the pixelwise angle
between a surface normal and the gravity direction. Our
fusion network architecture shares similarities with their
work in the usage of pre-trained networks on RGB images.
Our method differs in both the encoding of depth into color
image data and in the fusion approach taken to combine
information from both modalities. For the encoding step, we
propose an encoding method for depth images (’colorizing’
depth) that does not rely on complicated preprocessing and
results in improved performance when compared to the
HHA encoding. To accomplish sensor fusion we introduce
additional layers to our CNN pipeline (see Fig. 1) allowing us
to automatically learn a fusion strategy for the recognition
task – in contrast to simply training a linear classifier on
top of features extracted from both modalities. Multi-stream
architectures have also been used for tasks such as action
recognition [21], detection [11] and image retrieval [23]. An
interesting recent overview of different network architectures
for fusing depth and image information is given in Saxena
et al. [18]. There, the authors compared different models
for multimodal learning: (1) early fusion, in which the input
image is concatenated to the existing image RGB channels
and processed alongside; (2) an approach we denote as
late fusion, where features are trained separately for each
modality and then merged at higher layers; (3) combining
early and late fusion; concluding that late fusion (2) and the
combined approach perform best for the problem of grasp
detection. Compared to their work, our model is similar to the
late fusion approach but widely differs in training – Saxena
et al. [18] use a layer-wise unsupervised training approach –
and scale (the size of both their networks and input images
is an order of magnitude smaller than in our settings).

III. MULTIMODAL ARCHITECTURE FOR RGB-D OBJECT
RECOGNITION

An overview of the architecture is given in Fig. 1. Our
network consists of two streams (top-blue and bottom-green
part in the figure) – processing RGB and depth data inde-
pendently – which are combined in a late fusion approach.
Each stream consists of a deep CNN that has been pre-
trained for object classification on the ImageNet database
(we use the CaffeNet [12] implementation of the CNN from
Krizhevsky et al. [13]). The key reason behind starting from



Fig. 2: Different approaches for color encoding of depth images. From left to right: RGB, depth-gray, surface normals [5],
HHA [10], our method.
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Fig. 3: CNNs require a fixed size input. Instead of the widely
used image warping approach (middle), our method (bottom)
preserves shape information and ratio of the objects. We
rescale the longer side and create additional image context,
by tiling the pixels at the border of the longer side, e.g., 1.
We assume that the depth image is already transformed to
three channels using our colorization method.

a pre-trained network is to enable training a large CNN
with millions of parameters using the limited training data
available from the Washington RGB-D Object dataset (see,
e.g., Yosinski et al. [25] for a recent discussion). We first
pre-process data from both modalities to fully leverage the
ImageNet pre-training. Then, we train our multimodal CNN
in a stage-wise manner. We fine-tune the parameters of each
individual stream network for classification of the target data
and proceed with the final training stage in which we jointly
train the parameters of the fusion network. The different steps
will be outlined in the following sections.

A. Input preprocessing

To fully leverage the power of CNNs pre-trained on
ImageNet, we pre-process the RGB and depth input data
such that it is compatible with the kind of original ImageNet
input. Specifically, we use the reference implementation
of the CaffeNet [12] that expects 227 × 227 pixel RGB
images as input which are typically randomly cropped from
larger 256 × 256 RGB images (see implementation details

on data augmentation). The first processing step consists
of scaling the images to the appropriate image size. The
simplest approach to achieve this is to use image warping by
directly rescaling the original image to the required image
dimensions, disregarding the original object ratio. This is
depicted in Fig. 3 (middle). We found in our experiments that
this process is detrimental to object recognition performance
– an effect that we attribute to a loss of shape information
(see also Section IV-C). We therefore devise a different
preprocessing approach: we scale the longest side of the
original image to 256 pixels, resulting in a 256 × N or an N
× 256 sized image. We then tile the borders of the longest
side along the axis of the shorter side. The resulting RGB
or depth image shows an artificial context around the object
borders (see Fig. 3). The same scaling operation is applied
to both RGB and depth images.

