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Abstract
Recognizing human actions is an important ability for service and domestic robots. This paper presents a novel approach
for learning and recognizing motion models from human motion capturing data. The key idea is to represent observed
motion trajectories as a graph, where the nodes correspond to poses and the edges indicate pose similarities. We opti-
mize this graph using least squares minimization and non-maximum suppression to obtain a generalized model for the
respective action. The resulting motion models can then be used to recognize actions in unlabeled motion capturing data.
Experiments based on real-world data show that the learned motion models can reliably classify a large set of different
motions. Furthermore, we show that the learned models robustly generalize over different people.

1 Introduction

Observing and interpreting human motion is an important
prerequisite for many applications involving human-robot
interaction. Gesture recognition, for example, allows a
robot to classify the actions of an operator and act accord-
ingly. Recognizing human actions can furthermore pro-
vide valuable information about the environment and ob-
jects people use. E.g., if someone is observed drinking, the
probability that the object held by the person is a cup, a
glass, or a bottle is high.
What makes the classification of human motion hard is that
the continuous and often high-dimensional motion data
needs to be classified into a small set of discrete actions.
The difficulty of building such a model is further increased
by the large variations in human motion, both for individ-
ual persons, and over multiple people.
Our approach derives generalized patterns from motion
data which are accurate representatives of the demon-
strated actions. It extracts generalized, compact action
models from labeled training data. We capture motion
data using the full-body motion capturing suit shown in
Figure 1, to track the position of 23 body segments with
120 Hz. We perform a principal component analysis (PCA)
to reduce the dimensionality of the data. By computing
the distance between the time derivatives of the poses, we
construct an undirected graph. Each node of the graph rep-
resents a human pose and the edges denote associations
between poses. First, we use least-squares minimization
on the graph. Second, we extract a representative action
model. This step largely reduces the number of poses re-
quired to describe a model.
The main contribution of this paper is the graph representa-
tion for motion trajectories and the extraction of represen-
tative trajectories for that motion which can be used in a
variety of applications. The presented approach neither re-
quires the training instances to be segmented nor assumes

Figure 1: Left: Sensor equipment used for data acquisi-
tion. Right: Typical motion trajectories of a jogging step.

the association of corresponding poses to be given. It al-
lows for reliable classification of different motions, even if
they have similar trajectories and deals with low and high
frequency motions. We evaluate our approach in a super-
vised classification setting with five different action types.
To demonstrate the capabilities we chose actions with sim-
ilar trajectories (walking, jogging, walking up and down
staircases, and riding a bicycle) and present experiments
about the generalization over multiple people.

2 Related Work

There is a large body of literature that is concerned with ac-
tivity recognition, selection of relevant features for motion
recognition, and segmentation of human motion or time se-
ries data in general. A comprehensive overview is provided
by Preece et. al [8] and Aggarwal and Park [1]. In this sec-
tion we only review approaches that use temporal models
over several poses for motion segmentation and classifica-
tion as those are more closely related to our approach.



