
Learning the Dynamics of Doors for Robotic Manipulation

Felix Endres1, Jeff Trinkle2, Wolfram Burgard1

Abstract— Opening doors is a fundamental skill for mobile
robots operating in human environments. In this paper we
present an approach to learn a dynamic model of a door from
sensor observations and utilize it for effectively swinging the
door open to a desired angle. The learned model enables the
realization of dynamic door-opening strategies and reduces the
complexity of the door opening task. For example, the robot
does not need to maintain a grasp of the handle, which would
form a closed kinematic chain. Accordingly, it reduces the
degrees of freedom required of the manipulator and facilitates
motion planning. Additionally, execution is faster, because the
robot merely needs to push the door long enough to achieve the
right combination of position and speed such that the door stops
at the desired state. Our approach applies Gaussian process
regression to learn the deceleration of the door with respect to
position and velocity of the door. This model of the dynamics
can be easily learned from observing a human teacher or by
interactive experimentation.

I. INTRODUCTION

Opening doors is fundamental for mobile robots. There is
a variety of ways to open a door, which we humans uncon-
sciously choose and execute depending on the situation. For
latched doors, we first need to turn the knob or handle. In
the following opening motion, though, we generally do not
maintain a firm grasp on the handle, as that would restrict our
motion when passing through the doorway. As we perceive
the dynamics of the door in the course of opening, we can
predict its trajectory when released. This ability makes us
highly flexible during the execution. For instance, we can
release the moving door as soon as its kinetic energy suffices
to reach the desired state. Further, it allows us to dynamically
switch the contact points and even the manipulating hand
without interruption.

Current approaches to robotic door opening do not make
explicit use of knowledge of door dynamics. Most ap-
proaches assume quasi-static motion, i.e. slow enough that
inertial forces are negligible. This substantially reduces the
execution speed. Approaches in which the robot maintains
such a grasp are robust to small inertial forces but require
specialized controllers [1], [2] or high dimensional motion
planning [3], [4] to avoid large forces between manipulator
and handle. In all cases, the door needs to be released at
rest, which means the end effector needs to be in contact

1Felix Endres and Wolfram Burgard are with the Department
of Computer Science, University of Freiburg, Germany. {endres,
burgard}@informatik.uni-freiburg.de

2Jeff Trinkle is with the Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY, USA. trink@cs.rpi.edu

This work has partly been supported by the European Commission
under the contract number FP7-ICT-248258-First-MM, the National Science
Foundation under grant CCF-1208468, FRIAS, University of Freiburg and
the DARPA under W15P7T-12-1-0002

0◦

45◦
60◦

90◦

closed 0◦

45◦
60◦

90◦

closed 0◦

45◦
60◦

90◦

closed

Fig. 1. Top: The robot shoved the door. Bottom: Visualization of the
stopping angles of the doors in our experiments with three doors. For each
door the robot has been commanded to open to 45, 60 and 90 degrees.
The colored circle segments show the range from minimum to maximum,
the solid black lines designate the mean, the dashed lines the respective
commands. The dynamics model was learned from three observations for
each door.

until the desired door state is reached. In general, quasi-static
door opening is a challenging problem, particularly for robots
with limited reachability or a low number of joints.

We present an approach to learn a model of the door’s
dynamics from sensor observations in Section IV. This
allows us to make accurate predictions of the door’s behavior.
The learned model can therefore be used during the execution
to predict the motion of the object at any time. Because
the model captures the physical properties of the door, it
generalizes over different starting conditions and desired
stopping positions. We further propose an approach to let
the robot bootstrap the model during the first opening of an
unknown door.

We experimentally evaluate our approach in several door
opening tasks with a real robot and show that it can be used
to open a door quickly with accurate results. The approach is
applicable on robots with few degrees of freedom and limited
reachability and does not require extensive computational
resources.



II. RELATED WORK

Robotic manipulation of articulated objects has been in-
tensively researched for over a decade.

1) Detecting Doors: Several methods for detecting
doors [5], [6] and handles [7], [8], [9], [10] have been
proposed in the literature. We assume the door location to
be roughly known, such that we can identify the door plane.

2) Unlatching the Door: Many approaches to door open-
ing focus on unlatching the door and consider the door
to be open after unlatching. Reliable results have been
experimentally demonstrated [3], [11]. Contrarily, we do not
consider unlatching of the door in this work but assume
the door to be unlatched to focus on quickly and accurately
moving the door to a desired state.