While the RGB images can be directly used as inputs
for the CNNs after this processing step, the rescaled depth
data requires additional steps. To realize this, recall that a
network trained on ImageNet has been trained to recognize
objects in images that follow a specific input distribution
(that of natural camera images) that is incompatible with
data coming from a depth sensor – which essentially encodes
distance of objects from the sensor. Nonetheless, by looking
at a typical depth image from a household object scene (c.f.,
Fig. 4) one can conclude that many features that qualitatively
appear in RGB images – such as edges, corners, shaded
regions – are also visible in, e.g., a grayscale rendering of
depth data. This realization has previously led to the idea of
simply using a rendered version of the recorded depth data
as an input for CNNs trained on ImageNet [10]. We compare
different such encoding strategies for rendering depth to
images in our experiments. The two most prevalent such
encodings are (1) rendering of depth data into grayscale and
replicating the grayscale values to the three channels required
as network input; (2) using surface normals where each
dimension of a normal vector corresponds to one channel in
the resulting image. A more involved method, called HHA
encoding [10], encodes in the three channels the height above
ground, horizontal disparity and the pixelwise angle between
a surface normal and the gravity direction.

We propose a fourth, effective and computationally inex-
pensive, encoding of depth to color images, which we found
to outperform the HHA encoding for object recognition. Our
method first normalizes all depth values to lie between 0
and 255. Then, we apply a jet colormap on the given image
that transforms the input from a single to a three channel
image (colorizing the depth). For each pixel (i, j) in the
depth image d of size W ×H , we map the distance to color
values ranging from red (near) over green to blue (far), essen-



tially distributing the depth information over all three RGB
channels. Edges in these three channels often correspond to
interesting object boundaries. Since the network is designed
for RGB images, the colorization procedure provides enough
common structure between a depth and an RGB image
to learn suitable feature representations (see Fig. 2 for a
comparison between different depth preprocessing methods).

B. Network training

Let D = {(x1,d1,y1), . . . , (xN ,dN ,yN )} be the labeled
data available for training our multimodal CNN; with xi,di

denoting the RGB and pre-processed depth image respec-
tively and yi corresponding to the image label in one-hot
encoding – i.e., yi ∈ RM is a vector of dimensionality M (the
number of labels) with yik = 1 for the position k denoting
the image label. We train our model using a three-stage
approach, first training the two stream networks individually
followed by a joint fine-tuning stage.

1) Training the stream networks: We first proceed by
training the two individual stream networks (c.f., the blue and
green streams in Fig. 1). Let gI(xi; θI) be the representation
extracted from the last fully connected layer (fc7) of the Caf-
feNet – with parameters θI – when applied to an RGB image
xi. Analogously, let gD(di; θD) be the representation for the
depth image. We will assume that all parameters θI and θD

(the network weights and biases) are initialized by copying
the parameters of a CaffeNet trained on the ImageNet dataset.
We can then train an individual stream network by placing
a randomly initialized softmax classification layer on top of
fD and f I and minimizing the negative log likelihood L of
the training data. That is, for the depth image stream network
we solve

min
WD,θD

N∑
i=1

L
(
softmax

(
WDgD(di; θD)

)
, yi
)
, (1)

where WD are the weights of the softmax layer map-
ping from g(·) to RM , the softmax function is given by
softmax(z) = exp(z)/‖z‖1 and the loss is computed as
L(s, y) = −

∑
k

yk log sk. Training the RGB stream network

then can be performed by an analogous optimization. After
training, the resulting networks can be used to perform
separate classification of each modality.

2) Training the fusion network: Once the two individ-
ual stream networks are trained we discard their softmax
weights, concatenate their – now fine-tuned – last layer
responses gI(xi; θI) and gD(di; θD) and feed them through
an additional fusion stream f([gI(xi; θI), gD(di; θD)]; θF )
with parameters θF . This fusion network again ends in a
softmax classification layer. The complete setup is depicted
in Fig. 1, where the two fc7 layers (blue and green) are
concatenated and merge into the fusion network (here the
inner product layer fc1-fus depicted in gray). Analogous
to Eq. (1) the fusion network can therefore be trained by
jointly optimizing all parameters to minimize the negative

object
boundaries

noise

occlusion

Fig. 4: Kitchen scene in the RGB-D Scenes dataset showing
objects subjected to noise and occlusions.
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Fig. 5: We create synthetic training data by inducing artificial
patterns of missing depth information in the encoded image.

log likelihood

min
Wf ,θI ,θD,θF

N∑
i=1

L
(
softmax

(
Wff([gI ,gD]; θF )

)
, yi
)
,

(2)
where gI = gI(xi; θI), gD = gD(di; θD). Note that in
this stage training can also be performed by optimizing only
the weights of the fusion network (effectively keeping the
weights from the individual stream training intact).