A common technique for modeling temporal data are Hid-
den Markov Models (HMMs) [9] which also have been ap-
plied to classification and segmentation of motion captur-
ing data. Cielniak et. al [2] use the EM algorithm to clus-
ter low dimensional motion trajectories and find the most
likely generalization for each cluster. An HMM is created
from the generalization and used to predict future behavior.
In contrast to our work, their method requires the segmen-
tation of the trajectory instances to be given and assumes
that movements are homogeneous in velocity.
Kohlmorgen et. al [3] propose a system for unsupervised
motion segmentation based on HMMs. They assume
that the data belonging to the same segment is under-
lying the same probability distribution and describe mo-
tion sequences as a series of probability density functions
which are used as states in an HMM. Computing the most
likely path in the HMM then results in the segmentation
of the data. Kulic et. al [5] construct an HMM model for
the observed motions and define a distance function for
HMMs. Based on this distance function they use hierarchi-
cal clustering for grouping the HMMs. The disadvantage
of HMMs is that one has to specify the number of states
in advance which is a hard task considering the different
time scales and durations of human actions. Additionally,
the computational cost for learning the transition weights
of the HMMs are typically high.
A common technique for dealing with the wide range of
time scales is Dynamic Time Warping (DTW) which has
also been used in the area of motion segmentation and clas-
sification. Often, DTW serves as a preprocessing step for
aligning different time series to each other. In the area of
motion classification Müller et. al [7] apply DTW as pre-
processing of time series data consisting of a set of binary
features and use the result for specifying motion templates.
In this paper we apply an approach related to DTW. While
DTW calculates the similarity of one frame to the others
to compute a distance measure, we use a neighborhood of
several frames to compute the similarity. For our data we
found our approach more reliable. The approach most sim-
ilar to ours for finding similarities between different time
series is the one by Zhou et. al [14]. They apply the Dy-
namic Time Alignment Kernel (DTAK) for time-invariant
alignment of motion sequences and then use k-Means clus-
tering to segment motion capture data into actions. How-
ever, they do not use the gained information to construct
representative models of human actions.
A recent method for modeling human motion data has been
developed by Wang et. al [12]. They propose a two stage
process learning a low dimensional data representation and
a motion model in the latent space using a Gaussian pro-
cess latent variable model. This approach has been ex-
tended to motion classification by Raskin et. al [10]. Gaus-
sian processes however have high computational costs and
thus only few data points can be used.
Our approach uses the principal component analysis (PCA)
to reduce the dimensionality of the data, which allows for
efficient mapping of new data. The full number of train-
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Figure 2: Model construction and action classification.

ing samples is only necessary during the learning phase.
The resulting models are compact and can serve as a tem-
plate for action classification similar to the templates con-
structed in Müller et. al [7]. However, in difference to
Müller et. al, we use continuous features of free-form mo-
tion trajectories that are automatically generated from the
training data. This removes the requirement to manually
select features. Representing motions in a graph structure
has been explored by Kovar et. al [4] and Lee et. al [6].
Both groups aim to synthesize realistic motions from a
database of captured motion segments. In both works, the
graph is used to search for a motion path that meets the re-
quirements of the motion to be generated. In contrast, we
use the graph representation to find a generalization over
recurring motion patterns. Yamane et. al [13] recursively
cluster the poses to construct a binary tree. Several graphs
are then computed by connecting the clusters of each level
with edges weighted by the transition frequencies between
the contained poses.

3 Methodology

This section describes our approach to the construction of
action models and its application to a supervised classifi-
cation task. We start with a description of the input data
and the applied dimensionality reduction technique in Sec-
tion 3.1. We then define a similarity measure for short mo-
tion segments. We use it to construct a graph from the
preprocessed motion trajectories by interpreting the poses
as nodes and introducing edges according to their time se-
quence and similarity (Section 3.2). These two types of
edges represent conflicting spatial information. By defin-
ing an error measure on the graph edges and applying least
squares optimization we find a trajectory that minimizes
the inconsistency (Section 3.4). The resulting trajectory
serves as the basis for computing a compact representa-
tive model for the diverse motions patterns. The individual
steps of our approach are depicted in Figure 2.



3.1 Data Preprocessing

Motion capturing of an entire body pose typically results in
high dimensional data. In our experiments the input data
consists of 23 joint positions given by their three Carte-
sian coordinates. Thus the data is 69 dimensional. We first
transfer the data to a local reference frame and then reduce
its dimensionality using PCA. The PCA has several ad-
vantages for our application. First, it is a linear projection
and preserves the continuity of the motion capturing data
in the low dimensional subspace. Second, the projection to
the subspace and its inverse are readily available, and ap-
plicable to new data. Third, the PCA allows us to choose
the subspace, such that the predominant motion informa-
tion is retained. Based on the assumption that the motion
pattern to be learned dominates the variance in the training
data set, the dimensions corresponding to high eigenvalues
capture relevant parts of the target pattern. Likewise, di-
mensions which are not characteristic are likely to be rep-
resented by dimensions with smaller eigenvalues. We se-
lect a minimal number of eigenvectors whose cumulated
eigenvalues exceeded 95 % of the sum of all eigenvalues.