3) Control Approaches: Several research groups proposed
compliant control algorithms that aim at applying force only
along the allowed trajectory, while keeping lateral forces to a
minimum [12]. Some approaches learn the kinematic model
during the manipulation [13], [1], [2] and use position control
along the path, while force control minimizes the forces
perpendicular to the allowed motion. Reachability issues can
be handled by moving the base [12], [1].

4) Motion Planning Approaches: In contrast, motion
planning approaches compute a sequence of actions that
leads to the desired goal state [3], [4]. Unfortunately the
planning space is high dimensional and highly constrained.
Finding a valid plan in acceptable time is a topic of intensive
research [14], [15], [16], [17].

5) Estimating the Kinematic Structure: There has been
intensive research on accurately estimating the kinematic
model of articulated objects [18], [19]. However, the pro-
posed methods all require tracking of fixed points on the
mechanism, e.g., the firmly grasped handle via forward
kinematics or visual features or markers. We therefore
propose an approach to learn the kinematics using a 2.5D
depth sensor such as a laser range scanner in Section IV-A.

III. ANALYTICAL DYNAMICS OF DOORS

A. Dynamics of Hinged Doors

To predict the dynamic behavior of a door from its
physical properties, it is sufficient to describe the door
by its moment of inertia I and the kinetic friction τf ,
which describes the resisting torque due to friction within
the door hinges and air resistance. According to the law
of conservation of energy, assuming the friction torque is
constant over a time interval t−t′ and neglecting other effects
than friction, the reduction in rotational kinetic energy needs
to be equal to the work of friction, i.e.,

1
2I (ω2

t − ω2
t′) = τf (θt − θt′), (1)

where ωt is the angular velocity at time t and θt is the
corresponding opening angle. Note that the direction of the
friction torque is always opposite to the current velocity ω.
Given the angular velocity ω, we can compute the stopping
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Fig. 2. Door trajectory example for constant friction. See also the trajectory
estimates from real data in Figure 6. Note that the velocity has a different
physical unit than friction work and kinetic energy and in general need not
be in the same scalar range.

distance ∆θ = θt − θt′ by setting ωt′ to zero,

∆θ =
Iωt

2

2τf
(2)

This lets us determine the position to release the door
(i.e. stop accelerating it, if we maintain no grasp) during
manipulation such that the door stops at the desired angle.

Conversely, we determine the required velocity at a given
release angle θ0 in order for the door to stop at θT as

ω =

√
2

I
τf (θT − θ0) (3)

Note that I and τf only appear in form of the fraction
α = τf/I in Equations 2 and 3, we can also use the accel-
eration α instead.

Given the current position θ0, velocity ω0 and the (con-
stant) deceleration from friction we can compute the trajec-
tory of a door over time as

θ(t) = 1
2αt

2 + ω0t+ θ0. (4)

Figure 2 shows an example trajectory computed with the
described physical model.

Note that the deceleration of the door is not only influ-
enced by friction and air drag. For example gravity affects
non-vertical doors. In this work, all decelerating torques are
included in the friction term τf .

B. Dynamics of Sliding Doors
Modelling the dynamics of sliding doors is conceptually

the same as for hinged doors. However, given an environment
with unknown doors of both types, we assume the door type
to be identified [18].

The equality of kinetic energy and friction work given in
Equation 1 for linear motion is

1
2m (v2t − v2t′) = Ff (xt − xt′), (5)

The stopping distance ∆x for a given linear velocity v is
thus computed by

∆x =
mv2

2Ff
. (6)
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Fig. 3. The proposed methods for learning the various aspects of dynamics
model of a door.

The required velocity at a position x0 to reach x0 + ∆x is

v =

√
2Ff∆x

m
. (7)

The kinetic friction of a sliding object can be found during
constant-velocity motion as Ff = FTeex̂ the dot product of
the measured force vector and a unit vector along the sliding
direction. During experimentation, instead of the moment of
inertia (Equation 28), we would estimate the mass m during
acceleration from

m =

∫ T
0

(Fee − Ff )Tx dt

vt − v0
(8)

The approach for learning the friction profile of the door
presented in IV-B directly applies to the linear case, by
translating measurements and predictions of angle, angular
velocity and acceleration to position, linear velocity and
acceleration respectively.

