
Efficient Path Planning for Mobile Robots
with Adjustable Wheel Positions

Freya Fleckenstein Christian Dornhege Wolfram Burgard

Abstract— Efficient navigation planning for mobile robots
in complex environments is a challenging problem. In this
paper we consider the path planning problem for mobile
robots with adjustable relative wheel positions, which further
increase the navigation capabilities. In particular we account
for changes of these relative wheel positions during planning
time, thus fully leveraging the capabilities of the robot. Whereas
these additional degrees of freedom increase flexibility, they
introduce a more challenging planning problem. The approach
proposed in this paper is built upon a search-based planner.
We describe how to flexibly integrate joint angle changes in
the path planning process and furthermore propose a repre-
sentation of the robot configuration that substantially reduces
the computational burden. In addition, we introduce search
guidance heuristics that are particularly useful in environments
in which a robot is required to pass over obstacles, such as
on agricultural fields. An extensive evaluation on simulated
and real-world data with our BoniRob agricultural robot
demonstrates the efficiency of our approach.

I. INTRODUCTION

Constructing feasible plans that enable robots to navigate
autonomously in a safe and efficient manner has been a field
of research in robotics for decades. We consider wheeled
robots with advanced capabilities that enable them to change
their intrinsic configuration, such as the BoniRob system
depicted in Fig. 1. The wheels of this robot can be rotated
individually so that the robot can move in arbitrary directions
and orientations. In addition, the wheels are mounted on
rotatable lever arms around a vertical axis (see Fig. 2). As
a result, the BoniRob is able to adjust its wheel positions to
pass over or along obstacles in confined areas. We focus on
cases, where due to mechanical constraints, changes of the
intrinsic configuration are not possible during navigation. For
example, the BoniRob would incur damage due to high loads
on the mechanism when the lever arms are rotated while
driving. Robots with controllable intrinsic configurations ob-
viously are more flexible and envisioned to have advantages
in in complex environments with many obstacles, in fields
with plant rows or even in rescue scenarios. Incorporating
these joints as part of the path planning process guarantees
that all possible paths are found and therefore ensures that
the full potential of the platform is used.

Adjustable joints introduce additional degrees of freedom
(DoF) compared to robots that are only able to change their
position and orientation. The higher dimensionality of the
planning space makes the problem harder as the number
of states is considerably increased. Common approaches are

All authors are with the University of Freiburg, Department of Computer
Science, Germany. This work has partially been supported by the European
Commission under the grant number H2020-ICT-644227-FLOURISH.

Fig. 1: The BoniRob agricultural robot with high ground clearance
and wheels attached to adjustable arms, here collecting data on a
leek field used in the evaluation. Each of the arms can be moved
separately around a vertical axis thereby changing the relative wheel
positions. Moving all arms to the sides of the robot leads to a large
track width, enabling it to pass over extended obstacles. Moving all
arms to the front and rear leads to a small track width, enabling it
to get through narrow passages.

sampling-based or search-based planning. Many sampling-
based approaches assume that different states can be con-
nected directly. As we consider robots for which driving and
changing specific joint angles at the same time is undesirable,
we cannot adopt this assumption, since only a subset of
the state values is allowed to change in one motion. Also,
customized cost functions are important. For example, unless
necessary to reach a target, one wants to avoid the robot
going backwards. A flexible search-based approach is well
suited in this case.

In this paper we introduce a novel path planning approach
that is able to efficiently plan for robots with adjustable
wheel positions. This is made possible by the following
contributions. We achieve a significantly smaller search space
through a concise representation that effectively treats the
additional degrees of freedom introduced by the adjustable
joints as sets of configurations instead of individual config-
urations. A key insight here is that these joints only enable
different motions, but do not move the robot itself. This
allows us to summarize all configurations that enable the
same motion into a single state during search. Furthermore,
we present heuristics particularly suitable for environments
that require the robot to pass over obstacles.

We show the effectiveness of our approach in exten-
sive experiments in simulated and real-world environments
evaluating the proposed improvements—namely an efficient
state space representation and informed search heuristics. In
particular, we point out the necessity of considering the full
capabilities of a robot in a demanding environment.



