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Abstract— The typically restricted field of view of visual
sensors often imposes limitations on the performance of lo-
calization and simultaneous localization and mapping (SLAM)
approaches. In this paper, we propose and analyze the combi-
nation of an RGB-D camera with two planar mirrors to split
the field of view such that it covers both front and rear view
of a mobile robot. We describe how to estimate the extrinsic
calibration parameters of the modified sensor using a standard
parametrization and a reduced one that exploits the proper-
ties of the setup. Our experimental evaluation on real-world
data demonstrates the robustness of the calibration procedure.
Additionally, we show that our proposed sensor modification
substantially improves the accuracy and the robustness in a
simultaneous localization and mapping task.

I . I N T R O D U C T I O N

Performing localization or SLAM with consumer grade
RGB-D cameras such as the Microsoft Kinect has been a
topic of intensive research in recent years [1], [2], [3], [4].
Many approaches are extensions of algorithms commonly
used with stereo cameras or lidars (laser range scanners),
which typically have a horizontal field of view of 180◦ to
270◦ and provide accurate depth measurements in a range
between a few centimeters and several dozen meters. For
RGB-D sensors the distance in which the sensor provides
depth measurements is generally limited to a range of about
0.6 m to 8 m with a restricted field of view of 43◦ vertically
by 57◦ horizontally. In contrast to lidars, for which one can
usually assume some meaningful geometric structure to be in
the sensor’s field of view (e.g., more than half of the room for
a field of view of 180◦), in the context of RGB-D cameras we
often need to deal with visually and geometrically ambiguous
structure, e.g., when perceiving only a flat part of a wall
or one corner of a room. Accordingly, an extension of the
perception capabilities of RGB-D sensors would be highly
beneficial. Obviously, an improvement can be achieved by
the use of multiple sensors. This, however, comes with the
inherent increase of computational and financial costs.

In this paper, we propose a novel catadioptric setup
for Kinect-style RGB-D cameras that is of extremely low
cost (less than 20 EUR), and requires neither significant
computational resources nor higher power consumption and
substantially relaxes the above-mentioned limitations.

Catadioptric sensors have been extensively used in the
robotics and computer vision community for localization,
visual odometry and SLAM [5]. Various shapes of mirrors
have been used to increase the field of view, including
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Fig. 1. A resulting map and the trajectory estimate from our evaluation ex-
periment, where we show that the proposed catadioptric sensor substantially
improves the accuracy in a robot SLAM task. Note that only the RGB-D
data was used to generate the map.

parabolic, hyperbolic and elliptic. Also mirrors have been
used to capture stereo images with a single camera [6]. To
the best of our knowledge, however, we are the first to propose
to combine an RGB-D camera with mirrors.

In this work, we use two planar mirrors to split the field
of view of the camera, such that the robot has effectively two
fields of view of about 20◦ vertically by 57◦ horizontally
in opposite directions. This setup is particularly beneficial
for robots moving in the plane, as the sensor data gained
by the horizontally extended perception yields much more
information relevant to the planar motion than the sacrificed
perception in the vertical direction. However, the proposed
sensor extension can be also beneficial for robots moving
with more degrees of freedom as, e.g., the ambiguity between
translation and rotation is alleviated. Figure 1 depicts a
Pioneer robot with the proposed catadioptric sensor and a
map created only from the obtained RGB-D data.

To readily offer the developed device to the research
community, we publish the used CAD model and our im-
plementation of the calibration software1.

I I . R E L AT E D W O R K

A. Calibration

Calibration is a crucial factor for the accuracy of sensor
measurements. The calibration of an individual camera is
called intrinsic calibration and concerns parameters that
govern the image creation, i.e., focal length, principal point,

1see http://ais.informatik.uni-freiburg.de/
projects/datasets/catadioptric-rgbd



and distortion model parameters. For RGB cameras, there are
well-known techniques from the field of computer vision for
estimating these parameters [7].

For an RGB-D camera we need to perform the intrinsic
calibration for the color camera, the infrared camera, and
the infrared projector. To this end, Herrera et al. [8] use a
checkerboard to calibrate the intrinsics of such a camera.
Recently, Teichman et al. [9] presented an approach to
calibrate the depth-measurements of an RGB-D camera given
a SLAM estimate.