IV. LEARNING THE DYNAMICS OF DOORS

To predict the effects of the robot’s actions on an artic-
ulated object, we need to learn a model of the dynamic
behavior of the manipulated object. In this section we present
the building blocks that allow the robot to learn the door
dynamics interactively or from demonstrations. An overview
of the presented methods is shown in Figure 3.

A. Learning the Door Geometry from Observation

To convert between the positions, velocities and forces
at the end effector of the robot and the angular positions,
velocities and torques of the door, we need to extract a
precise geometric description of the door, i.e., the hinge
location and the opening angle, from sensor observations.
Sturm et al. [18] and others proposed methods to estimate
the kinematics of articulated objects, by tracking a fitted
rectangle, a marker on the door, or the end effector pose.
Here we propose an approach that requires only an arbitrary
point and normal on the surface of the door. This allows us to
compute the geometry using only a planar depth sensor such
as a laser range scanner or a single scan line from a depth
camera. Without loss of generality, we assume the depth
sensor to provide Cartesian point measurements {pi ∈ R2}N0
as obtained by reprojecting the measurements of a horizontal
laser range scan.
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Fig. 4. Online estimation of the door state and its kinematics from laser
range scans (top view). Laser measurements are shown as blue (outliers)
and green (inliers) dots. The bounding polygon is initialized as a box at the
initial estimate of the door location and expanded online.

Assuming the robot is positioned in front of the door, we
filter the measurements with a bounding box to make sure we
observe the door only. The dimensions of the box depend on
the uncertainty in the estimate of the robot’s relative position
to the door.We then apply a statistical filter to the remaining
measurements to reject points far from their neighbors, e.g.,
as possibly obtained at the edge of the door.

To estimate the angle of the door, we subtract the mean
p from the remaining measurements and determine the
door normal of the data set using the principal components
analysis (PCA) [20]. In 2D, the eigenvector with the smaller
eigenvalue, n, is the normal. We obtain the current angle θ
of the door from n as

θ = atan2(ny, nx) (9)

By repeating this procedure while the door moves, we get
several measurements for the mean point pj and the door
normal nj . We track the direction of the door normal, to
make sure that it always points in the same direction. After
at least three measurements, we can apply a least squares
optimization to compute the location of the hinge in closed
form. We define the vector h = [hx, hy, rh]T , where [hx, hy]
is the hinge location and rh is the distance of the hinge to the
line at the surface of the door. This explicitly allows the hinge
to be non-collinear to the door surface. Each measurement
must satisfy

[nTj 1]h = nTj pj . (10)

Defining the vector g = [. . .nTj pj . . . ]
T and the matrix

M = [. . . [nTj 1]T . . . ]T , we can directly compute the hinge
parameters by solving the linear system

h = M+g,

where M+ = MT (MMT )−1 is the pseudo inverse.
This approach accurately determines the actual center of

rotation, but requires observations of a variety of door states
before converging. Observing a 90◦ door swing results in a
highly precise estimate. However, for only few degrees of
motion, the estimate is far less accurate and stable than for
the estimation algorithm of a collinear hinge. We therefore
use the measurement n0 = [0, 0] (and nT0 p0 = 0) as a prior,



which sets the radius to zero while giving no information
about the hinge location. This makes the initial estimates
equivalent to the collinear estimation case but still converges
to the correct location without noticeable delay.

To ensure tracking of the door over the full range of angles,
we use the available state estimates to extrude the bounding
box into a ring segment. See Figure 4 for an illustration of
the results after observing a full opening motion.

B. Learning the Deceleration from Observation

To learn the dynamic behavior of the door, we can use the
door state estimation method from Section IV-A to determine
the deceleration of the door caused by friction. This is
applicable, e.g., when learning from human demonstration
or from experimentation.

The deceleration is the second derivative of the angle with
respect to time. However, direct numerical differentiation of
noisy data amplifies the noise. Assuming the hinge friction
to be constant over time, we can describe the trajectory by a
second order polynomial. Given N subsequent measurements
θi at times ti, we therefore desire the coefficients of the
polynomial

θi = c1t
2
i + c2t

1
i + c3t

0
i = cT ti (11)

that best fits to the measured data. To determine the least
squares fit, we define the squared error to minimize as

E(c) =
∑

i
wi

1
2 (θi − cT ti)2. (12)

Here wi are weights, which we assume to be all equal to one
for now. The parameter vector c that minimizes the weighted
squared error can be found by setting the derivative with
respect to c to zero, i.e.

dE(c)

dc
=
∑

i
[−wiθiti + witit

T
i c] = 0 (13)∑

i
wiθiti︸ ︷︷ ︸

3×1

=
∑

i
witit

T
i︸ ︷︷ ︸

3×3

c (14)

b = Ac. (15)

After solving the linear system for the polynomial coeffi-
cients c, the deceleration is obtained by the second derivative
of the polynomial, i.e., 2c1. It can then be used for the
prediction of the door behavior as described in Section III-A.