II. RELATED WORK

Robots with an adjustable intrinsic configuration are com-
mon in the field of search and rescue robotics as the
additional DoF allow the robot to overcome obstacles. These
are mostly utilized by tele-operation or reactively. Tracked
robots with so-called flippers adjust these based on current
sensor data to determine whether changing the intrinsic robot
configuration is necessary [13]. This does not allow the robot
to plan ahead, if a change in configuration is necessary before
a critical situation arises.

There are several sampling-based approaches that deal
with a high number of DoF by sampling a subset of the
configuration space, such as for example rapidly-exploring
random trees [10] and variants thereof [9, 6] or probabilistic
road maps [7]. Many sampling-based approaches assume that
any state is reachable from any other state in a continuous
manner, if an obstacle-free transition exists. This is not the
case for us, as the robot is not able to change its joint
angles and drive at the same time. In addition, producing
high-quality plans is important for navigation. It has recently
received interest for sampling-based planning [3], but is well
understood for search-based planning.

Therefore we aim for a search-based planning approach
that is often used for path planning. The simplest method is
to perform a 2d Dijkstra search on a grid [2]. State-of-the-
art approaches are able to plan for more DoF, for example
using state lattices [14]. We also base our approach on this
concept. Search-based planning allows for flexible solutions,
e.g., footstep planning for four-legged robots [16], navigation
planning with 3d collision checks [5] or path planning for
parking cars [11]. Besides navigation, search-based planning
with state lattices has also been applied to manipulation
tasks [1].

The main question we consider in this paper is how to
efficiently plan a path for a robot with adjustable joint angles
that introduce additional DoF. One way to tackle this issue
is by using adaptive dimensionalities for planning. Gochev
et al. propose to plan for a set of configuration parameters
that are crucial to a resulting path [4] They compute a path
in this low-dimensional configuration space and then deduce
the values of the remaining configuration parameters from
this path. In our case, the joint angles of the arms as well as
the robot pose are relevant for the feasibility of a motion, so
that a lower-dimensional configuration space does not exist.
Another idea in the context of adaptive dimensionalities is to
adaptively choose for which part of the configuration space
to plan in the current planning phase, which is determined
by the distance to the start or goal [11] or also including
obstacles [15, 8]. In our case, we might encounter obstacles
on the way and thus cannot only focus on the start and goal
areas. In addition, while navigating on a field, obstacles in
the form of crops might always be close, so that such an
approach would always choose the highest dimensionality.

An important technique for speeding up search-based plan-
ning are informative heuristics. A commonly used heuristic
is the Euclidean distance to the goal. This does not take

into account any constraints of the robot and thus often
greatly underestimates the true cost. A better estimate is
the freespace heuristic [11] that pre-computes the minimal
cost based on the possible motions for a robot under the
assumption that there are no obstacles. Another heuristic that
is often used is the Dijkstra heuristic, induced by the Dijkstra
algorithm [2]. For example, Hornung et al. propose to run a
Dijkstra search on a map with obstacles inflated by the inner
circle of the robot [5]. However, for a robot with high ground
clearance, the center being located above an obstacle does
not imply a collision, as it is able to pass over an obstacle.
Our proposed Wheel Dijkstra heuristic addresses this issue.

III. PROBLEM STATEMENT

We plan for a ground vehicle navigating in a 3-dimensional
environment. First, we describe the configuration space of the
robot and then the action model that forms valid transitions
in the configuration space. We represent the pose of the
robot in the world by a rigid body motion relative to a fixed
coordinate frame in 3-dimensional space SE (3). This defines
the extrinsic configuration space of the robot.

We consider robots that are also able to change their
intrinsic configuration. In our case the robot can adjust its
relative wheel positions by rotating its arms (see Fig. 2) and
thereby can fit through passages or pass over obstacles. We
include such joints that are relevant for the feasibility of a
robot motion in the configuration space and call the space
that describes the controllable configurations of these joints
the intrinsic configuration space of the robot CR. The full
configuration space is then given by C = SE (3)× CR.