There also exist several approaches for extrinsic calibration
of cameras, i.e., the relative offset between two sensors.
A known extrinsic calibration, for example, allows us to
transform the motion of one sensor into the motion of the
other sensor. Most notably a device can be calibrated by
precise manufacturing according to a model. For example, if
the proposed device is produced using the CAD model and
a “perfect” laser cutter, the relative geometry of the mirrors
is precisely known and can be used to compute the angular
offset between the two virtual camera viewpoints. In practice,
however, the extrinsic calibration needs to be estimated. For
example, Carrera et al. [10] perform an extrinsic calibration
of multiple cameras on a mobile robot, where they perform
SLAM for each camera and additionally exploit that the
cameras observe the same parts of the environment to recover
the parameters. Zienkiewicz et al. [11] automatically calibrate
the position of the camera from visual odometry. Given
the trajectory of a vehicle, Maddern et al. [12] perform an
extrinsic calibration of LIDAR sensors by optimizing the
Rényi Quadratic Entropy of the point cloud as the robot
traverses the environment.

Brookshire and Teller present an unsupervised approach
that only requires ego-motion estimates for calibrating the
offset between range sensors either in 2D [13] or 3D [14]. To
determine the extrinsic calibration of two (or more) cameras
with an unconstrained rigid motion, we need to constrain
all six degrees of freedom by appropriate motions. In their
analysis, Brookshire and Teller [14] find that rotational motion
around at least two different axes is required to obtain the
required constraints.

The calibration procedure described in this paper shares
ideas with the related approaches described above but com-
bines both relative motion estimates and loop closures to
estimate the calibration parameters. Additionally, the variants
of the calibration that are specific to our proposed catadioptric
sensor require the estimation of a smaller set of parameters.

B. RGB-D SLAM

SLAM using RGB-D sensors has been intensively studied
in the recent years. The first scientifically published RGB-D
SLAM systems [1], [2] use visual features to estimate frame
to frame transformations. They employ these transformations
to construct a pose graph and estimate the global sensor
trajectory using non-linear least squares optimization. They
create the map by reprojecting the measurements in a
common coordinate frame using the estimated maximum
likelihood poses.

Fig. 2. The assembled catadioptric sensor using an Asus XtionPRO Live.

Alternative approaches integrate the sensor data into a
voxel grid and directly fuse every measurement into the map
representation [3], [15]. These approaches achieve a highly ac-
curate visual odometry. It is more difficult, though, to update
the voxel grid representation to reflect new information, e.g.,
loop closures or calibration data, that often affects already
integrated measurements.

The RGB-D SLAM system used in this work is an
extension of our previous technique [2] so that it works with
images from two viewpoints.

I I I . C ATA D I O P T R I C E X T E N S I O N

In this section, we will present the idea of using a catadiop-
tric setup for an RGB-D camera. We will outline our goals,
motivate our design choices, and discuss our implementation
of the proposed modification.

A. Goal

For the design of the catadioptric device proposed in this
paper, we focus on the following goals:
• Improved performance of robotic applications.
• Quick and easy to build and integrate on the robot.
• Cheap (cheaper than a second camera).
• Easy handling of resulting data.

While many catadioptric configurations are conceivable, our
goal is a setup that is generally applicable. We therefore
do not address, e.g., the possible reduction of the minimum
sensing distance with respect to the center of the robot. While
this could easily be achieved by increasing the distance
between mirrors and camera, it comes at the cost of equally
reduced maximum range and a bigger size of the device.

B. Design

The most influential design choice is probably the shape
of the mirror(s). Possibilities include the use of three
paraboloidal or hyperboloidal mirrors, or a single mirror
that is parabolically curved along the camera’s up vector,
or planar mirrors. We propose the use of planar mirrors,
as this neither requires expensive optical components nor
intricate changes in the computation of the registered RGB-D
image (or the respective point cloud). This allows to use
the built-in processing of the camera. Our design splits the
field of view with two planar mirrors, creating two virtual
viewpoints roughly opposite to each other. Figure 2 shows the
assembled device. Figures 3a and 3b illustrate the formation
of the virtual viewpoints. Further splits might be beneficial in
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(a) Illustration of the concept of a virtual viewpoint. For
clarity, only one mirror and the respective projection
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(b) For two planar mirrors, the focal point is projected
to two virtual viewpoints. The “up” vector needs to be
flipped for the lower part of the original image.

(c) The CAD model of the mirror
mount for an “ASUS XtionPRO
Live”.

Fig. 3. Illustrations of the concept of a virtual viewpoint and the CAD model of the mirror mount.

specific scenarios to allow the robot to measure other aspects
of its environment, e.g., floor or ceiling.

