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Abstract Learning to act in unstructured environments such as cluttered piles of
objects poses a substantial challenge for manipulation robots. We present a novel
neural network-based approach that separates unknown objects in clutter by select-
ing favourable push actions. Our network is trained from data collected through au-
tonomous interaction of a PR2 robot with randomly organized tabletop scenes. The
model is designed to propose meaningful push actions based on over-segmented
RGB-D images. We evaluate our approach by singulating up to 8 unknown objects
in clutter. We demonstrate that our method enables the robot to perform the task with
a high success rate and a low number of required push actions. Our results based on
real-world experiments show that our network is able to generalize to novel objects
of various sizes and shapes as well as to arbitrary object configurations. Videos of
our experiments can be viewed at http://robotpush.cs.uni-freiburg.de

1 Introduction

Robot manipulation tasks such as tidying up a room or sorting piles of objects are a
substantial challenge for robots, especially in scenarios with unknown objects. The
objective of object singulation is to physically separate a set of cluttered objects
through manipulation, a capability regarded as relevant for service robots operating
in unstructured household environments. Further, the ability to separate unknown
objects from surrounding objects provides great benefit for object detection, which
still remains an open problem for overlapping objects. A key challenge of object
singulation is the required interaction of multiple capabilities such as perception,
manipulation and motion planning. Perception may fail because of occlusions from
objects but also from occlusion by the manipulator itself. Manipulation actions such
as grasping may also fail when attempting to manipulate objects that the perception
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Fig. 1: Our approach consists of a convolutional neural network that ranks a set of potential push
actions based on an over-segmented input image in order to clear objects in clutter. The proposed
pushes are executed using motion planning. Our push proposal network is trained in an iterative
manner from autonomous interaction with cluttered object scenes.

systems fails to correctly segment. Motion planning is particularly prone to errors
when applied in unknown, unstructured environments.

Previous approaches for object singulation strongly incorporate the concept of
object segments or even complete objects. Push action strategies are selected based
on the current belief of the configuration of all segments or objects in the scene,
an assumption that is not robust, since segments might merge and object detection
might fail. We apply a different strategy that aims to relax the concept of segments
and objects for solving the task at hand, making task execution less prone to mod-
elling errors from the perception modules. Similar to recent approaches that operate
directly on image inputs [19, 22] we aim for a learning-based action selection ap-
proach that takes as input an RGB-D image of a tabletop scene and proposes a set of
meaningful push actions using a convolutional neural network, as shown in Fig. 1.

Our primary contributions are: 1) a push proposal network (Push-CNN), trained
in an iterative manner to detect push candidates from RGB-D images in order to
separate cluttered objects, 2) a method that samples potential push candidates based
on depth data, which are ranked with our Push-CNN, and 3) real-world experiments
with a PR2 robot in which we compare the performance of our method against a
strong manually-designed baseline.

We quantitatively evaluate our approach on 4 sets of real-robot experiments.
These experiments involve singulation tasks of increasing difficulty ranging from
4 unknown objects up to configurations with 8 unknown objects. In total the robot
executed over 400 push actions during the evaluation and achieved an object separa-
tion success rate of up to 70%, which shows that our Push-CNN is able to generalize
to previously unseen object configurations and object shapes. Our Freiburg Robot-
push dataset is publicly available at http://robotpush.cs.uni-freiburg.de.
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2 Related Work