C. Robust classification from depth images

Finally, we are interested in using our approach in real
world robotics scenarios. Robots are supposed to perform
object recognition in cluttered scenes where the perceived
sensor data is subject to changing external conditions (such
as lighting) and sensor noise. Depth sensors are especially
affected by a non-negligible amount of noise in such setups.
This is mainly due to the fact that reflective properties of ma-
terials as well as their coating, often result in missing depth
information. An example of noisy depth data is depicted in
Fig. 4. In contrast to the relatively clean training data from
the Washington RGB-D Object dataset, the depicted scene
contains considerable amounts of missing depth values and
partial occlusions (the black pixels in the figure). To achieve
robustness against such unpredictable factors, we propose a
new data augmentation scheme that generates new, noised
training examples for training and is tailored specifically to
robust classification from depth data.

Our approach utilizes the observation that noise in depth
data often shows a characteristic pattern and appears at
object boundaries or object surfaces. Concretely, we sampled



a representative set of noise patterns P = {P1, . . . , PK}
that occur when recording typical indoor scenes through a
Kinect sensor. For sampling the noise patterns we used the
RGB-D SLAM dataset [24]. First, we extract 33,000 random
noise patches of size 256 × 256 from different sequences at
varying positions and divide them into five groups, based on
the number of missing depth readings they contain. Those
noise patches are 2D binary masks patterns. We randomly
sample pairs of noise patches from two different groups that
are randomly added or subtracted and optionally inverted to
produce a final noise mask pattern. We repeat this process
until we have collected K = 50, 000 noise patterns in total.
Examples of the resulting noise patterns and their application
to training examples are shown in Fig. 5.

Training the depth network with artificial noise patterns
then proceeds by minimizing the objective from Equation
Eq. (1) in which each depth sample di is randomly replaced
with a noised variant with probability 50%. Formally,

di =

{
di if p = 1

Pk ◦ di else
with

p ∼ B{0.5}
k ∼ U{1,K},

(3)

where ◦ denotes the Hadamard product, B the Bernoulli
distribution and U the discrete uniform distribution.

IV. EXPERIMENTS

We evaluate our multimodal network architecture on the
Washington RGB-D Object Dataset [15] which consists of
household objects belonging to 51 different classes. As an
additional experiment – to evaluate the robustness of our
approach for classification in real-world environments – we
considered classification of objects from the RGB-D Scenes
dataset whose class distribution partially overlaps with the
RGB-D Object Dataset.

A. Experimental setup

All experiments were performed using the publicly avail-
able Caffe framework [12]. As described previously we use
the CaffeNet as the basis for our fusion network. It consists
of five convolutional layers (with max-pooling after the first,
second and fifth convolution layer) followed by two fully
connected layers and a softmax classification layer. Rectified
linear units are used in all but the final classification layer.
We initialized both stream networks with the weights and
biases of the first eight layers from this pre-trained network,
discarding the softmax layer. We then proceeded with our
stage-wise training. In the first stage (training the RGB and
depth streams independently) the parameters of all layers
were adapted using a fixed learning rate schedule (with initial
learning rate of 0.01 that is reduced to 0.001 after 20K
iterations and training is stopped after 30K iterations). In
the second stage (training the fusion network, 20k iterations,
mini-batch size of 50) we experimented with fine-tuning all
weights but found that fixing the individual stream networks
(by setting their learning rate to zero) and only training the
fusion part of the network resulted in the best performance.
The number of training iterations were chosen based on
the validation performance on a training validation split in

TABLE I: Comparisons of our fusion network with other
approaches reported for the RGB-D dataset. Results are
recognition accuracy in percent. Our multi-modal CNN out-
performs all the previous approaches.