Care has to be taken, to segment the recorded data, as only
the part from release to stop follows Equation 4. When the
robot learns by experimentation, the release time is known.
In case of human demonstrations, we need to determine
the release time otherwise. In our experiments, this was
achieved by using a wireless mouse to push the door. The
demonstrator holds the mouse, such that the button makes
the contact with the door during pushing. The release time is
then obtained by the button release event. The stopping time
is determined by searching for the maximum angle of the
trajectory within some seconds of the release time. With this
procedure demonstrations can be captured within seconds
without requiring specific software or hardware.
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Fig. 5. Locally weighted regression (thin black curve) of measured angles
(magenta crosses) of a door opening demonstration. The dashed green and
red curves correspond to the first and second derivative of the blue curve,
and thus constitute the estimations of angular velocity and acceleration.

In practice, the deceleration of doors through friction
and other effects may significantly change throughout the
trajectory of the door, e.g., when the hinges are slightly
non-collinear, non-upright or the door makes contact with
the floor. For the quasi-static case, a detailed investigation
of friction profiles of articulated household objects has been
conducted by Jain et al. [21]. We want the predictions to gen-
eralize with respect to the starting position and velocity of the
door. We thus need to take this variation into account as the
total friction work over a distance changes depending on the
point of release – and therefore the required kinetic energy
for the desired stopping distance. To ensure generalization,
we need to learn a profile of the frictional deceleration αf (θ)
of the door that depends on the opening angle.

To accommodate for varying friction, we need to drop
the assumption of a constant deceleration of the door. We
therefore adapt the regression approach described above
to do locally weighted regression [22]. Instead of solving
Equation 15 for the whole trajectory, we compute a local
solution at time tc by setting the weights wi such that only
a small (time-)neighborhood influences the solution. The
weights are computed using a weighting function centered
at tc. A common choice is the tricube kernel [22]

∆t =
|tc − ti|

l
(16)

wi = (1−∆3
t )

3, for|∆t| < 1 (17)
wi = 0, for|∆t| > 1. (18)

Here, l is a length scale, that sets the trade-off between
locality and insensitivity to noise. It should therefore be set
depending on the update frequency and accuracy of the state
estimation.

Figure 5 shows a demonstrated trajectory, the fitted poly-
nomial and its derivatives. With the ability to compute the
acceleration αf (θ) at any (observed) position, we can predict
the door trajectory given the current position θ0 and velocity
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ω0. By numerically integrating αf (θ), we can use Equation 3
to compute the future velocity at angle θ as

ω2 = ω2
0 + 2

∑N

i=1
αf
(
θ0 + (i+ 1

2 )θs
)
θs, (19)

where θs = 1
N (θ − θ0) is the discretization step size. The

stopping distance can be computed by summing until the
right hand side becomes zero. Figure 6 shows trajectories
extracted from several observations.

C. Prediction from Multiple Observations

Using more than one observation to predict the door
behavior allows us to substantially improve our prediction.
Further, we have found in our experiments that the velocity-
dependent deceleration forces, i.e., viscous friction and air
drag, are not negligible. Integrating several measurements
allows us to learn this dependency. Unfortunately, the depen-
dency of the deceleration with respect to the door angle is not
known in advance. In addition, we found that the dependency
on the velocity can not easily be described using a parametric
model.