Standard model-based approaches for object singulation require knowledge of ob-
ject properties to perform motion planning in a physics simulator and to choose
push actions accordingly [6, 7]. However, estimating the location of objects and
other properties of the physical environment in order to plan push actions can be
subject to errors, especially for unknown objects and cluttered scenes [21, 30, 31].
Interactive model-free methods have been applied to solve the task by accumulating
evidence of singulated items over a history of interactions including push and grasp
primitives [5]. Difficulties arise when objects have to be tracked after each interac-
tion step, requiring small motion pushes due to partial observations and occlusions.
We follow a model-free approach that encodes evidence of singulated objects in the
learned feature space of the network. Hermans et al. [13] perform object singula-
tion using several push primitives similar to ours. Their method is based on object
edges to detect splitting locations between potential objects to apply pushes in those
regions respectively, but does not include learned features and does not take into ac-
count stacked objects. Katz et al. [14] present an interactive segmentation algorithm
to singulate cluttered objects using pushing and grasping. Similar to them, we also
create object hypothesis from over-segmenting objects into surface facets but use a
different method based on the work of [26]. They perform supervised learning with
manual features to detect good manipulation actions such as push, pull and grasp.
We take the idea of learning a step further by directly learning from over-segmented
images and therefore removing the need for manual feature design. Boularias et
al. [3] learn favourable push actions to improve grasping of objects in clutter in a
reinforcement learning setting, but use manual features and do not show the applica-
bility of their method for more than 2 objects. Gupta et al. [10] present an approach
to sort small cluttered objects using a set of motion primitives, but do not show
experiments with objects of various sizes and shapes. Laskey et al. [18] leverage
learning from human demonstrations to learn control policies for object singulation,
but thus far only considered singulating a single object from a cluttered scene, while
our method can singulate up to 6 objects and achieve a higher success rate.
Our approach is related to robot learning from physical interaction [24], including
approaches that learn to predict how rigid objects behave if manipulated [17, 12, 32]
and self-supervised learning methods for grasping [25, 20]. Gualtieri et al. [9]
present a grasp pose detection method in which they detect grasp candidates using a
convolutional neural network. They follow a similar methodology but for a different
task and goal. Recent methods learn the dynamics of robot-object interaction for the
task of pushing objects to a target location [8, 1], but do not evaluate on scenes with
many touching objects and do not follow an active singulation strategy. Byravan et
al. [4] learn to predict rigid body motions of pushed objects using a neural network,
but to not demonstrate results for multiple objects in a real-world scenario. Object
separation is used as a source to leverage perceptual information from interaction
following the paradigm of interactive perception [2]. As demonstrated in our exper-
iments, our singulation method can be used to generate informative sensory signals
that lower the scene complexity for interactive object segmentation [27, 11, 29, 16].
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Fig. 2: For training the push proposal CNN each push action (small arrow) from the collected
dataset is labeled as positive or negative by a user who assesses the outcome of the action. The
criteria for a positive label are: the object got singulated, the push did not move multiple objects,
the object was pushed close to its center of mass and the pushed object was not already singulated.

3 Learning to Singulate Objects

We consider the problem of learning good push actions to singulate objects in clut-
ter. Let o be an image with height H and width W taken from an RGB-D camera
with a known camera intrinsics matrix K. Further, let a = (c,α) be a push proposal
with start position c = (x,y) and push angle α both specified in the image plane. We
aim to learn a function p = F(o,a;θ) with learned parameters θ that takes as input
the image together with a push proposal and outputs a probability of singulation
success.

3.1 Data

The prediction function F is trained in an iterative manner (we use 2 training it-
erations F1,F2) on experiences that the robot collects trough interaction with the
environment. At the first iteration, we gather a dataset D of push proposals together
with images from randomly pushing objects in simulation . Then, we train a clas-
sifier F1 that best mimics the labels from an expert user in terms of successful and
unsuccessful singulation actions. In the next iteration, we use F1 to collect more data
and add this data to D . The next classifier F2 is trained to mimic the expert labels
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on the whole dataset D . We refer to F1 as a vanilla network that is trained solely
on experience collected from random interaction and F2 as an aggregated network.
The training examples D = {(o1,a1,y1), . . . ,(oN ,aN ,yN)} are labeled by an expert
user, where yi is a corresponding binary label. Fig. 2 depicts the labels given by an
expert user for one exemplary singulation trial. The function is trained in a super-
vised manner using a negative log likelihood loss minθ ∑

N
i=1 L

(
p,yi

)
and a sigmoid

function.

3.2 Approach

Our approach is divided into three modules, as shown in Fig. 1: 1) a sampling mod-
ule that generates a set of push proposals, 2) a neural network module that classifies
the set of push proposals and ranks them accordingly, and 3) an action execution
module that computes arm motion plans for the ranked pushes and then executes
the first push proposal that has both a high probability of singulation success and a
successful motion plan.

3.2.1 Push Proposal Sampling

Our push proposal sampling method is designed to generate a set of push pro-
posals {a1, . . . ,aM}. First, we sample 3D push handles {h1, . . . ,hM} represented
as point normals pointing parallel to the xy-plane of the robot’s odometry frame
hm = (x,y,z,nh), nh = (−nx,−ny,0). Specifically, given the raw depth image,
we first apply a surface-based segmentation method [26] (we only use the pre-
segmentation and surface-detection steps of the approach) to obtain a set of seg-
ments {s1, . . . ,sL} together with a surface normals map and a table plane. Second,
we sample for each segment sl a fixed number of push handles and remove push
handles below the table plane. We assume a fixed push length la = 0.2 for all han-
dles and compute the convex hull for the table in order to filter out push handles that
have push endpoints outside of the table. Finally, we obtain a set of push proposals
by transforming the push handles into the camera frame using the transformation
matrix C from the odometry to the camera frame together with the camera intrinsics
a = KCh.

