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1 Introduction
The Internet provides a unique opportunity to tele-operate

and monitor mobile robots. Web-controlled mobile robots can
give people all over the world the ability to become tele-
present at distant places. Additionally, Internet-based tele-ex-
perimentation systems for mobile robots give distributed re-
search groups located at distant places the ability to carry out
joint experiments. This way, they can share expensive robot
platforms and furthermore save travel expenses. Finally, the In-
ternet can be used for on-line demonstrations with mobile ro-
bots, for example during the presentation of research results at
conferences.

All these applications of Web interfaces for mobile robots
require accurate visualization techniques. This includes a high
level of detail as well as high update rates. Unfortunately, the In-
ternet does only provide a restricted bandwidth. Therefore, vid-
eo streams cannot be transferred at appropriate resolutions
and with a frame rate required for smooth visualizations. More-
over, static monitoring cameras, which are frequently used on
the Internet, have the disadvantage that they only provide a re-
duced field of view and that important details are occluded in
certain perspectives.

In this paper we present state estimation techniques for a
system which provides accurate and smooth real-time 3D visu-
alizations of the movements of an autonomous mobile robot
over the Internet. The system has a client/server architecture.
The server is directly connected to the robot control system
and transfers changes of the state of the robot and changes of
the environment to all its clients which provide the 3D visuali-
zation at high frame rates. The system uses a 3D model of the
robot and its environment. To cope with changes in the envi-
ronment it uses probabilistic techniques to continuously esti-
mate the states of different types of non-static objects such as
people, doors, tables, etc. based on the information acquired by
the robot’s sensors. The changes of the environment are trans-
fered to all the clients connected over the Internet which can
instantly update the visualization.

2 Related Work
A variety of Web-based tele-operation interfaces for robots

has been developed over the last few years. Three of the earlier
systems are the Mercury Project, the “Telerobot on the Web’’,
and the Tele-Garden [8, 9, 20] . These systems allow people to
perform simple tasks with a robot arm via Web access. Since
these manipulators operate in a well-known workspace with-
out any unforeseen obstacles, all movement commands issued
by a Web user can be carried out in a deterministic manner. Ad-
ditionally, it suffices to provide still images from a camera
mounted on the robot arm after a requested movement task
has been completed. Our system, in contrast, is designed to vis-
ualize the actions of an autonomous mobile robot operating in
a dynamic environment. In such environments the execution of
a task generally depends on the current situation in the robot’s
environment.

Xavier [19] is a Web-operated autonomous mobile robot. It
can be advised by Web users to move to an office and to tell a
joke. The Web interface relies on client-pull and server-push
techniques to provide visual feedback of the robot’s move-
ments; this includes images taken by the robot as well as a map
indicating the robot’s current position. However, Xavier’s inter-
face does not include any techniques to reflect changes of the
environment.

The autonomous mobile robots Rhino and Minerva, which
were deployed as interactive museum tour-guide robots in the
„Deutsches Museum Bonn’’ in 1997 and in the Smithsonian Mu-
seum of American History in 1998, could also be operated over
the Web [2, 18, 21]. In addition to image streams, recorded with
on-board and off-board cameras, their interfaces offered Java
applets for instant updates of information. Although the inter-
faces displayed information about the current actions of the ro-
bot and included applets providing smooth animations of the
robot’s trajectory in a map of the environment [18], the interfac-
es were restricted to 2D and changes in the environment were
not displayed.

3D graphics visualizations for Internet-based robot control
have already been suggested by Hirukawa et al. [10]. Their inter-
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face allows Web users to carry out manipulation tasks with a
mobile robot, by controlling a 3D graphics simulation of the ro-
bot contained in the Web browser. In contrast to our system,
these interfaces do not provide on-line visualizations of the
robot’s actions. Instead, they follow the tele-programming ap-
proach. Tasks are first tested off-line in the 3D simulation envi-
ronment and are afterwards transmitted via the Internet for
execution by the real robot.

In general, it is not sufficient to regard the environment as
static and to display the robot within a static model of the envi-
ronment. In practice, the environment of a mobile robot con-
tains several non-static objects which influence the behavior of
the robot. Among them are doors, chairs, and tables, which of-
ten change their position and can prevent the robot from tak-
ing a previously planned trajectory. To acquire and maintain a
model of the environment is a major research area in mobile
robotics. The most frequently used types of models are metric
and topological maps. Topological models, as used in [13, 15],
describe the environment at a coarse resolution. Because of the
lack of necessary details, these types of models are only of limit-
ed use for visualizations. Metric maps, on the other hand, de-
scribe the environment at a finer level of detail. A popular ap-
proach are discrete occupancy grids proposed in [5, 14]. Each
cell of such a grid contains the probability that the correspond-
ing space in the environment is occupied. The major advantage
of occupancy maps lies in the existence of techniques for their
acquisition and maintenance based on sensor information.
However, most of the occupancy grid techniques are intended
for static environments only. Since all cells are considered inde-
pendently, they cannot appropriately represent dynamic ob-
jects such as doors, tables or chairs. In this paper we use a 3D
model of the environment containing all relevant objects of the
environment. We apply a probabilistic approach to estimate the
state of dynamic objects. Changes of these states are also up-
dated in the 3D model so that the visualization can quickly be
adapted to the current state of the environment.