We therefore use a Gaussian process (GP) [23], a non-
parametric regression method, to model αf (θ, ω), the ac-
celeration w.r.t. angle and velocity. We chose to use a GP
because of its beneficial extrapolation behavior for gener-
alization w.r.t. unseen velocities. A GP can be seen as a
infinite-dimensional Gaussian distribution. A dimension of
the Gaussian is defined by the input location x = [θ, ω]T , the
target value y = α constitutes an observation of the Gaussian
in the respective dimension. The covariance function defines
how target values y and y′ covariate based on the input
locations x and x′. We chose the commonly used squared
exponential covariance function (cf. [23], Eq. 2.31)

kSE(∆x) = σ2
fexp(−∆xTΛ−1∆x) (20)

where ∆x = x − x′ and Λ = diag(l2θ , l
2
ω) contains the

different length scales l for each input dimension of x. Since
the GP represents a Gaussian distribution, it is completely
defined by the mean vector µ and the covariance matrix K.
We use the mean of the training dataset, i.e., µ = 1

N

∑N
i=1 αi

and then subtract µ from the target values to obtain the vector
y = [. . . (αi−µ) . . . ]T . The entries of the covariance matrix
K are computed from the input dimensions of the training
data as

Kij = kSE(xi − xj) + δijσ
2
n. (21)

The Kronecker delta δij is used to add the measurement
variance σ2

n to the covariance on the main diagonal.
To predict the acceleration given an angle and a velocity

x∗ we infer the mean µ∗ of the conditional distribution
p(y∗ | y)

µ∗ = k(x∗,X)(K + σ2
nI)−1y, (22)

where k(x∗,X) ∈ RN is a row vector of the covariances of
the new location x∗ with the training datasetX = [. . .x . . .].
The vector yk = (K + σ2

nI)−1y does not change during
the opening motion and can therefore be precomputed,
reducing the online computations to N -fold evaluation of
k(x∗,X) and the dot product with yk. To maintain real-time
performance for big training datasets, the trajectory data can
be downsampled in accordance with the length scale of the
weighting function in Equation 16.

Since the deceleration can vary quickly over a few degrees,
we set the length scale lθ to 5◦. The velocity dependent
variations were found to be nearly linear, with varying slope
over θ. We thus enforced approximate linearity with lω = 1,
which is longer than the range of encountered velocities. The
learned GP is used to numerically integrate the estimates
of the deceleration analogous to Equation 19 with added
dependency on the velocity.

D. Learning the Dynamics from Experimentation

To bootstrap the dynamics model for unknown doors
without demonstration more safely, the robot can estimate the
friction τf and the door’s moment of inertia I using force or
torque sensing during the contact phase of the first opening
action. These estimates allow it to determine when to release
the door using Equation 2. The friction in the hinge can be
estimated by moving the door at constant angular velocity.
For a constant velocity motion of the door, the torque applied



to it by the end effector τee is equal to the friction torque
τf . We can use the linear force Fee at the end effector to
compute the applied torque

τf = τee = Fee × r, (23)

where the vector r is perpendicular to the axis of rotation
and connects said axis with the contact point of the door and
the end effector of the robot. Since r is computed from the
relative position of the hinge and the end effector, we require
an estimate of the hinge axis. This can be estimated online by
the method described in Section IV-A. In our experiments,
the estimate obtained before releasing the door was always
within few centimeters of the final estimate. Since our sensor
data is noisy, we average over the measurements from an
interval of about 5◦.

To determine the moment of inertia of the door we need
to estimate ω, the angular velocity, of the door. Analogous
to the torque, we can compute the estimate from the linear
velocity vee of the end effector,

ω = vee × r. (24)

Given the velocity ω and the friction τf we can compute
the moment of inertia I by accelerating the door. When
accelerating the door, we can compute I , from the relation

α =
τee − τf

I
. (25)

To be robust to sensor noise we integrate the measurements
over time. Without further information, we assume the
friction to be constant over the trajectory of the door and
independent of the velocity.∫ T

0

α(t) dt =

∫ T

0

τee(t)− τf
I

dt (26)

ω(T )− ω(0) =
1

I

∫ T

0

τee(t)− τf dt (27)

I =

∫ T
0
τee(t) dt− τfT
ω(T )− ω(0)

. (28)

Given force and position measurements at the end effector at
times {t0, . . . , ti, . . . , tT }, we can compute the correspond-
ing effective torques τi = |Fi×ri−τf |. The door’s moment
of inertia can then be estimated by

I =

∑T
i=1 τi(ti − ti−1)

ω(T )− ω(0)
. (29)

Inserting the estimates for I and τf into Equation 2, we
can predict the final opening angle during the manipulation.
However, the accuracy of this method depends greatly on
how well the assumption of constant friction is met. While
we have no exact ground truth for the moment of inertia, the
estimates obtained in our experiments approximately match
our expectations given the mass of the door and assuming a
uniform mass distribution.