We align the intersection of the mirrors with the axis
through the infrared camera, the projector, and the color
camera. In this way, the projection and the two images are
about equally split, which maximizes the overlap in the field
of view. A rotation of the two mirrors around the (original)
optical axis would lead to gaps in the registered RGB-D
image, as the mirrors would reflect different proportions of
the projector pattern and the field of view of the infrared
camera. We choose the tilt of the two mirrors so that the
centers of the two half fields of view are roughly horizontal.
Note that ideal planar mirrors do not introduce any distortion
to the depth perception principle, regardless of their pose.

The choice of the distance between camera and mirrors is
a trade-off between loss of image area and the size of the
device. The closer we mount the mirrors to the camera, the
larger will be the unusable projection of the gap between
the mirrors be in the images. If they are further away, the
mirrors need to be larger, and the size and weight of the
overall device grows. In our implementation the mirrors are
about 2 cm in front of the camera and we crop out a rectangle
with a height of 50 pixels from the center of the image.

To hold the mirrors and the sensor, we designed a multi-
component structure, which we can easily assemble by man-
ually plugging the individual components together. Figure 3c
shows the CAD model of the structure, which we used to
cut the pieces from a 30 cm × 30 cm × 0.5 cm sheet of
polymethylmethacrylat (PMMA) in a laser cutter.

While it would be possible to use coated PMMA for the
mirrors as well, we recommend to use glass mirrors. Due
to the great planarity and rigidity of glass no noticeable
distortions are introduced to the images.

I V. C A L I B R AT I O N O F T H E R G B - D S E N S O R

For calibrating our catadioptric setup we need to estimate
the position of the two virtual cameras. Due to the small
size of the used mirrors and the rigidity of glass, we assume
no additional distortion from the mirrors. In our experiments
we found that this assumption seems to hold in practice.
Therefore, the intrinsic calibration procedure does not differ

from that of a regular RGB-D camera. In this section, we
therefore only discuss the extrinsic calibration of the virtual
viewpoints created by the mirrors.

A. Calibration and SLAM

To estimate the motion of the cameras in one time
step, we extended our existing RGB-D SLAM system [2],
which estimates transformation between frames based on the
correspondence of visual features.

This system employs the so-called graph-based formula-
tion, which performs non-linear least-squares to estimate the
maximum likelihood configuration of the sensor poses. Such
a least-squares problem has the following form:

F(x) =
∑
i∈G

e(xi,xj , zij)
> Ωij e(xi,xj , zij), (1)

x∗ = argmin
x

F(x). (2)

Here, x is the state vector, e.g., the poses of the sensor in
case of SLAM. Furthermore, the error function e(·) computes
the difference between an expected measurement given the
current state vector and a real measurement zij. The error is
0 when x perfectly explains the measurement. Finally, the
information matrix Ωij models the uncertainty in the error.
We employ g2o [16] to obtain the solution of Eq. 2.

In case of a SLAM problem, the error function describes
relative transformations between the camera poses at certain
points in time. The transformation may relate subsequent
poses, i.e., visual odometry, or span over large time intervals
(loop closures). Furthermore, if a camera observes a part of
the environment that was previously seen in another camera,
the error function involves two different cameras.

If we also include the unknown extrinsic calibration, we
obtain a second set of error functions that deals with estimat-
ing the calibration parameters corresponding to the setup of
our mirrors. Without any further assumptions the calibration
consists of estimating the offset c ∈ SE(3) between the two
cameras. Without loss of generality let us assume that the
state vector contains ordered pairs of poses for the camera
in each time step, i.e., x = 〈x[1]

1 ,x
[2]
1 , . . . ,x

[1]
t ,x

[2]
t 〉, where

x[j] represents the poses of the camera j. The error for the
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Fig. 4. Cross sections of the proposed catadioptric extension. P ∗ depicts
the position of the real focal point, while P and P ′ depict the virtual focal
points as projected by the two mirrors. (a) Assuming the intersection of
the mirror planes to be parallel to the image plane (both orthogonal to
the illustration) results in a displacement with three degrees of freedom
(x′, y′, θ′) between the virtual viewpoints. (b) Additionally assuming the
edge between the mirrors to intersect the optical axis of the camera reduces
the transformation between the virtual viewpoints to the two deg. of freedom
r and θ.

offset parameter c is given by

ei(x, c) = x
[2]
i 	

(
x
[1]
i ⊕ c

)
, (3)

where ⊕ corresponds to the motion composition and 	 to
its inverse.

Given these two types of error functions, our joint estima-
tion problem is given by solving

argmin
x,c

∑
ij∈G
‖e(xi,xj , zij)‖Ωij +

∑
i

‖ei(x, c)‖Ωi
, (4)

where ‖e‖Ω = e>Ωe. Note that while we only consider
two cameras, the approach itself is able to handle multiple
cameras.