3.2 Similarity Measure

Having projected the data to a low dimensional subspace
the goal is to compute representative models for the cap-
tured motions in the form of repetitive patterns. In the case
of repetitive motions like walking there typically are many
instances of such patterns. However, we found such pat-
terns in most of the activities that last over longer periods
of time. A key requirement to learn such a generalization
based on repetitive patterns is to find associations between
poses that constitute corresponding parts of the motion.
A single posture is not descriptive for a motion. To find
similar motions Kovar et. al [4] therefore use a similarity
measure that incorporates the temporal neighborhood of
the poses in the distance calculation. They first compute a
rigid transformation in the horizontal plane to align the mo-
tion segments and then compute the squared error between
the poses based on point displacements. Lee et. al [6] de-
termine a weighted sum over the squared joint angle dif-
ferences with manually selected weights.
We also determine associations based on the pairwise sim-
ilarity of poses within a neighborhood of k poses, but com-
pare the direction of the motion directly. For aligning the
postures, we represent all coordinates relative to the pose
of the hip joint and let the dimensionality reduction select
the influence of the individual joints. More precisely, we
compute the similarity of a pair of poses xi and xj by com-
paring the respective time sequence of 2 · k+ 1 poses cen-
tered at xi and xj respectively. We define the similarity
s(xi, xj) as

s(xi, xj) =
1

2k + 1

k∑
q=−k

< x′i+q, x
′
j+q >

|x′i+q| · |x′j+q|
. (1)

The similarity is therefore defined as the mean over the dot
product (denoted by <·,·>) of the normalized directional
derivatives of the segments located at poses (xi+q, xj+q),
where q denotes all integer values in range (−k . . . k).
x′i+q and x′j+q denote the directional derivative at points
xi+q and xj+q . The derivative is computed by fitting a
cubic spline to the poses of the segment and obtaining its
derivative at the desired position. The spline also provides
the possibility to abstract from time dependencies, i.e., the
velocity of the motion, as it allows us to resample the poses
at every desired time scale or equidistant with respect to
the trajectory length (in contrast to the “equi-timed” origi-
nal data).

3.3 Graph Construction
Calculating the similarity between each pair of poses re-
sults in a similarity matrix S where the entry at row i and
column j are specified as the similarity s(xi, xj). To ex-
tract the associations from the similarity matrix, we only
consider local maxima above a threshold γ, which results
in a sparse association matrix. Interpreting the poses as
nodes and the associations as edges, this matrix can be seen
as a graph. Because we need to compute the pairwise simi-
larity, the computational complexity of the graph construc-
tion is quadratic in the number of pose samples. However,
as we build one graph per action type, the quadratic run-
time is a restriction on the number of samples per action,
whereas the runtime only increases linearly with number
of actions. The computation of the similarity matrix can
easily be parallelized, as the individual similarity compu-
tations are independent of each other.
Having obtained this graph one approach could be to av-
erage over the positions of the connected nodes to find a
trajectory that is a representative for all the others. This
method, however, ignores the overall shape of the motion
trajectory and typically leads to models that are greatly
distorted. To incorporate the shape of the trajectory, we
use the translation between successive poses to extend the
graph with edges.

3.4 Graph-Based Trajectory Optimization
Given the graph, we seek the trajectory that generalizes
over the corresponding poses, while taking the overall
shape of the motion into account. Due to the high vari-
ability of human motion data there are many spurious and
missing associations. Therefore, an approach that requires
consistent correspondences to be given, e.g., [2], is not ap-
plicable. In order to maintain the overall shape of the tra-
jectory, we associate spatial information z to each edge,
which represents the desired translation between the re-
spective nodes.
Graph edges that connect consecutive nodes i and i + 1,
are associated with the respective translational difference
zi i+1 = (xi+1 − xi), i.e., the original motion between
time steps i and i+1. To express that corresponding nodes



should be unified, we associate the graph edges between
corresponding nodes with a column vector zij = ~0. The
resulting graph consists of n nodes and m edges, where m
is the number of correspondences plus the number of time
steps.
As the information of the two types of edges conflicts, we
apply least squares optimization on the graph, to find a tra-
jectory that minimizes the squared error with respect to the
spatial information of the edges. This approach is similar
to the methods used for solving graph-SLAM [11]. Using
only translational information allows for a linear solution
that can be computed efficiently. We define the error of the
graph with nodes x and edges z to be