Method RGB Depth RGB-D
Nonlinear SVM [15] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5

HKDES [4] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2
Kernel Desc. [14] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1
CKM Desc. [3] N/A N/A 86.4 ± 2.3
CNN-RNN [22] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

Upgraded HMP [5] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9
CaRFs [1] N/A N/A 88.1 ± 2.4

CNN Features [20] 83.1 ± 2.0 N/A 89.4 ± 1.3
Ours, Fus-CNN (HHA) 84.1 ± 2.7 83.0 ± 2.7 91.0 ± 1.9

Ours, Fus-CNN (jet) 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

a preliminary experiment. A fixed momentum value of 0.9
and a mini-batch size of 128 was used for all experiments
if not stated otherwise. We also adopted the common data
augmentation practices of randomly cropping 227 × 227
sub-images from the larger 256 × 256 input examples and
perform random horizontal flipping. Training of a single net-
work stream takes ten hours, using a NVIDIA 780 graphics
card.

B. RGB-D Object dataset

The Washington RGB-D Object Dataset consists of 41,877
RGB-D images containing household objects organized into
51 different classes and a total of 300 instances of these
classes which are captured under three different viewpoint
angles. For the evaluation every 5th frame is subsampled. We
evaluate our method on the challenging category recognition
task, using the same ten cross-validation splits as in Lai et
al. [15]. Each split consists of roughly 35,000 training images
and 7,000 images for testing. From each object class one
instance is left out for testing and training is performed on
the remaining 300−51 = 249 instances. At test time the task
of the CNN is to assign the correct class label to a previously
unseen object instance.

Table I shows the average accuracy of our multi-modal
CNN in comparison to the best results reported in the litera-
ture. Our best multi-modal CNN, using the jet-colorization,
(Fus-CNN jet) yields an overall accuracy of 91.3 ± 1.4%
when using RGB and depth (84.1± 2.7% and 83.8± 2.7%
when only the RGB or depth modality is used respectively),
which – to the best of our knowledge – is the highest
accuracy reported for this dataset to date. We also report
results for combining the more computationally intensive
HHA with our network (Fus-CNN HHA). As can be seen
in the table, this did not result in an increased performance.
The depth colorization method slightly outperforms the HHA
fusion network (Fus-CNN HHA) while being computation-
ally cheaper. Overall our experiments show that a pre-
trained CNN can be adapted for recognition from depth data
using our depth colorization method. Apart from the results
reported in the table, we also experimented with different
fusion architectures. Specifically, performance slightly drops
to 91% when the intermediate fusion layer (fc1-fus) is
removed from the network. Adding additional fusion layers
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Fig. 6: Per-class recall of our trained model on all test-splits.
The worst class recall belongs to mushrooms and peaches.

also did not yield an improvement. Finally, Fig. 6 shows the
per-class recall, where roughly half of the objects achieve a
recall of ≈ 99%.

C. Depth domain adaptation for RGB-D Scenes

To test the effectiveness of our depth augmentation
technique in real world scenes, we performed additional
recognition experiments on the more challenging RGB-D
Scenes dataset. This dataset consists of six object classes
(which overlap with the RGB-D Object Dataset) and a large
amount of depth images subjected to noise.

For this experiment we trained two single-stream depth-
only networks using the Object dataset and used the Scenes
dataset for testing. Further, we assume that the groundtruth
bounding box is given in order to report only on recognition
performance. The first “baseline” network is trained by
following the procedure described in Section III-B.1, with the
total number of labels M = 6. The second network is trained
by making use of the depth augmentation outlined in III-C.
The results of this experiment are shown in Table II (middle
and right column) that reports the recognition accuracy for
each object class averaged over all eight video sequences.
As is evident from the table, the adapted network (right
column) trained with data augmentation outperforms the
baseline model for all classes, clearly indicating that addi-
tional domain adaptation is necessary for robust recognition
in real world scenes. However, some classes (e.g., cap, bowl,
soda can) benefit more from noise aware training than others
(e.g., flashlight, coffe mug). The kitchen scene depicted in
Fig. 4 gives a visual intuition for this result. On the one
hand, some objects (e.g., soda cans) often present very noisy
object boundaries and surfaces, thus they show improved
recognition performance using the adapted approach. On
the other hand, small objects (e.g. a flashlight), which are
often captured lying on a table, are either less noisy or
just small, hence susceptible to be completely erased by the
noise from our data augmentation approach. Fig. 7 shows
several exemplary noisy depth images from the test set that
are correctly classified by the domain-adapted network while
the baseline network labels them incorrectly. We also tested
the effect of different input image rescaling techniques –
previously described in Fig. 3 – in this setting. As shown in
the left column of Table II, standard image warping performs
poorly, which supports our intuition that shape information

