
Learning Cost Functions for Mobile Robot Navigation

in Environments with Deformable Objects

Barbara Frank Markus Becker Cyrill Stachniss Wolfram Burgard Matthias Teschner

Abstract— The ability to reliably navigate through their
environment is an important prerequisite for truly autonomous
robots. In this paper, we consider the problem of path planning
in environments with non-rigid obstacles such as curtains or
plants. We present an approach that combines probabilistic
roadmaps with a physical simulation of object deformations
to determine a path that optimizes the trade-off between the
deformation cost and the distance to be traveled. We describe
how our approach utilizes Finite Element theory for calculating
the deformation cost. As the high computational requirements
of the corresponding simulation prevent this method from being
applicable online, we present an approximative approach that
uses a preprocessing step to determine a deformation cost
function for each object. This cost function allows us to estimate
the deformation costs of arbitrary paths through the objects and
is used to evaluate the trajectories generated by the roadmap
planner online. We present experiments which demonstrate that
the resulting algorithm is highly accurate and at the same
time allows to quickly calculate paths in environments with
deformable objects.

I. INTRODUCTION

Path planning is one of the fundamental problems in

robotics, and the ability to plan collision-free paths is

a precondition for numerous applications of autonomous

robots. The path planning problem has traditionally received

considerable attention in the past and has been well-studied.

The majority of approaches, however, has focused on the

problem of planning paths in static environments and with

rigid obstacles [1, 2, 3]. In the real world, not all obstacles

are rigid, and taking this knowledge into account can enable

a robot to accomplish navigation tasks that otherwise cannot

be carried out. For example, in our everyday life we deal

with many deformable objects such as plants, curtains, or

cloth and we typically utilize the information about the de-

formability of objects when planning a path. As a motivating

example, consider the situation depicted in Figure 1, in which

the robot needs to pass through a curtain to move from its

current position to the goal location since no other path exists

in the environment. In this particular situation, traditional

approaches that do not take the deformability of objects

into account, will fail since no collision-free path exists.

In contrast, the approach presented in this paper is able to

determine the deformation cost introduced by passing the

curtain and to utilize this information during path planning.

The key idea of our approach is to use a heuristic function

to estimate the deformation cost, which allows the robot to

perform the necessary calculations online.

All authors are with the Department of Computer Science, University of
Freiburg, 79110 Freiburg, Germany.

{bfrank,mbecker,stachnis,burgard,teschner}@informatik.uni-freiburg.de

Fig. 1. Path planning in an environment with a deformable object. The
robot (shown in red) deforms the curtain on its path to the goal.

One potential method of taking deformations of objects

into account is by generating trajectories using a method

such as probabilistic roadmaps and considering deformable

objects as free space. When answering path queries, the

planner has to simulate the deformation of the non-rigid

objects resulting from the interaction with the robot. How-

ever, performing an appropriate simulation typically requires

significant computational efforts which makes such an ap-

proach unsuitable for online trajectory planning. Therefore,

we propose an approach to learn an approximative deforma-

tion cost function in a preprocessing step. The advantage of

our method is that this function can be evaluated efficiently.

In this way, our approach is able to reduce the time to

solve a path query from several minutes to a few hundred

milliseconds, as is demonstrated in the experimental section.

The assumption made throughout this paper is that the robot

can deform but cannot move objects in the environment. Ad-

ditionally, we assume that there are no interactions between

different deformable objects.

The contribution of this paper is an approach to mobile

robot path planning that explicitly considers deformable

objects in the environment. It employs the probabilistic

roadmap method (PRM) [4] and learns a deformation cost

function using a physical simulation engine that is based on

Finite Element theory. Our approach trades off the travel

cost with the deformation cost when answering path queries.

Additionally, it can be executed online.

This paper is organized as follows: After discussing related

work, we present our technique to compute the deforma-

tions of objects by means of physical simulation. We then

describe how to plan a path in presence of deformable

objects. Additionally, we describe our approximation of the

deformation cost function. Finally, we present experiments

that illustrate the advantages of our approach compared to

previous methods.