We represent the environment by a traversability map. This
is 2.5d grid map that contains elevation and traversability
information. The valid configuration space Cf ⊆ C contains
all configurations c ∈ C that are safe for the robot according
to this map, i. e., the robot is collision-free and stable. As
we consider a ground vehicle, the height, roll and pitch in
the robot pose cannot be actively controlled. We thus define
the actively controllable configuration space Ca = SE (2)×
CR. Each element in the actively controllable configuration
space Ca is induced by an element in the valid configuration
space Cf . Note that a change in the intrinsic configuration
of the robot can cause a change in the robot pose in SE (3).
For example, when the robot turns an arm onto a bump the
attitude and elevation of the robot changes.

We study cases where simultaneous driving and changing
of joint angles is undesirable or physically impossible. For
example, changing the arm angles of the BoniRob while
driving can lead to serious damage in the control mechanism.
Therefore there are two kinds of valid motions M that
represent transitions in Ca. Changes in SE (2) correspond
to driving, thus we call them drive motions. Changes in CR
correspond to changes in the arm joint angles that we call
arm motions. A motion is valid, if it does not require a wheel
to cross an untraversable cell, and the ground clearance of
the robot allows its body and arms to pass over any obstacles.
A goal configuration cg ∈ Ca is reachable from a start
configuration cs ∈ Ca, if there exists a cohesive sequence



ϕ2 ϕ1

ϕ3 ϕ4

ϕ2 ϕ1

ϕ3 ϕ4

ϕ2 ϕ1

ϕ3 ϕ4

Fig. 2: Schematic of the BoniRob showing its body and the four
arms in different joint configurations in a top-down view.

π = (mi)i∈1,...,k of valid motions mi that starts at cs and
ends at cg .

We define a cost function u :M→ R+,m 7→ u(m) that
models the time it takes to execute motion m. Additionally,
the cost function models user preferences, e. g., we prefer the
robot to drive forwards and not backwards. For a sequence
π of motions, we define the cost as cost(π) =

∑k
i=1 u (mi).

We then specify our planning problem as follows. Given a
start configuration cs ∈ Cf and a goal configuration cg ∈ Cf ,
determine the induced configurations cs2D , cg2D ∈ Ca. Find
a sequence of valid transitions π = (m1,m2, . . . ,mk) with
minimal cost (π) that starts at cs2D and ends at cg2D .

IV. PLANNING WITH ADJUSTABLE WHEEL POSITIONS

In this section, we present our approach for path planning
with adjustable relative wheel positions. This is a challenging
problem as the additional DoF need to be accounted for
during planning to be able to find plans that require these
joints for completeness. We aim for a general and flexible
formulation that allows us to model robot-specific motions
and costs. Therefore, we follow a search-based planning
approach that easily optimizes for custom cost functions, and
allows us to express drive and arm motions separately.

We first illustrate, how we represent a search space in a
state lattice [14] that discretizes states and constructs valid
motions that connect these states. They form a graph that is
searched with any search algorithm such as A*. We build on
formulations for state lattices in SE (2) and then present our
extensions to model planning with adjustable wheel positions
in state lattices in the controllable configuration space Ca.
Finally, we introduce search guidance heuristics that tackle
the shortcomings of common path planning heuristics.

A. State Lattice Planning in SE (2)

Common approaches for state lattice planning in SE (2)
discretize the configuration space, i. e., SE (2). The result-
ing states are connected with so-called motion primitives
and hereby define the search space for planning. Motion
primitives represent drive motions that the robot is able
to execute and are constructed in a way that the repeated
application of motion primitives covers the complete space.
The search space is incrementally built during planning.
Motion primitives are only applied to a state if they represent
a valid motion in Cf . The motion primitives for our robot
are shown in Fig. 3. A search in this space results in a plan
π ∈ SE (2) consisting of motion primitives.

B. State Lattice Planning with Adjustable Wheel Positions

A state lattice in SE (2) accounts for the pose of a robot
in the environment, but arm motions changing joint angles

Fig. 3: Motion primitives for our robot shown on a grid. The current
pose is highlighted in blue. Possible drive motions are indicated
by red lines. The outcomes are shown as numbered robot poses
(illustrated by circles for the position and a line for the orientation).

are not considered. To represent the abilities of the robot
and enable finding paths even in complex environments, we
extend the SE (2) state lattice to include joint angles in CR.
We model arm motions and drive motions separately. For
drive motions we reuse the motion primitives as defined for
a state lattice in SE (2). The state space representation also
discretizes SE (2) in the same way. In addition, we include
the intrinsic robot configuration CR in the state lattice and
represent configuration changes of the robot by arm motions.