TABLE II: Comparison of the domain adapted depth network
with the baseline: six-class recognition results (in percent)
on the RGB-D Scenes dataset [16] that contains everyday
objects in real-world environments.

Class Ours, warp. Ours, no adapt. Ours, adapt.
flashlight 93.4 97.5 96.4

cap 62.1 68.5 77.4
bowl 57.4 66.5 69.8

soda can 64.5 66.6 71.8
cereal box 98.3 96.2 97.6
coffee mug 61.9 79.1 79.8
class avg. 73.6 ± 17.9 79.1 ± 14.5 82.1 ± 12.0

gets lost during preprocessing.

D. Comparison of depth encoding methods

Finally, we conducted experiments to compare the differ-
ent depth encoding methods described in Fig. 2. For rescaling
the images, we use our proposed preprocessing method de-
scribed in Fig. 3 and tested the different depth encoding. Two
scenarios are considered: 1) training from scratch using sin-
gle channel depth images 2) for each encoding method, only
fine-tuning the network by using the procedure described
in Section III-B.1. When training from scratch, the initial
learning rate is set to 0.01, then changed to 0.001 after 40K
iterations thus stopped after 60K iterations. Training with
more iterations did not further improve the accuracy. From
the results, presented in Table III, it is clear that training the
network from scratch – solely on the RGB-D Dataset – is
inferior to fine-tuning. In the latter setting, the results suggest
that the simplest encoding method (depth-gray) performs
considerably worse than the other three methods. Among
these other encodings (which all produce colorized images),
surface normals and HHA encoding require additional image
preprocessing – meanwhile colorizing depth using our depth-
jet encoding has negligible computational overhead. One
potential reason why the HHA encoding underperforms in
this setup is that all objects are captured on a turntable
with the same height above the ground. The height channel
used in the HHA encoding therefore does not encode any
additional information for solving the classification task.
In this experiment, using surface normals yields slightly
better performance than the depth-jet encoding. Therefore,
we tested the fusion architecture on the ten splits of the RGB-
D Object Dataset using the surface normals encoding but this
did not further improve the performance. Specifically, the
recognition accuracy on the test-set was 91.1 ± 1.6 which
is comparable to our reported results in Table I.

V. CONCLUSION

We introduce a novel multimodal neural network archi-
tecture for RGB-D object recognition, which achieves state
of the art performance on the RGB-D Object dataset [15].
Our method consists of a two-stream convolutional neural
network that can learn to fuse information from both RGB
and depth automatically before classification. We make use
of an effective encoding method from depth to image data
that allows us to leverage large CNNs trained for object
recognition on the ImageNet dataset. We present a novel
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Fig. 7: Objects from the RGB-D Scenes test-set for which
the domain adapted CNN predicts the correct label, while
the baseline (no adapt.) CNN fails. Most of these examples
are subject to noise or partial occlusion.

TABLE III: Comparison of different depth encoding methods
on the ten test-splits of the RGB-D Object dataset.

Depth Encoding Accuracy
Depth-gray (single channel), from scratch 80.1 ± 2.6

Depth-gray 82.0 ± 2.8
Surface normals 84.7 ± 2.3

HHA 83.0 ± 2.7
Depth-jet encoding 83.8 ± 2.7

depth data augmentation that aims at improving recognition
in noisy real-world setups, situations typical of many robotics
scenarios. We present extensive experimental results and
confirm that our method is accurate and it is able to learn
rich features from both domains. We also show robust object
recognition in real- world environments and prove that noise-
aware training is effective and improves recognition accuracy
on the RGB-D Scenes dataset [16].
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