TABLE I
AVERAGE STOPPING ANGLE AND THE (UNBIASED) STANDARD

DEVIATION OF 45 DOOR OPENINGS, FIVE FOR EACH DOOR AND EACH OF

THREE TARGET STATES.

Command 90.0◦ 60.0◦ 45.0◦

Steel Door 91.5◦ ± 4.7◦ 61.3◦ ± 0.4◦ 46.4◦ ± 0.6◦

Wooden Door A 86.9◦ ± 0.6◦ 62.4◦ ± 1.2◦ 47.4◦ ± 0.6◦

Wooden Door B 93.6◦ ± 1.6◦ 62.8◦ ± 0.7◦ 47.2◦ ± 0.8◦

Summary 90.6◦ ± 4.0◦ 62.2◦ ± 1.0◦ 47.0◦ ± 0.8◦

V. EXPERIMENTS

To evaluate the presented approach we investigate the
ability of the robot to learn and apply the model of the door
dynamics to swing closed doors to a desired opening angle.

A. Experimental Setup

1) Robot: We use the DLR Light Weight Robot (LWR),
a seven degree of freedom manipulator, with a passive end
effector. It is mounted on a KUKA omniRob mobile base.
We use a Hokuyo UTM-30LX laser range scanner to observe
the door at 40 Hz. We let the robot push the door using a
linear position-controlled motion, such that the door achieves
a velocity sufficient to reach the goal state.

2) Doors: We demonstrate our approach on substantially
different door types. The first door is a metal door attached
to a concrete wall of the building (see Figure 1). The door is
comparably heavy but smooth-running. The second door is
made of a veneer on a wooden framework and is attached to
a freestanding wooden frame. It weighs 27.8 kg. The friction
is very low in the beginning, but the hinges are slightly
misaligned, which increases the friction substantially towards
90◦. To increase the variety, we conducted a further set of
experiments with a brush seal attached to the wooden door
to increase the friction and an additional weight of 1.6 kg
firmly attached to the handle. We will refer to these two
configurations of the wooden door as “A” and “B”.

B. Door Dynamics Estimation

1) Human Demonstration: We first evaluate the accuracy
and precision of the opening task using models generated
from observing a human demonstrator opening the doors.
We demonstrated three pushes with varying stopping angle
for each door. The robot was then commanded to open each
door to 45◦, 60◦ and 90◦. To evaluate the performance, each
opening was repeated five times, resulting in a total of 45
executions. The model has not been updated from the robot’s
own actions. The results are given in Table I and in Figure 1.
The time the robot was in contact with the door in our
experiments ranges from 0.6 s to 2.0 s with an average of
only 1.0 s. The release angle was between 6 and 16 degrees.

2) Interactive Experimentation: While demonstrations
with the method described in Section IV-B are quickly done,
the robot should be able to learn from its own actions.
We evaluated the opening performance in a task sequence,
where the robot generates and updates the model from its
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Fig. 7. We let the robot experiment with the door. Initially it has no prior
knowledge of the door, therefore it estimates the friction and moment of
inertia as described in Section IV-D. From the second trial on the robot uses
the observations from previous trials.

own experimentation. For the first opening, we apply the
procedure described in Section IV-D. To make the task
challenging, we chose the door with the increasing friction,
such that the initial estimate is guaranteed to fail. The robot
therefore falls almost 30◦ short of opening the door to 90◦.
However, after only two observations, the result is within
5◦ of the desired opening angle. Figure 7 shows the whole
sequence of 16 trials. The robot releases the door as soon as it
predicts the target state to be reached. The prediction system
may notice this to late, because of the time required to get the
end-effector pose updates from the robot’s operating system.
In this case the robot is aware that the door is overshooting
and the estimate of how much is given by the red dots in
the figure.

VI. CONCLUSION

In this paper we investigated the manipulation of doors
with explicit consideration of dynamic effects. Our approach
allows the robot to learn the dynamic behavior of a door by
interactive experimentation or observation of demonstrations
by a human. The learned model of the door includes the
kinematic model, moment of inertia and the deceleration
of the door through friction. Using a Gaussian process for
non-parametric regression, we modeled the deceleration with
respect to angle and velocity of the door. We use the model
to predict the trajectory of the door throughout the manip-
ulation. In experiments with a real robot, we demonstrated
that the dynamic model allows to reduce the complexity of
a door opening task, as a point contact is then sufficient, for
accurately swinging the door quickly to a desired angle.
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