Here, the first step is to integrate the joint angles into
the state lattice to get the valid controllable configuration
space Ca = SE (2) × CR. This leads to n = dim (CR)
additional dimensions in the configuration space. A straight-
forward way to represent the intrinsic configuration of a
robot is to store a single angle per joint. The intrinsic robot
configuration is then given by a vector (ϕ1, . . . , ϕn)

T .
The second step is to represent the robot motions that

change joint angles. One of these arm motions sets a single
joint angle to a different configuration value. Like for motion
primitives in SE (2), we also test if an arm angle change
leads to a configuration in Cf . Otherwise the motion is not
applicable. These motions only affect entries in CR. This is
in accordance with our condition that joint angles cannot
be changed while driving. This representation increases the
dimensionality of the search space by dim (CR).

We therefore introduce a representation that instead of
single joint angles uses intervals of joint angles, thus rep-
resenting sets of configurations in a single state in the state
lattice together with the pose of the robot. An intrinsic robot
configuration representation then contains an interval Ii =[
ϕmin
i , ϕmax

i

]
for each joint and is given by (I1, . . . , In)

T . A
state in this representation is valid, if and only if all joint
configurations it represents are valid at the given pose, i. e.,
all combinations of angles in the intervals are valid.

To understand why this works, consider that changes in
CR do not cause major changes in the pose of the robot.
Additionally, in many situations there are multiple joint angle
configurations that allow a certain drive motion to be applied.
Therefore, it is not necessary to know the exact values in CR
as long as they lead to valid motions.

However, with a representation over sets of possible con-
figurations, it is necessary to adapt the notion of applying
a motion to retain soundness. There are two reasons for
the angle interval of a specific joint to change. While arm
motions increase intervals, drive motions potentially decrease
the represented valid intrinsic configurations, as illustrated in
Fig. 4. Arm motions expand the joint angle intervals to both
sides by a fixed increment, if the corresponding arm rotation



arm angles

move,

front
change move

Fig. 4: Changing arm angle intervals due to arm motions and
obstacles when moving. The intervals of valid arm angles are shown
in blue. Obstacles are shown in gray. The robot starts with the
intervals in the leftmost state. It first moves in freespace and changes
the angles of its front arms, thus their intervals increase. When
driving further towards obstacles the intervals decrease as part of
them becomes invalid.

move move

Fig. 5: An environment where splitting intervals happens. Part of
the intervals become invalid as the wheels at the end of the arms
of the robot would collide with the obstacle. The shown interval
parts are valid even when the arms extend over the obstacle as their
ground clearance is high enough.

is valid. Applying such a motion thus generates only one
successor state representing all combinations of joint angles
that are possible results of the applied motion.

Joint angle intervals are also updated when applying
a drive motion. This is the second reason that intervals
can change. If a drive motion is not valid for part of an
interval, we remove this part in the resulting state. This
state has to represent the resulting set of configurations.
The example in Fig. 5 shows that in some scenarios this
leads to the interval being split. As our approach supports
only single intervals, it cannot represent all possible resulting
configurations in a single state. Therefore, in such a case, we
create multiple successor states. A new successor is created
for the combination of all resulting interval parts for each
arm, e.g., in the example in Fig. 5, we get four new states,
for the angles of two arms being split in two intervals each.
Note that the extreme case of splitting each interval in all
individual discretized parts is equivalent to the representation
with single arm angles. This is unlikely to happen unless the
environment is highly complex. Therefore, in most cases,
using the single arm angle representation produces a large
number of successor states that the interval representation
summarizes into a single state.

