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Abstract— Manipulating articulated objects is an impor-
tant skill for robots operating in human environments. We
propose to learn a physical model of the dynamics of articu-
lated objects to accurately predict the motion of the object.
Being aware of the dynamic effects of its actions, the robot no
longer needs to maintain a firm grasp of the handle over the
full course of the manipulation, which allows for one-point-
contact manipulation or early release. This ability reduces the
degrees of freedom required of the manipulator and allows for
high speed execution. We present an approach to learn the
objects’ dynamics from sensor observations of the moving
door. The observations can incorporate information from
force sensing or depth measurements, as obtained from a laser
range scanner. Our method allows the robot to interactively
learn the door dynamics, updating the learned model from
observations gathered during manipulation. We devise an
algorithm to predict the dynamic behavior of doors within
the first manipulation, which allows the robot to bootstrap
the model itself.

Current approaches to robotic manipulation of articu-
lated objects do not make use of explicit knowledge about
the dynamics of the object. Most approaches assume the
manipulation execution to be quasi-static, i.e. slow enough
that the inertial forces are negligible. This substantially
reduces the execution speed for systems that do not main-
tain a closure grasp of the handle over the course of the
manipulation [1]. Approaches in which the robot maintains
such a grasp are robust to small inertial forces but require
specialized controllers [2] or high dimensional motion
planning [3] to avoid lateral forces between manipulator
and handle. In all cases, the object needs to be released at
rest, which means the end effector needs to be in contact
until the desired position is reached. In general, this is a
challenging problem, particularly for robots with limited
reachability or low number of joints.

We propose to take advantage of the dynamics of
articulated objects. We learn the model of the object’s
dynamics, i.e. mass or moment of inertia, and the decel-
eration of the object by friction and air drag with respect
to velocity and position. The observations can be acquired
during manipulation using force sensing capabilities of the
manipulator or using a laser range scanner or depth camera.
For a door opening task, we extract the state θ from the
mean p and principle component axes m,n of the depth
measurements in a small bounding polygon placed at the
initial guess for the door location. The angle is computed
from the door normal. We adaptively grow the boundary
by tracking the door (see Figure 1b). The hinge location
h is estimated from the sequence [pt,nt] using a least
squares approximation.

We use locally weighted regression to robustly fit a
second order polynomial to the time series [θt]. The
velocity ωt and deceleration αt can be obtained by the
first and second derivative of the local fit. We use a
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(a) Being able to predict the dynamic behavior of the door, the robot can
swing it open precisely to a desired state, here 60◦. The manipulation
time from touch to release of the door is approximately one second.
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(b) Computation of door state
and kinematics from depth ob-
servations (blue and green dots).
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(c) Regression of the deceleration
forces using a Gaussian process for
predicting the object’s trajectory.

Gaussian process to learn the function f : (θ, ω) → α,
which allows us to generalize the observations to unseen
states (θ′, ω′) and make accurate predictions of the future
trajectory, including the stopping point at any time during
the manipulation. A learned model and the corresponding
input data is shown in Figure 1c.

For the robot to safely bootstrap the model, we let it
move the object at constant velocity for a short distance
(10 cm) and use the force sensors to acquire an initial
estimate of the object’s braking force (mainly friction and
air drag). For a door, this requires to transfer the end-
effector’s force and position measurements to torque and
angle measurements. Therefore, we learn the kinematic
model in parallel (see video attachment) and use the
integrals of the measurements at the end of the motion.
We compute the moment of inertia during the following
acceleration of the door by integrating the difference
between applied torque and the estimate of the braking
torque. The robot then releases the door as soon as the
kinetic energy is sufficient to reach the desired position.

To validate our approach experimentally, we let a robot
swing doors open in 45 trials with target states between
45◦ and 90◦. The desired state was achieved with a stan-
dard deviation of only 2.6◦. The described bootstrapping
strategy converged in three trials to within 5◦ accuracy.
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