3 State Estimation
To display the robot and its actions in the environment we

use a 3D visualization system. This visualization system requires
a 3D model of the robot’s environment represented by a hierar-
chical scene graph, in which objects are described in the
boundary representation. Figure 1 shows the 3D model of the
environment our mobile robots generally operates in and in
which the experiments described below were carried out.
Given a corresponding description of the robot it can provide a
visualization of the robot at arbitrary locations in the environ-
ment. Furthermore, the 3D model is used to compute simulated
sensor measurements of the robot, which are needed by the
state estimation components.

To estimate the state of dynamic objects, a mobile robot has
to use its sensors. The information provided by the sensors,
however, is inherently noisy so that state estimates relying on
this information are uncertain. Therefore, it is not possible to ex-
actly determine the state of an object. Instead, it is more appro-
priate to use probabilistic techniques and to maintain a proba-
bility density over the possible states of the objects. Within the
Bayesian framework, such a density can be maintained over
time, conditioned on the information gathered using the sen-
sors. Obviously, for the rendering of the 3D world model, the ac-
tual states of the objects are required. Our method bases the

decision about the current states of the objects on a maximum
likelihood estimate.

In principle, we have to consider the complete state space
of a dynamic world model so that we have to maintain the joint
probability distribution over all possible states of the dynamic
objects within the environment. Unfortunately, this approach is
not tractable since the size of the joint state space grows expo-
nentially in the number of objects. Therefore, we only consider
marginal distributions and estimate the states of the dynamic
objects independently.

Our approach distinguishes two different types of objects.
The first class contains objects which are part of the world mo-
del and which are subject to infrequent state changes like
doors, chairs, tables etc. The states of these objects are estima-
ted using a template matching approach. The second class of
objects contains objects which are continously moving throu-
gh the robots environment like other robots or people walking
by. Since such objects frequently enter and leave the scene,
they are not permanent parts of the environmental model. The-
refore, the state estimation method for these objects is based
on the detection and tracking of dedicated features which indi-
cate their presence. Furthermore, the independence assumpti-
on is often seriously violated for this class of objects, for examp-
le, if people walking by cross their path. In such a situation, we
therefore have to solve the problem, which feature corre-
sponds to which person. More generally, we have to assign fea-
tures in the data to the objects being tracked. Our approach em-
ploys a probabilistic data association method for this purpose.

In the next sections, we introduce the general concepts un-
derlying our state estimators before we describe the state esti-
mation procedures.

3.1 Bayesian State Estimation

Within the Bayesian framework a probability density of an
object’s state s is maintained conditioned on the observationso
(sensor measurements) obtained. The well-known Bayesian up-
date formula is applied to determine p(s|o) whenever a new
observation is obtained:

Figure 1: 3D Visualization (VRML) of the boundary representation of the
robot’s environment; The model contains walls and doors as well as furniture
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Here p(s) is the prior density of the object’s state. This prior
is generally approximated based on the previous estimate. The
whole process is known as Bayesian filtering. In the case of mo-
ving objects, we also use a motion model to update the density.
The term p(s |a, s’) describes the probability that the object is in
state s given it executed action a in state s’. The density is then
updated according to the equation:

Our system employs particle filters, whose basic idea is to
propagate the object’s state density over time using a sample-
based representation of the density (see e.g. [4, 12, 17]). The
two steps presented above are realized by the following two
procedures.
1. Prediction

In the prediction step, each sample is updated according to
the model of the object’s dynamics and the time t elapsed
since the last estimate.

2. Correction
In the Correction step, the new observation o is integrated
into the sample set. This is done by bootstrap resampling,
where each sample is weighted according to the likelihood
of the new observation given the sample state.

3.2 Template-based State Estimation of Changing Objects

In order to determine the state of objects such as the ope-
ning angle of a door, the robot needs to know its own location l.
To estimate p(l), i.e. the probability that l is the robot’s current
position, we apply Monte Carlo localization, a method which is
also based on the Bayesian framework described above, e. g. it
maintains a probability density p(l) over all the possible locati-
ons of the robot. To take the robot’s uncertainty about its cur-
rent position into account, we need to integrate over all locati-
ons during the Bayesian update:

In this equation we assume that the state s of the object
and the position l of the robot are independent. The denomina-
tor p(o | l) can be be rewritten as

Thus, all we need to know are the quantities p(s) which is
the prior distribution of the state s of the currently considered
object, the current belief p(l) of the position of the robot as well
as the term p(o|s, l ). This term is the crucial part of the state esti-
mation process, since it describes the likelihood of making a
certain observation o given the state s of the object and the lo-
cation l of the robot. This likelihood can be derived by a tem-
plate matching process which compares the current measure-
ment to the measurements which are expected given the posi-
tion of the robot and the state of the object. Our system uses a
laser range-finder for state estimates and it computes the ex-
pected laser measurements using ray-tracing within the 3D
world model (see Figure 2).