C. Heuristics

While the previous section addressed a reduction of the
search space to speed up planning, here we aim to guide
the search with informative heuristics. Therefore, we present
heuristics well suited for robots with high ground clearance,
where contact with the ground only occurs with small parts
of the robot. In particular we aim for admissible heuristics
that underestimate the true cost as these allow the planner to
find optimal paths. The commonly used Euclidean distance is
not suited for our target applications as it neither considers
the cost of the motion primitives nor the structure of the
environment. Instead, we use the freespace heuristic [11].

Fig. 6: Example of the Wheel Dijkstra heuristic for the rear wheels
of the BoniRob in an 8-neighborhood. Untraversable cells are
marked in red. Note that considering only a single point of the
robot, e.g., one wheel can greatly underestimate the actual cost.

It precomputes minimal costs in a freespace environment,
while considering the actual cost of motion primitives.

The freespace heuristic is a better estimate than the
Euclidean distance, but it also does not consider the en-
vironment. In environments with many obstacles and little
open space, it greatly underestimates the true cost. In such
environments, it is imperative to take the structure into
account. A heuristic that does this is the Dijkstra heuristic
that computes shortest paths from the robot center to all
cells in a 2d grid map of the environment and thus gives an
estimate of an obstacle-free path that the robot could take.
However, it disregards the orientation of the robot and, in our
case, intrinsic configuration changes. For robots with high
ground clearance, a Dijkstra heuristic on the robot center is
not informative, as the robot center is not on the ground.

Instead, we compute a Dijkstra heuristic for the wheels
(see Fig. 6) that naturally have ground contact and therefore
require traversable locations. For each wheel, given a plan-
ning query, we compute the cell in the traversability map that
it occupies in the goal configuration. Then, once per planning
query, we perform a single source shortest path search on the
traversability map with Dijkstra’s algorithm from that cell
and store the costs. During planning, the heuristic value for
a specific wheel is then determined by a fast look-up.

In comparison to a search in the full controllable configu-
ration space of the robot, searching for paths in the 2d space
of the traversability map does not require much time, even
when performing this search for all wheels. Fig. 6 illustrates
the importance of considering all wheels for more realistic
estimates, as distances traveled by single wheels to their
respective goal positions can differ greatly. The results are
informative, as the search avoids collisions of the wheels
and represents the minimal distance that each wheel has to
travel. We acquire a cost estimate for the complete robot by
maximizing over all wheel distances and call this heuristic
the Wheel Dijkstra heuristic. We also combine the Wheel
Dijkstra heuristic with the freespace heuristic by maximizing.

V. EXPERIMENTS

In order to show the performance of our planner for robots
with adjustable relative wheel positions, we ran extensive
experiments on simulated and real-world data. We first in-
vestigate the influence of our proposed interval representation
for the intrinsic robot configuration. Afterwards we present a
comparison of the planner performance with various search
guidance heuristics. As an evaluation platform, we model
the BoniRob with its four rotatable arms. Each arm is



constrained to an angle between 0◦ and 90◦. The intrinsic
configuration space is thus given by CR = C4l where Cl =
[0◦, 90◦] represents the configuration of a single arm.

A freespace environment without obstacles serves as the
baseline for our experiments. In addition, we created two
simulation environments shown in Fig. 7. The field environ-
ment represents an agricultural field with plant rows. The
rocks environment is cluttered with tight passages that the
robot has to circumvent or rocks that it has to pass over to
navigate. It is made intentionally hard to drive the planner
and different representations to their limits. Here, adjusting
the wheel positions is likely to be required for finding a path.
Furthermore, we evaluate on the 3d map of a leek field built
from real-world data that is shown in Fig. 8 (see Fig. 1 for an
impression of the field). This allows us to compare planning
on real-world data to the simulation environments.

In all environments, we uniformly sampled 25 poses and
constructed planning queries between each pair of poses.
In the leek environment, we manually aligned pose orien-
tations with the field to generate realistic robot poses. In
the freespace and field environment, we ran the planner on
queries where poses were more than 0.5m and less than 20m
apart and chose a timeout of 30 s. As planning is harder in
the rocks environment, we ran queries for poses with at least
0.5m and at most 10m distance and increased the timeout
to 3min. In the leek environment, we allowed for a distance
between 0.5m and 20m and used a timeout of 90 s. Our
implementation uses the search-based planning library with
the Anytime Repairing A* as a search algorithm [11, 12].
We set the initial weighting factor to ε = 5. The experiments
were run on an Intel i7 4 GHz machine.