II. RELATED WORK

The majority of approaches to mobile robot path planning

assumes that the environment is static and that all objects are

rigid [1, 4, 5]. Recently, several path planning techniques

for deformable robots in static environments have been

presented [6, 7, 8]. In the context of deformable objects, the

underlying model has a substantial influence on the accuracy

of the estimated deformations as well as on the performance

of the planner. One typically distinguishes between geo-

metrically and physically motivated approaches. Geometric

approaches such as the free-form deformation (FFD) can

be computed efficiently. For example, the FFD method of

Sederberg and Parry [9] is based on trivariate Bernstein

polynomials and allows for deformation by manipulating the

control points.

To represent non-rigid objects and to calculate deforma-

tions, mass-spring systems have been frequently used. They

are easy to implement and can be simulated efficiently.

Whereas such models are able to handle large deformations,

their major drawback is the tedious modeling as there is

no intuitive relation between spring constants and physical

material properties in general [10]. Finite Element Methods

(FEMs) reflect physical properties of the objects in a better

way and allow for a more intuitive modeling since they

require only a small number of parameters. The disad-

vantage of FEMs is the computational resources required

to calculate deformations. In our current system we there-

fore use the computationally efficient co-rotational Finite

Element approach of Mueller and Gross [11] and Hauth

and Strasser [12] which avoids nonlinear computations and

therefore can handle large deformations.

In the context of path planning, Kavraki et al. [8] devel-

oped the f-PRM-Framework that is able to plan paths for

flexible robots of simple geometric shapes such as surface

patches [13] or simple volumetric elements [14]. They apply

a mass-spring model to compute deformations. The planner

selects the deformation of the robot that minimizes its

deformation energy. Similar to this technique, Gayle et al. [7]

presented an approach to path planning for a deformable

robot that is based on PRMs. To achieve a more realistic

simulation of deformations they add constraints for volume

preservation to the mass-spring model of the robot. Bayazit

et al. [6] also studied planning for a deformable robot. Their

algorithm proceeds in two steps. First, an approximate path

is found in a probabilistic roadmap and in the next step,

this path is refined by applying a free-form deformation to

the robot and hence avoiding collisions with obstacles. This

deformation method can be computed efficiently but is less

accurate than physically motivated models. In contrast to our

approach, these planners deform the robot rather than the

obstacles to avoid collisions.

An approach to planning in completely deformable en-

vironments has been proposed by Rodrı́guez et al. [15].

They employ a mass-spring system with additional physical

constraints for volume-preservation [16] to enforce a more

realistic behavior of deformable objects. They use rapidly

Fig. 2. Different levels of representation for a deformable object (left) in the
simulation environment: fine surface mesh (middle) and coarse tetrahedral
mesh (right).

exploring random trees and apply virtual forces to expand the

leafs of the tree until the goal state is reached. The obstacles

in the environment are deformed through external forces

resulting from collisions with the robot. The interesting

aspect of this approach is that it is able to handle both

robot deformations and deformations of obstacles in the

environment.

All techniques mentioned above, however, require sub-

stantial computational resources and cannot be executed

online in general. Our approach can efficiently answer path

queries by estimating potential deformations of objects in

a preprocessing step. This is achieved by approximating a

deformation cost function which is then considered during

the planning process. Furthermore, our deformable model is

based on FEM, which allows for more accurate deformations.

III. SIMULATION OF DEFORMABLE OBJECTS

To consider non-rigid obstacles in the environment during

planning, we need a model that allows for computing the

deformations given an external force. In this section, we

describe how we achieve a physically realistic simulation of

object deformations. We will first introduce the co-rotational

Finite Element model. Then we describe how to detect

collisions between deformable objects and the robot and how

to compute contact forces resulting from collisions. Finally,

we introduce the cost resulting from a deformation.

Our simulation system proceeds as follows: in each time

step, it computes deformations and unconstrained motions

of objects, then it detects collisions, computes contact forces

for colliding points, and finally corrects the unconstrained

motion with appropriate repulsion forces.

A. Deformable Modeling

The obstacles in the workspace are 3D objects. The surface

of objects is represented by a fine resolution triangle mesh.