3.2.2 Push Proposal Network and Input

We parametrize the predictor F(o,a;θ) using a deep convolutional neural network,
denoted as a push proposal CNN in Fig. 1. The distinction between o and a as input
is somewhat artificial, because both inputs are combined in a new image ores which
constitutes the final input of the network. To predict the probability of success of a
push proposal for the given singulation task the most important feature is the rela-
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segmented image: translation: rotation: result:

Fig. 3: We encode o and a together in a push proposal image ores that maps both the configuration
of the objects in the scene and the push proposal direction into a ‘push centric’ frame.
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Fig. 4: Our push proposal network architecture to predict a probability of singulation success for
a push proposal image ores. The input to the network is a single channel grayscale version of the
transformed image ores with a resolution of 64×64 pixels. The network consists of 5 convolutional
layers and 2 fully connected layers.

tion of the candidate segment that we want to push and its relation to neighbouring
segments. We propose to fuse the segmented camera image with a push proposal us-
ing rigid image transformations Tt ,Tr, see Fig. 3. First, we transform the image by a
rigid translation Tt(c) according to the start position c of the push proposal. Second,
we apply image rotation Tr(α) according to the push angle α . The resulting image
is ores = TrTto, as depicted in the right image of Fig. 3. At test time we forward the
set of transformed input images {o1

res, . . . ,oM
res} into the push proposal network to

predict a probability of success for each push proposal in the set {a1, . . . ,aM}. The
network architecture is depicted in Fig. 4.

We train the network from scratch using random uniform weight initialization
and Adam [15]. We performed network architecture search with 10 different con-
figurations and found that for our task the depicted network architecture yielded
best performance on 2 separate validation sets. We experienced a drop in classi-
fication performance when increasing the image size, introducing dropout, or re-
moving pooling operations, and did not experience improvement for adding xavier
weight initialization or other activation functions besides ReLUs. Finally, we train
our model for 25 epochs with a batch size of 64, using the default parameters for
Adam (learning rate= 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−08, decay= 0.0).
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3.2.3 Push Motion Planning

To find a motion plan for each push proposal we use the LBKPIECE motion plan-
ning algorithm provided by an out-of-the-box framework [28]. Our arm motion
strategy consists of two steps. In the first step, we plan to reach the target push
proposal am. In a second step, given that the gripper reached the desired push start
position, the robot performs a straight line push with fixed push length la. We com-
pute motion plans for both steps before execution to avoid that the robot executes
the reaching plan and then fails to find a plan for the straight line push. We found
our two-step procedure to be more stable than executing a reach and push trajectory
at once, due to arm controller errors.

4 Experiments

We conduct both qualitative and quantitative experiments on a real PR2 robot to
benchmark the performance of our overall approach. Hereby, we aim to answer the
following questions: 1) Can our push proposal network predict meaningful push ac-
tions for object shapes and configurations it has not seen during training? 2) Can
our network trained in simulation generalize to a real-world scenario? 3) Can our
model reason about scene ambiguities including multiple object clusters and focus
its attention to objects that are more cluttered than others? In order to answer ques-
tion (1) we perform real-world experiments with objects that the network has not
seen during training and compare against a manual model-free baseline that reasons

Fig. 5: Starting configurations of the 25 test trials with 4 objects.
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about available free space in the scene and keeps a history of previous actions. To
answer question (2) we test a network that we train solely with data from simu-
lation (denoted as vanilla network). Finally, three challenging experiments with 6
and 8 objects aim to answer question (3), where the learned model has to trade-off
between further separating isolated objects to create more space and split isolated
object clusters to solve the task. The overall intent of our experiments is to show that
a learned model is able to directly map from sensor input to a set of possible actions,
without prior knowledge about objects, spatial relations or physics simulation.