We are particularly interested in the time it took the
planner to find a first plan, as this allows a robot to start nav-
igating. We plot a cumulative histogram of solved planning
queries over time, where, for example, an entry of 50% at
10 s means that after 10 s 50% of all queries returned a plan.
Ideally a graph here rises up quickly as this indicates queries
being solved fast and reaches a high percentage of solved
queries at the timeout. We also investigate the sub-optimality,
to determine if the plans are reasonable. The sub-optimality
value γ for a plan guarantees that it has at most γ times the
cost of the optimal plan [12]. To compare algorithms we plot
the percentage of queries that resulted in a plan with sub-
optimality of γ or better after a third of the timeout. Ideally
a large percentage of plans has a small γ.

A. Evaluation of Configuration Representations

In this section, we analyze the efficiency gain of using
joint angle intervals instead of single joint angles for the
representation of the intrinsic configuration of the robot.
In addition, we compare with a representation that does
not allow to change joint angles at all. This serves as a
baseline algorithm as its search space is notably smaller,
but—although incomplete—should still be able to find plans
in most cases. Since preliminary experiments showed that a
combination of the Euclidean, freespace and Wheel Dijkstra
heuristic leads to the best performance, we used this. We

Fig. 7: The environments for our experiments are both 30m×30m.
Untraversable cells are marked in red, traversable cells in blue. Left:
The field environment representing a field with plant rows, which
are low enough for the robot to pass over them. Right: The rocks
environment, where changing arm angles multiple times in a single
plan can be necessary.

Fig. 8: The real-world data recorded on a leek field that is
represented in the leek environment (top). The bottom shows the
corresponding traversability map that is automatically generated
from this data.

ran the planner on the queries of all environments in three
different configuration space representations: Once without
changing the arm angles during the search (fixed), thus rep-
resenting a configuration space of SE (2), once representing
the intrinsic configuration with angle intervals (intervals) and
once with individual arm angles (single angles).

Freespace: We evaluate in the freespace environment
as a baseline to determine the overhead resulting from
planning with joint angles. Fig. 9(a) shows that the intervals
representation leads to a similar performance as the fixed
representation, while single angles is slightly worse. In
this simple environment, we observe no overhead with our
proposed intervals representation despite the four additional
DoF resulting from the adjustable relative wheel positions.
Almost all queries also reach a sub-optimality of 2 or better.

Field: This represents a crop field with plant rows as
a typical environment for an agricultural robot. Fig. 9(b)
illustrates that planning with intervals is notably more ef-
ficient than using single angles. At the timeout, the planner
employing the interval representation found paths for about
95% of the planning queries, while planning with single an-
gles resulted in only 65% of solved planning queries. Again
we observe that planning in the more expressive intervals
representation is just as efficient as planning without joint
angles (fixed). The sub-optimality for intervals is also on
par with the fixed representation at about 3 for more than
70% of the queries, where at the evaluation point of a third
of the timeout 80% of the queries were solved. Again there
is a notable difference to single angles.

Leek: We validate our results from simulated environ-
ments in the leek environment based on real-world data.
Fig. 9(c) shows a similar performance as in the field envi-
ronment, i. e., planning with intervals is more efficient than
planning with single angles and in this case even slightly



0
20

40
60

80
10

0

0 2 4 6 8 10pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

0 20 40 60 80pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

0 50 100 150pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

(a) freespace (b) field (c) leek (d) rocks

Fig. 9: Performance of the planner using different configuration space representations in the test environments. Plotted are cumulative
histograms of the number of solved planning queries over the time until the first plan was found in the top row and the percentage of
queries resulting in a certain sub-optimality in the bottom row.

better than planning with fixed angles. Sub-optimality here
is similar for all representations as the environment is more
narrow and thus any found plan is already close to optimal.
As the simulated field environment has similar properties as
the leek environment, this confirms the real-world applica-
bility of our configuration representation.