F (x, z) =
∑
ij∈E

ωij(zij−(xi−xj))T (zij−(xi−xj)) (2)

where, the n × d Matrix x = [x1 · · ·xn]T , contains the
d-dimensional position vectors of the graph nodes, and the
d × m Matrix z = [· · · zij · · · ], contains the translation
vectors of the graph edges and ωij is a scalar used to weight
the edges. E represents the set of all edges.
To find the trajectory x̂ with minimum error, we set the
derivative of the error function F (x, z) with respect to x
to zero. As F (x, z) is quadratic, the solution of the linear
system yields the global minimum. The final result is the
trajectory with the minimal squared error with respect to
the error function defined, i.e., a trajectory minimizing the
distance of corresponding points with minimal dislocation
from their original positions. The effect of this procedure
is depicted in Figure 3. Figure 4(a) and Figure 4(b) vi-
sualize the first three principal components of real training
data during the optimization steps. It is clearly visible that
the trajectory exhibits a greatly enhanced homogeneity.

3.5 Model Extraction
The least-squares optimization leads to motion trajecto-
ries which are more homogeneous but does not reduce the
number of data points. To efficiently use the new motion
trajectory for classification of new motions, we want to ex-
tract models with reduced redundancy. To achieve this, we
merge nodes based on their correspondences. In our exper-
iments, we found that the associations between the nodes
improve substantially if they are recomputed given the ho-
mogenized trajectory. To merge nodes, we then compute
the mean pose of the associated nodes for each node with
a sufficient amount of correspondences φ. In our experi-
ments we set φ = 3 but the exact value is not critical.
As not the entire graph might be connected, the model ex-
traction returns one model for each connected component
of the graph. Thus, the model generation algorithm also
has the advantage that the number of necessary model tra-
jectories to represent the input data is found automatically
and does not need to be specified in advance. Finally, we
discard models that are too short and thus do not describe
useful motions. Due to the compactness of the resulting

Figure 3: The left diagram represents a graph as con-
structed from the motion trajectories. The solid edges con-
nect successive nodes while the dashed edges were intro-
duced due to their similarity. The right picture shows the
desired result of the optimization.

model trajectories, it possible to efficiently compare them
to new motions. Figure 4(c) shows the result of model
extraction. Note that in contrast to the data shown in Fig-
ure 4(b) the number of poses has been largely reduced.

3.6 Supervised Motion Classification
In this section we describe the application of our approach
to supervised motion classification which we evaluate in
Section 4. In a supervised setting the action type is known
for the training data. We use the action labels to construct
individual graphs for each action. More precisely, we con-
struct a model applying the following procedure to each
action which (see also Figure 2):

1. Preprocess the data (Section 3.1).
2. Compute the graph (Section 3.2).
3. Optimize the trajectory (Section 3.4).
4. Construct a model for each action (Section 3.5).

Once the models have been computed, we can use them
to classify new motion data. We preprocess the test data
the same way as the training data, i.e., we transfer the
data from the global reference frame to the local refer-
ence frame used for the training data and apply the projec-
tion previously computed by the PCA. Thus the test data
now lives in the same subspace as the training data and we
can compute the similarity of the test data to each of the
models computed for each action. We classify using the
maximum-likelihood principle, i.e., we choose the activity
for which the highest similarity is obtained.

4 Experiments
This section presents experiments, demonstrating the ap-
plication of our approach for supervised classification of
motion data.

4.1 Data Acquisition and Preprocessing
As described in Section 3.1 we work on the Cartesian co-
ordinates of 23 main joints of the human skeleton. We cap-
tured this data using a suit equipped with 17 inertial mea-
surement units (IMUs) developed by the company Xsens
Technologies, shown in Figure 1. Using these sensors, the
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Figure 4: (a) First principal components of the training data for walking. (b) Trajectory after application of least squares
optimization. “Outliers” denotes the poses for which no correspondences could be found. (c) The resulting model, used
for motion classification (contains only around 300 poses).

positions for the skeletal joints are computed with a sam-
pling rate of up to 120 Hz. However, our approach is not
specific to IMU measurements, as we rely on positional
data only, which could be captured with any motion cap-
turing system. For the experiments we considered five ac-
tivities, namely walking, running, bicycle riding, and as-
cending and descending staircases performed by two in-
dividuals. We chose repetitive and very similar actions,
e.g., jogging and walking, to demonstrate the capability of
generating concise models that generalize over action cy-
cles but are still able to discern actions very similar to each
other. We use about one minute of motion capture data for
each action and each of the two individuals. In total, we
process about 67,000 full body poses.
The captured data was labeled and represented in the local
coordinate frame of the hip. Upon applying the PCA we
selected the minimal number of eigenvectors whose cumu-
lated eigenvalues exceeded 95 % of the sum of all eigenval-
ues. The data was then projected to the subspace spanned
by the selected eigenvectors. Using this criterion we re-
duced the data to eight dimensions.