4.1 Experimental Setup

Our PR2 robot is equipped with a Kinect 2 camera mounted on its head that provides
RGB-D images with a resolution of 960× 540. We use both arms of the robot,
each with 7-DOF to perform the pushing actions. The task is designed as follows:
a trial consists of a fixed number of objects from a test set of everyday objects with
different shapes that the robot has never seen before. In the starting configuration
for a trial all objects are placed or stacked on a table to be in collision. The starting
configurations are saved and reproduced for all methods in a manual manner using
point cloud alignment. We conduct different experiments of increasing difficulty
ranging from 4 to 8 objects, in which for each experiment the number of objects
stays fixed. The 25 starting configurations for our quantitative evaluation with 4
objects are depicted in Fig. 5.

We report the number of successful singulation trials. A singulation trial is con-
sidered successful if all objects are separated by a minimum distance of 3cm. Fur-
ther, we report results for singulation success after every action, to show which
methods can successfully execute the task with less actions. For each trial the robot
performs a fixed set of actions. Given the number of objects no for each experiment
the maximum number of pushes is npushes = b1.3 · noc+ 1. The robot is allowed to
stop before, if it reasons that all objects are singulated. This is implicitly encoded
into our method. If the robot does not find a motion plan for the set of push proposals
that the network ranked as positive it automatically terminates the trial.

To train our push proposal network we use an iterative training procedure. First,
the vanilla network is trained on labeled data from a total of 2,486 (243 positives,
2,243 negatives) random interactions performed in simulation. Then the aggregated
network is trained on additional 970 interactions (271 positives, 699 negatives),
which we collected using the vanilla network in both simulation and real-world,
resulting in a training dataset size of 3,456 push interactions. We use object meshes
from the Freiburg Spatial Relations Dataset for our simulation experiments [23].
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4.2 Baseline Method

We provide a quantitative comparison against a manually designed baseline method,
to evaluate whether or not the predictions of the push proposal network lead to im-
proved object singulation results. We do not provide knowledge about the objects
and their physical properties to our model, correspondingly our baseline method is
model-free and follows an interactive singulation strategy that is reasonably effec-
tive. The method which we denote as ‘free space+tracking’ works as follows:

1. Given a set of segments {s1, . . . ,sL} from our object over-segmentation approach
we construct a graph that includes all segments, where each segment is a node in
the graph and the edges correspond to distances between the segments. We rep-
resent each segment as an axis-aligned bounding box (AABB) and compute an
edge between 2 segments by means of the Manhattan distance of the 2 AABBs.

2. We compute 2 features for scoring push proposals with the baseline method. The
first feature is a predictive feature that reasons about the resulting free space
if a segment would be pushed to some target location. To compute the feature,
we predict a straight line motion of the respective segment to which the push
proposal is assigned to, according to the push direction and the length. Next,
we compute the Manhattan distance between the resulting transformed AABB
and all other segments in the scene, which we assume will remain static. The
free space feature fs is the minimum distance between the transformed AABB
and the other AABBs. If the predicted final position of a segment would lead to
collision with another segment the free space feature is zero.

3. The second feature includes the push history that we store for each segment. It
follows the intuition that the same segment should not be pushed too often, re-
gardless of the predicted free space around it. To retrieve the push history over
all segments, we follow a segment-based tracking approach, which aligns the
centroid and the principal components of two segments from the current set of
segments and the set of segments from the last interaction. We match a set of
segments using a weighted average of the principal components and the segment
centroid distances d(sl ,sm) = 0.6 ·dpca(sl ,sm)+0.4 ·dc(sl ,sm). To punish multi-
ple pushes r of a segment throughout a trial we map the push motion history into
a normalized feature using an exponential decay function fh = exp(−r).

4. Accordingly, a push proposal am receives the score pm = 0.5 · fs +0.5 · fh.

4.3 Quantitative Comparisons

We extensively evaluate our method in real-robot object singulation experiments
with 4,6 and 8 unknown objects. Additionally we perform an experiment with 6
identical objects to further challenge our approach. Our results with 4 objects (ex-
periment 1), shown in Table 1, indicate that our method is able to improve over the
performance of the manual baseline. The success rate of our vanilla network is 68%,
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Table 1: Object singulation results for our four experiments of increasing difficulty.

Experiment
No.