In the following, we will refine the error function ei(x, c)
and the dimensionality of our calibration parameter c to
correspond — under certain assumptions — to the specific
catadioptric setup at hand.

B. Additional Constraints Imposed by the Device Structure

Due to the arrangement of the proposed catadioptric
device, the offset between the virtual camera viewpoints is
constrained to a manifold of less than six degrees of freedom.

If we assume that the intersection of the mirror planes is
parallel to the transversal axis (the axis orthogonal to optical
axis and “up” vector of the camera) and intersects with the
optical axis, we obtain only two degrees of freedom for the
virtual viewpoints, namely r and θ. See Figure 4b for an
illustration of the corresponding configuration.

Let 2DOFc = 〈r, θ〉 be the two dimensional parameter. We
can convert this to a 4× 4 transformation matrix ∈ SE(3) as
follows:

SE(3)f2DOF(
2DOFc) =

(
Rx(θ) t

0 1

)
, (5)

where Rx(θ) corresponds to a 3× 3 rotation matrix around
the x-axis and t = (r − r cos(θ), r sin(θ), 0)>. The result
of this conversion recovers the parameter c in its original
space and can directly be plugged into Eq. 4 to estimate the
calibration.

Under the assumptions stated above, these two parameters
can be determined from planar motion only. The introduced
constraints allow for the computation of the unobserved
degrees of freedom.

If we relax the assumption that the edge of the mirrors
intersects with the optical axis and we only assume that the
edge between the mirrors is parallel to the transversal axis
of the camera, we obtain three degrees of freedom for our
setup. Figure 4a illustrates this configuration. Under these
assumptions the roll and yaw angles of the virtual viewpoints
are identical. Further, the offset in the transversal axis must
be zero. The remaining degrees of freedom are the relative
pitch θ and the translational offset b ∈ R2. Thus, we obtain
3DOFc = 〈b, θ〉 which we can transform to SE(3) as follows:

SE(3)f3DOF(
3DOFc) =

(
Rx(θ) (0,b)>

0 1

)
. (6)

Again, the result of Eq. 6 can be directly considered in Eq. 4
to perform the calibration.

This calibration method has the advantage that it is more
robust to small variations in the placement of the camera
with respect to the mirrors.

It is again possible to fully calibrate the virtual viewpoints
with planar motions under the stated assumption, if we use the
rotation to constrain the translational degrees of freedom and
a translation to constrain the rotational offset. This means, we
now need to rotate about the axis along which the translation
is known, which is the transversal axis - and therefore need
to mount the device such that the wide aperture angle is
vertical. Unfortunately, in a planar SLAM application using
this configuration for online self-calibration would reduce
the horizontal field of view by at least 62.5 %. Therefore the
overlap of consecutive measurements would be substantially
reduced when the robot rotates.

V. E X P E R I M E N T S

In the following, we will present real-world experiments to
evaluate the novel catadioptric sensor setup. First, we examine
the calibration of the device and afterwards we investigate
the benefits of the setup for performing SLAM.

A. Calibration

There are three interesting special cases in the calibration
of the proposed sensor. First, we will examine the conver-
gence using egomotion alone. Second, we will evaluate the
impact of a loop closure between the two virtual viewpoints.
A third case, interesting in particular for robots moving in the
plane, is to look at the convergence when restricting the sensor
to a planar motion. For the evaluation of the convergence, we
recorded data while rotating the sensor about the optical axis,
the transversal axis and the “up” vector of the real camera.
Figure 5 shows the convergence of the individual components
of the displacement. The initial guess for the optimization is
the identity, i.e., both viewpoints are at the same place. For the
methods with restricted degrees of freedom, we compute the
shown displacement components as described in Section IV-
B. As expected, on the left column we can see that only



the two degrees of freedom calibration method is capable to
compute a stable estimate for the displacement for a planar
motion without loop closure. The three degrees of freedom
calibration method does not converge, because the camera
would need to rotate around the transversal axis. However,
as discussed in Section IV-B, this would be an unfavorable
configuration in a planar SLAM setting.

The loop closure between the virtual viewpoints at frame
50 then abruptly introduces sufficient constraints on all
degrees of freedom. For rotational motion around more than
one axis we observe quick convergence for all methods. While
the calibration of three and six degrees of freedom behaves
very similar, except for the improved roll estimate for planar
motion, the behavior of the two degrees of freedom method
deviates notably. Particularly interesting is the convergence
to almost zero for the translation along the Y and Z axis, even
though the roll converges correctly. The estimated calibration
of the rotation between the virtual cameras corresponds
well to the angle between the mirrors, which we measured
manually. Since the location of the focal point of the RGB-D
camera is affected by the geometry of the lens and also inside
the housing of the camera, we are only able to obtain a
rough estimate of the translational components manually. The
estimated translation of the virtual cameras is in line with
what we expect given the approximate manual measurement.
Furthermore, a visual inspection of the point cloud data of
the catadioptric extension revealed the accuracy of the range
data, for example, both virtual cameras observe the ground
plane at the expected location and orientation.