4.2 Graph Construction and Trajectory
Optimization

We construct a graph from the preprocessed motion data
as described in Section 3.2. This requires to determine two
parameters, the optimal size of the trajectory segments to
be compared and the threshold we use to prune edges of
the graph. The influence of the neighborhood size k is lim-
ited as long as the segments are long enough to be spe-
cific for the action type. Too long segments would result
in a long transition period when the action changes. More
crucial is the choice of the minimum similarity threshold,
as it further sparsifies the graph (after filtering for local
maxima) and, most importantly, suppresses spurious as-
sociations, which could lead to an unwanted distortion of
the trajectory. This parameter also influences the gener-

alization capabilities of the model. If a too low value is
chosen, significant variations might be generalized over,
making the model useless. If a too high value is chosen,
slight variations will not be generalized over which results
in unnecessary many, overly specific models for the same
action. To determine the optimal parameter values, we ap-
plied a gradient ascent procedure, maximizing the classifi-
cation performance.
After graph construction we determine the least squares so-
lution as described in Section 3.4. The result for a dataset
with two individuals descending stairs can be seen in Fig-
ure 4. We recompute the correspondence association and
extract compact models as described in Section 3.5. Mod-
els shorter than the segment length are discarded, as the
similarity measure can not be applied. Model construction
resulted in a single trajectory, except for descending stairs,
where the motion patterns of the two individuals were too
distinct to allow for generalization, without loss of recog-
nizability. The used training data sets comprise on aver-
age 6,000 pose samples. The extracted models, in contrast,
typically only contain about 300 poses per action. Table 2
show the resulting pose number for the experiments pre-
sented in the next section. Note that the amount of mem-
ory required does not increase linearly with the number
of training samples, but mainly depends on the number of
models and the length of the motion instance to classify.

4.3 Classification Results
We evaluate our approach with two experiments. In the
first experiment we split the data into a training and a test
set, each of which contains the motion capture data of two
people. Thus, we learn the models on both individuals and
also test on both but keep training and test data separate.
In the second experiment, we split the data such that we
learn the model trajectories from one individual and clas-
sify the motions of the other. This experiment aims at
showing that our approach generalizes motion trajectories



Experi-
ment Training Set Test Set Correct

Classif.

1 Person 1 & 2
(Fold 1)

Person 1 & 2
(Fold 2) 95.0%

Person 1 & 2
(Fold 2)

Person 1 & 2
(Fold 1) 87,6%

2 Person 1 Person 2 95.5%
Person 2 Person 1 88.8%

Table 1: Classification results using the learned models
with disjoint training and test sets.

Action Type Precision Recall Model Size
Walking 0.84 0.92 308
Jogging 0.92 0.78 193
Ascending Stairs 0.95 0.97 390
Descending Stairs 0.98 0.86 385
Bicycle Riding 0.90 0.99 243

Table 2: Classification results with respect to actions type.
Values are averaged over the experiments listed in Table 1

to different people. The results are shown in Table 1 and
clearly demonstrate that our approach is capable of learn-
ing motion trajectories from training data that generalize
over multiple people and can be used to reliably classify
human actions. Table 2 presents the precision and recall
values for the individual actions, averaged over the exper-
iments in Table 1. These statistics show that the perfor-
mance is stable over all actions (with a small bias to clas-
sify jogging as walking).

5 Conclusions and Future Works
In this paper we presented a novel approach for modeling
human motion trajectories using a graph representation in
which the individual poses are nodes and the similarity be-
tween poses and their temporal dependencies are the edges.
We use linear least squares optimization to extract compact
representative trajectories for the action. These trajectories
serve as free-form templates for motion classification.
We implemented and evaluated our approach on real, high-
dimensional motion data. Experimental results show that
it finds models that can be used for reliably classifying hu-
man actions. We also showed that models learned from
one person robustly generalize to another one.
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