Number of ob-
jects

Method Success/total
trials

Success rate Mean number
of pushes

1 4 Free space + tracking 14/25 56% 5.4±1.68
4 Vanilla network 17/25 68% 4.96±1.84

2 6 Free space + tracking 4/10 40% 7.8±1.61
6 Vanilla network 4/10 40% 8.1±1.37
6 Aggregated network 7/10 70% 6.7±2.0

3 6 (identical ob-
jects)

Aggregated network 10/20 50% 7.6±1.76

4 8 Aggregated network 4/10 40% 11.1±1.60

which suggests that the model is making meaningful predictions about which push
actions to perform in order to singulate all 4 objects. Fig. 6 provides a more fine-
grained evaluation, showing the success rate with respect to the number of pushes.
Note that the network requires less push actions to complete the task. Interestingly,
the baseline method performs on par with the network after the robot has executed
five push actions, but then it does not further improve after 6 executed pushes. We
noted that the baseline method sometimes fails to singulate the last 2 objects of the
scene and instead will choose an object that might already be singulated because it
lacks a good attention mechanism.

The task is more complex with 6 or 8 objects, due to additional space constraints
and formation of multiple object clusters. When looking at the scene in Fig. 1 one
sees that 4 out of the 6 objects are located very closely on the table (green drink
bottle, blue box, white round bowl, white coffee bag). Although there are many pos-
sible push actions that we would consider reasonable, only pushing the coffee bag
or the round bowl to the left side of the table can clear the scene. Accordingly, we

Fig. 6: Success rate with respect to number of pushes (max. 6) required to clear 4 objects (experi-
ment 1).
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Fig. 7: Success rate with respect to number of pushes (max. 8) required to clear 6 objects (experi-
ment 2).

find that the performance of the vanilla network drops with respect to the previous
experiment with 4 objects. During training it has only seen a small amount of scenes
where a random baseline would have cleared all but 2 objects and even less likely
has seen examples where the robot by chance chose the right action to clear the 2
remaining objects. Therefore, in this scenario the vanilla network and the baseline
method perform on par with a success rate of 40%. When comparing the average
number of pushes the baseline performs slightly better, see Fig. 7. Results show that
the aggregated network clearly outperforms the other two methods, winning seven
out of ten trials with an average of 6.7 push actions needed to singulate all 6 ob-
jects, as shown in Table 1 (experiment 2). To get an intuition about the numerical
results we refer the reader to the performance reported by Hermans et al. [13], who
evaluated a very similar task with 6 objects. They report a success rate of 20% with
twelve average number of push actions.

We perform an additional experiment with 6 identical objects (sponges) using
the aggregated network and reach a success rate of 50%. The most challenging
experiment is conducted with 8 objects and even though the network was not trained
with such large amount of objects on the table our approach performs well and is
able to generalize. Both experiments are depicted in Table 1 (experiment 3 and 4).

4.4 Qualitative Results

Fig. 8 gives insights about the singulation trials from the perspective of the Kinect
camera for experiment 1. The first and the third column show the current scene,
while the second and fourth column show the robot performing a push action. The
trial evolves from top to bottom of the figure. Fig. 9 shows qualitative end results of
singulation runs with 6 identical objects (experiment 3) and 8 objects (experiment
4).
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Fig. 8: On the left, we see a successful trial. Note that the robot tries several times to clear a small
plastic bottle which is stuck under a blue box and manages to singulate the objects in the very last
action. On the right we see a run that fails because of two typical reasons: First, the robot is not
able to perform a save push action (fourth column, fifth row), which results in 2 objects moving
more closely together (blue box, cereal box). Second, the network is not able to draw its attention
to the same 2 objects that are now touching and instead proposes an action that moves the green
bottle further away from the scene (lower right image).

5 Conclusions

We presented a novel neural network-based approach to singulate unknown objects
in clutter by means of pushing actions and showed that it is possible to perform chal-
lenging perceptual manipulation tasks by learning rich feature representations from
visual input. Unlike traditional methods we do not manually design features for the
task at hand. Instead, we train a high-capacity convolutional neural network that we
incorporate into a novel system of motion planning and action selection, leading to
good generalization performance, while requiring a reasonable amount of labeled
training data. We tested our method in extensive real-robot experiments using a PR2
robot and showed the ability of our method to achieve good performance for the
challenging task of singulating up to 8 objects. In the future it would be interesting
to train the network in a self-supervised manner, which poses the challenge to au-
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Fig. 9: The first row depicts a successful singulation run with six identical objects (experiment 3).
The left image depicts the starting configuration and the right image the end result after manipula-
tion. The second row shows a failed trial. The third row shows a trial where the robot managed to
singulate 8 objects (experiment 4). The last row depicts a trial that failed because the object cluster
at the bottom is not cleared.

tomatically generate labels from ambiguous visual data. Furthermore, the network
could be extended to a multi-class model that predicts different push lengths, which
would require collecting additional training data with varying push lengths.
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