B. SLAM Error Measure

To quantify the performance gain from using the proposed
sensor extension, we compare the trajectories of a mobile
robot, which is driving through an indoor environment, re-
constructed during SLAM with ground truth from 2D Monte-
Carlo localization using a SICK LMS-200 laser scanner (see
Figure 1). To compute the deviation from the ground truth,
we use the root-mean-square of the absolute trajectory error
(RMS-ATE), as described in [17]. For a trajectory estimate
X̂ = {x̂1 . . . x̂n} and the corresponding ground truth X the
RMS-ATE is defined as

ATERMS(X̂,X) =

√
1

n

∑n

i=1
‖trans(x̂i)− trans(xi)‖2,

i.e., the root-mean-square of the Euclidean distances between
the corresponding ground truth and the estimated poses. To
make the error metric independent of the coordinate system
in which the trajectories are expressed, the trajectories are
aligned such that the above error is minimal. The correspon-
dences of poses are established using the timestamps from
the sensor image and the range scan.

C. Improved Accuracy for SLAM

Ideally, we would compare the accuracy of the SLAM
trajectory estimate from the same motion for the baseline
and the proposed setup. However, since RGB-D cameras
actively project an infrared pattern, we refrain from running
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Fig. 5. Convergence of the calibration parameters for the proposed methods.
The bottom row depicts the orientation of the virtual viewpoints of the camera
facing to the front during the recorded motion. The rows above show the
components of the computed relative transformation between the virtual
viewpoints. Left: Rotation only about the vertical axis, with a loop closure
between the viewpoints around frame 50. Right: Rotation of the device
around all axes, without loop closure.

the catadioptric setup simultaneously with a regular sensor
to avoid crosstalk effects between the sensors. To guarantee
comparability, we use a highly accurate laser-based trajectory
following approach [18], for which we teach a trajectory and
let the robot repeat it, once with a regular RGB-D camera
and once with the same camera embedded in the catadioptric
device. The regular camera is mounted analogous to the front
view of the catadioptric device. For ground truth, we use the
laser scanner to create a 2D map in the “teach” run and
use the laser-based localization result for comparison in each
repetition run. In our experiments, the deviation of the mobile
robot from the taught trajectory was always below 0.02 m and
2.5 deg. Therefore, the input to both sensor setups is suited
for an unbiased comparison. The trajectory and the mapped
environment is depicted in Figure 1. The RMS-ATE for the
catadioptric sensor is 0.076 m. The corresponding error for
mapping with the regular sensor, is 0.209 m. Thus, the error is
reduced by 64 %. In an experiment with two regular RGB-D
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Fig. 6. For a trajectory of about 18 m the translational root mean squared error (RMSE) of our approach (left panel) with respect to the ground truth
is only 0.076 m. The vertical RMSE is 0.021 m, which corresponds well to our robot driving on a planar indoor surface. The baseline experiment (right
panel) uses a forward-facing, unmodified Xtion Pro Live for SLAM, the RMSE is 0.209 m. The vertical RMSE is 0.094 m.

cameras, attached back to back, we obtained an RMS-ATE of
0.070 m—a further reduction of only three percentage points.
Figure 6 shows the trajectory from the respective RGB-D
SLAM results in comparison with the ground truth.

The calibration used for the catadioptric sensor was de-
termined beforehand using the full six degree of freedom
procedure with the recorded data from Section V-A. Given
the known calibration data and exploiting the common time
stamp of the two splits, we project the visual features of
both viewpoints into a common coordinate system and
perform matching of frames as for a regular RGB-D camera.
Experiments with the calibration result of the two and three
degree of freedom parametrization resulted in comparable
error values.

V I . C O N C L U S I O N S

In this paper, we proposed a catadioptric extension to
RGB-D cameras by using two planar mirrors to split the
field of view such that it covers both front and rear view.
We furthermore described how to estimate the extrinsic
calibration parameters of the modified sensor and developed
methods to exploit the devices structure, e.g., to achieve full
calibration from planar motion only. In experiments carried
out with real-world data, we demonstrated that RGB-D SLAM
applications can greatly benefit from the extended field of
view.
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