Rocks: The rocks environment provides a hard test
case enforcing difficult situations. Changing arm angles is a
common requirement for finding plans in this environment.
Fig. 9(d) demonstrates that planning with fixed arm angles
is not sufficient any more due to its incompleteness. In
particular we see that after about 50 s no new plans are
found. Both the single angles and the intervals representation
continue to find plans and at the timeout solved about twice
as many queries. The sub-optimality is 1 for fixed arm
angles for the queries that had solutions. These are mainly
the simpler queries that did not require arm reconfiguration
actions. The cost for the arm motions is large for our
robot in comparison to drive motions, so that the planner
prevents these from being executed. Nevertheless there were
1.2 reconfiguration actions on average for single angles and
intervals. This clearly shows that planning with arm angles
is necessary in constrained environments.

In addition here we also investigated, how many dis-
cretized configurations are represented in a single search state
of the intervals representation. On average there were 25.2
configurations captured in the intervals of that representation
that would be individual search states in the single an-
gles representation. This explains, why in the environments,
where arm motions are for most queries not necessary,
the intervals representation shows a performance similar to
planning without arm angle changes.

B. Evaluation of Heuristics

To compare the performance of the heuristics, we ran our
planner in all environments and evaluated different heuristics.
We chose the intervals configuration representation. We
tested the planner with the Euclidean distance heuristic
serving as the baseline and compared with the combination

0
20

40
60

80
10

0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F 0

20
40

60
80

10
0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

(a) freespace (b) field
0

20
40

60
80

10
0

0 20 40 60 80pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F 0
20

40
60

80
10

0

0 50 100 150pe
rc

en
ta

ge
 o

f s
ol

ve
d 

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

(c) leek (d) rocks

Fig. 10: Performance of the planner using different heuristics.
Plotted are cumulative histograms of the number of solved planning
queries over the time until the first plan was found.

of the Euclidean distance and the freespace heuristic, the
Wheel Dijkstra heuristic, or the combined Wheel Dijkstra
and freespace heuristic (denoted as Combined WD + F). We
focus the discussion on the percentage of solved queries as
the performance differences with regard to the sub-optimality
between algorithms were similar to the solved queries.

Freespace: The freespace environment provides a mea-
sure for how severely heuristics underestimate the true cost
in an empty environment. The freespace heuristic is the
optimal heuristic for planning with a state lattice planner in
this environment. It is thus not surprising that in Fig. 10(a)
the freespace heuristic and combinations with it perform
notably better than others. Planning with the Wheel Dijkstra
heuristic or only the Euclidean heuristic is slower as they
both underestimate the true cost of drive motions resulting
from orientation changes and user preferences.

Field: As we see in Fig. 10(b), initially (up to 5 s)
the performance of the freespace heuristic is on par with
the Combined WD + F heuristic. These are easier planning
queries that require driving either along the side of the



field, i. e., mostly in freespace, or along a row of the
field, i. e., where obstacles do not influence the preferred
path. Larger times indicate more complex queries that, for
example, require changing rows. Here, the Wheel Dijkstra
heuristic performs best, as it is designed for scenarios like
this. The Combined WD + F heuristic here covers both
scenarios performing similar to the freespace heuristic for
shorter queries and similar to the Wheel Dijkstra heuristic
for more complex ones. Without the Wheel Dijkstra heuristic
only about 80% of planning queries were solved. The Wheel
Dijkstra heuristic (also in combination with the freespace
heuristic) was able to solve about 95% of planning queries.

Leek: In the leek environment based on real-world
data, a row of crops is not one continuous obstacle, but
contains gaps between crops that allow a wheel to pass
through, although the complete robot cannot. This explains
why in Fig. 10(c) we observe that the performance of the
Wheel Dijkstra heuristic alone is not as good as in the field
environment. The freespace heuristic leads to a notably better
performance. A reason for this is that rows were quite narrow
and when the robot was driving it was constrained by the
row to straight-line movements that are modeled well by
the freespace heuristic. Nevertheless, the combination thereof
with the Wheel Dijkstra heuristic still performed similarly.