3.3 Tracking Moving Objects

To estimate the states of moving objects we apply a variant
of a Baysian technique known as joint probabilistic data associ-
ation filters (JPDAF). The standard JPDAF consists of a set of Kal-
man filters, one for each object being tracked, and an algorithm
for associating features extracted from sensor data to the indi-
vidual filters. The JPDA is a general approach to assign features
detected in the data to the objects being tracked, where the
number of objects being tracked is assumed to be known. The
input to the JPDA is a set of features {o1, ...,om}, which is extract-
ed from the measurement o, and the output is an assignment
of the features to the objects. The JPDA computes marginal
probabilities � j i of a feature oj being originated from an object i
by adding the probabilities of all possible assignments which
assign feature oj to the object with index i. Additionally proba-
bilities �0i are considered, which correspond to the events that
no feature was detected for an object.

In our system the Kalman filters are replaced by particle fil-
ters. During particle filter update, all the features are considered
for each object, but their contribution is weighted according to
their association probability � j i. The features used as input
for the JPDA are characteristic local minima detected in the
laser-range scan. Additionally it computes the difference in
occupancy grid maps for consecutive scans obtained with the
laser-range scanner as it is also done in [16] .

Figure 2: Rhino detecting the state of two doors with its laser range-finder
(upper image). The estimated states of the doors are depicted in black. The
resulting 3D-visualization is shown in the lower image.
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4 Experimental Results
The system described in this paper has been implemented

and tested in a typical office environment. The experiments de-
scribed in this section were carried out with the mobile robot
Rhino, a RWI1  B21 robot. Rhino is equipped with two laser-
range finders, each of which scans 180 degrees of the robot’s
surrounding at an angular resolution of 1 degree.

4.1 State Estimation for Changing Objects

To evaluate the state estimation technique and its advan-
tages for a robust visualization of the robot’s activities we per-
formed several experiments in our office environment. In these
experiments, the task of the robot was to estimate the state of

the doors while the robot was traveling along the 26m long
corridor of our department building.

To efficiently carry out the state estimation process, our cur-
rent implementation uses a discrete set of possible states. For
doors we typically use 10 states ranging from 0 to 90 degrees.
That way, a uniform distribution is used as the prior density on
all particle filter updates, e. g. the robot keeps no memory of the
state of a door. To obtain more accurate estimates of the state of
objects we integrate over a small set of different measurements.
Figure 2 shows a typical situation in which the robot measures
two doors. The resulting states of the doors are depicted in black.
Figure 2 also shows the corresponding 3D visualization.

Figure 3 illustrates the trajectory of the robot as well as the
states of the doors which were kept unchanged during the
experiment. Figure 4 shows the results of the state estimation
process for each door. As can be seen fromthese data our tech-
nique provides highly accurate results. In most of the cases the
standard deviation is below 5 degrees.

Figure 3: Trajectory of the robot; it started near D-2 and moved towards D-7 and back; also shown are the states of the doors during the experiment

Figure 4: Estimated states of the doors depicted in  Figure 3; given are the means (avg. state) of a number  of estimates (measurements) for each door, as well as
the standard  deviations; the state denotes the orientation of the door within  the world model in degree.

1 Real World Interface: http://www.rwii.com

Door D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 D-11 D-12 D-13 D-14

avg. state 180 270 220 264 182 180 182 270 90 176 178 155 124 173

std. dev. 0.0 0.0 5.3 6.4 5.0 0.0 4.3 0.0 0.0 4.6 3.9 5.0 7.1 6.5

measurements 21 25 43 23 17 17 33 27 26 37 13 15 19 41

exact values 180 270 218 270 180 180 180 270 90 180 180 150 122 180

Figure 5: Visualization of the corridor at the beginning (left image) and at the end (right image) of the trajectory depicted in Figure 3.
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4.2 Tracking Moving Objects

To evaluate the performance of the tracking algorithm, we
carried additional experiments in our office environment. Due
to the limited angular resolution of 1 degree of Rhino’s two la-
ser range-finders, the current implementation limits the maxi-
mum range of the sensors to 7m. The resolution of the differ-
ence grid maps computed is 10 cm. Each particle filter uses a
sample set consisting of 1000 samples. The implementation is
highly efficient so that new laser-range scans can be integrated
at a rate of 2 Hz.