Rocks: In this environment evaluated in Fig. 10(d) there
are no major differences between heuristics. The Combined
WD + F heuristic leads to slightly more solved planning
queries at the timeout, followed by the Wheel Dijkstra,
freespace and the Euclidean heuristic. Here the path planner
had to plan complex maneuvers that are not modeled well
by any heuristic.

VI. CONCLUSION

We presented an approach for path planning with ad-
justable relative wheel positions. Our planner efficiently
handles the increased number of degrees of freedom re-
sulting from planning for the additional joint angles. In
order to achieve this, we introduced a novel configuration
representation for changeable joint angles. Furthermore, we
introduced search guidance heuristics that are particularly
useful in complex environments with many obstacles. In
extensive experiments, we demonstrated that the proposed
configuration representation by intervals allows us to plan in-
cluding joint angles from the intrinsic configuration without
a notable decrease in performance compared to planning in
SE (2). Note that planning only in SE (2) is incomplete. This
is also shown experimentally in constrained environments,
where taking joint angles into account during planning is
necessary to find paths. The evaluation of the heuristics
indicated different behavior of heuristics depending on the
environment. However, the combined Wheel Dijkstra and
freespace heuristic performs at least as well as other tested
heuristics in all environments and situations.

REFERENCES

[1] B. J. Cohen, S. Chitta, and M. Likhachev. Search-based
planning for manipulation with motion primitives. In
Int. Conf. on Robotics & Automation (ICRA), 2010.

[2] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271,
1959.

[3] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot.
Batch informed trees (bit*): Sampling-based optimal
planning via the heuristically guided search of implicit
random geometric graphs. In Int. Conf. on Robotics &
Automation (ICRA), 2015.

[4] K. Gochev, B. J. Cohen, J. Butzke, A. Safonova, and
M. Likhachev. Path Planning with Adaptive Dimen-
sionality. In Int. Symposium on Combinatorial Search
(SoCS), 2011.

[5] A. Hornung, M. Phillips, E. G. Jones, M. Bennewitz,
M. Likhachev, and S. Chitta. Navigation in three-
dimensional cluttered environments for mobile manipu-
lation. In Int. Conf. on Robotics & Automation (ICRA),
2012.

[6] S. Karaman and E. Frazzoli. Incremental sampling-
based algorithms for optimal motion planning. In
Robotics: Science and Systems (RSS), 2010.

[7] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[8] D. Kim, Y. Choi, T. Park, J. Y. Lee, and C. Han.
Efficient path planning for high-dof articulated robots
with adaptive dimensionality. In Int. Conf. on Robotics
& Automation (ICRA), 2015.

[9] J. J. Kuffner and S. M. Lavalle. RRT-Connect: An
efficient approach to single-query path planning. In
Int. Conf. on Robotics & Automation (ICRA), 2000.

[10] S. M. Lavalle. Rapidly-Exploring Random Trees: A
New Tool for Path Planning. Technical report, 1998.

[11] M. Likhachev and D. Ferguson. Planning long dy-
namically feasible maneuvers for autonomous vehicles.
Int. J. of Robotics Research, 28(8):933–945, 2009.

[12] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*:
Anytime A* with provable bounds on sub-optimality.
In Proc. of the Conf. on Neural Information Processing
Systems (NIPS), 2003.

[13] K. Ohno, S. Morimura, S. Tadokoro, E. Koyanagi, and
T. Yoshida. Semi-autonomous control system of rescue
crawler robot having flippers for getting over unknown-
steps. In Int. Conf. on Intelligent Robots and Systems
(IROS), 2007.

[14] M. Pivtoraiko and A. Kelly. Efficient constrained path
planning via search in state lattices. In Int. Symposium
on Artificial Intelligence, Robotics, and Automation in
Space (i-SAIRAS), 2005.

[15] N. Vahrenkamp, C. Scheurer, T. Asfour, J. J. Kuffner,
and R. Dillmann. Adaptive motion planning for hu-
manoid robots. In Int. Conf. on Intelligent Robots and
Systems (IROS), 2008.

[16] M. Zucker, J. Andrew, B. Christopher, G. Atkeson, and
J. Kuffner. An optimization approach to rough terrain
locomotion. In Int. Conf. on Robotics & Automation
(ICRA), 2010.