In the experiments, the robot moved up and down the cor-
ridor of our department building, at a speed of 40 cm/s. While
the robot was traveling, one and two people were moving
within the robot’s perceptual range of 7 m. We recorded the

data obtained during these experiments and evaluated the
tracking algorithm afterwards based on this data. Since no
ground truth information is available for the trajectory of the
humans, we can only give qualitative results about the tracking
performance. Nevertheless, the results demonstrate that our
technique is able to robustly keep track of moving objects over
longer periods of time and even in situations in which features
are missing.

Figure 6 shows a typical situation in which the robot is
tracking a single person passing by the robot. Here the robot
starts at the right end of the corridor, turns around, and moves
to the left. At the same time the person passes by and walks in
front of the robot. Whereas the human walked 17.6m at an esti-
mated average speed of 50cm/s in this experiment, Rhino’s tra-
jectory was10.8m long and the robot had an average speed of
30cm/s. The longest continuous trajectory was approximately
102m, where the robot tracked the same person for 147 sec-
onds. Figure 7 demonstrates that a 3D visualization is able to
capture the experiment with sufficient detail and accuracy. The
image on the right side of the figure shows a snapshot taken
during a tracking experiment and the 3D image on the left dis-
plays the situation at the same point in time. The position and
the parameters of the virtual camera were chosen to match the
corresponding values of the real camera.

A particularly challenging situation is shown in Figure 8.
Here, two people are approaching the robot. After passing it,
they change sides and walk back. While they are changing si-
des, the person being located closer to the robot occludes the
other one. The position of the robot depicted in this figure is the
position at the time when the occlusion occurred. According to
the estimates provided by the tracking algorithm, the two per-

Figure 8: One person temporarily occluding a second one,
in the back of the robot

Figure 7: Left image: A 3D visualization of RHINO tracking a person;  Right image: A photo of the situation at the same point in time

Figure 6: Trajectory of Rhino and estimated trajectory of a human passing by.
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son were moving at a speed of 60 cm/s and 80 cm/s, respective-
ly. This experiment was repeated several times and the system
was always able to keep track of the two persons.

Another difficult situation is depicted in Figure 9. Two people
are joining in front of the robot and walk next to each other for
a few seconds before the trajectories split-up again. The prob-
lem here is that the state densities of the two persons are nearly
identical. They walk at the same speed, into the same
direction, and their positions only have a small displacement.
Nevertheless, our technique is able to keep track of both per-
sons as Figure 9 shows. However, the point in time, at which the
to persons split-up is detected too late. The correct trajectory of
one person is illustrated by the dashed line. The trajectory esti-
mated by the robot is shown in light grey.

5 Conclusions
 In this paper we presented an approach for the robust 3D

visualization of the actions of a mobile robot over the Internet.
Instead of image streams our technique uses a 3D model of the
environment and visualizes the actions of the robot and the
current state of the environment by 3D rendering. According to
that, only the current state of the robot and of dynamic objects
within the environment have to be transferred over the Inter-
net which results in a serious data reduction. Our approach ap-
plies a probabilistic state estimation technique to continuously
determine the current states of dynamic objects while the ro-
bot is moving. The system has been tested extensively in a typi-
cal office environment. The results show that our state estimati-
on procedure can robustly and efficiently estimate the state of
different dynamic objects in the environment of the robot. As a
result, we obtain accurate visualizations of the robot and its en-
vironment.

The system and techniques described in this paper can
contribute to a variety of applications. For example, distributed
research groups carrying out joint experiments, can use the 3D
visualization to monitor the actions of the robot. The tech-
niques can also be used for the documentation of experiments
and to illustrate the behavior of a robot using a certain control
strategy. Finally, we are convinced that such techniques will play
a major role in future Web-based tele-presence systems. In the
TOURBOT project, for example, a mobile robot is used to allow
users the inspection of objects in exhibitions from arbitrary
viewpoints over the Web. In this context, 3D visualization tech-
niques will be used to visualize the current location of the robot.

There are several aspects for future research. For example,
using 3D visualizations has the advantage that a user can watch
the robot from arbitrary perspectives by choosing view-points
for the virtual camera. However, finding appropriate view-
points is not at all an easy task, especially for non-expert users.
The system therefore requires techniques for selecting view-
points automatically. One approach towards this direction, is
described in [11]. A second important topic regards the acquisi-
tion of the 3D model. The model used by our current system
has been hand-crafted in a time-consuming process of several
days. In this context it would be worthwhile to have techniques
for the automatic acquisition of 3D maps by the robot itself.
First steps towards this direction have been presented in [22].
However, these techniques are sub-symbolic and do not provi-
de means for detecting objects like doors, chairs etc. which are
used by the system presented in this paper.
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