A tetrahedral mesh is used to represent the interior of these

volumetric objects (see Figure 2). The actual deformations

are computed on the coarse resolution tetrahedral mesh.

To compute the deformation of our tetrahedral objects

we use the co-rotational Finite Element formulation pro-

posed by Mueller and Gross [11] as well as by Hauth

and Strasser [12]. The total potential energy of a single

tetrahedral element e is given by

Π = Ue + WP , (1)

with work potential WP determined by the external forces

and inner energy Ue

Ue =
1

2

∫

e

σT ǫ dV. (2)

As we assume only linear isotropic materials, we have a

linear relation between the stress σ and the strain ǫ given by

the generalized Hooke’s law.

The idea of the Finite Element method is to discretize the

object into a finite set of elements (in our case tetrahedrons)

to compute the deformations based on Equation (1) on the

nodes and to interpolate the deformation in the elements

using the nodal values. To compute the strain ǫ from the

nodal deformations in our model, we use the linear Cauchy

strain tensor as it is computationally efficient. However,

the Cauchy tensor is not rotationally invariant, leading to

ghost forces which result in distortion for large rotational

deformations. Therefore, we keep track of the rigid body

motion for each element by extracting the rotation from the

transformation matrix using polar decomposition. Applying

the strain tensor in the rotated frame trivially leads to

rotational invariance while we still have significantly less

computational costs than by using a nonlinear strain tensor.

We discuss the performance of our Finite Element approach

compared to the versatile mass-spring approach used by

Rodrı́guez et al. [15] in the experimental results section.

B. Collision Detection

For the realistic processing of interactions between the

robot and the deformable objects, an efficient collision detec-

tion algorithm is required. We employ a spatial subdivision

scheme in our simulation system, where the elements are

stored in a hash grid [17].

The key idea of this approach is to implicitly discretize R
3

by storing the elements and nodes in the hash grid. As space

is usually filled sparsely and non-uniformly, this method con-

sumes less memory than an explicit discretization. The hash

key is computed from the coordinates of the corresponding

grid cell. As a result, only the elements with the same hash

key need to be checked for collisions.

To check for collisions, one computes the intersection

between points and tetrahedra. This can be done efficiently

using barycentric coordinates of the points with respect to

the tetrahedra.

Methods commonly employed for rigid bodies, such as

bounding box hierarchies [18], are less suited for deformable

objects, where these spatial data structures cannot be precom-

puted [19].

C. Computation of Contact Forces

To handle collisions between the robot and the de-

formable objects, we employ the force-based collision han-

dling scheme proposed by Spillmann et al. [20], which

combines the advantages of penalty and constraint-based

collision handling schemes. For a set of colliding points of

a tetrahedral mesh, we compute a collision free state using a

linearized relation between internal forces and displacements

of all affected points. Contact forces can be computed ana-

lytically to obtain this collision-free state while conserving

overall system energy.

Using this combination of FEM-based simulation and the

collision handling described above, our system can simulate

thousands of tetrahedra at interactive rates. An example

implementation of the simulation system is available on-

line [21].

D. Object Deformation Costs

The inner energy of an object, specified in Equation (2),

provides a measure of the deformation costs of a tetrahedral

object and thereby of the additional energy consumption of

the robot. In case of an undeformed object, the inner energy

is zero. Otherwise, the inner energy increases depending

on the deformation of the object. For an object O with

tetrahedral elements {ei}, we define the total inner energy

UO induced by a robot r at position p approaching from

direction θ by the sum over the inner energies of all elements

ei of the object UO(r,p, θ) :=
∑

ei∈O

Uei
(r,p, θ).

For any given position p and direction θ we determine the

total deformation cost Cdef (p, θ) :=
∑

O

UO(r,p, θ) by sum-

ming over all objects O in our workspace. The direction θ has

to be taken into account, as deformable objects might deform

differently when approached from different directions.

The total deformation cost on a path Γ of the robot r

approaching from direction θ in our environment naturally

results in the sum of the deformation costs of all objects

that are deformed by the robot while moving on the path in

discrete time steps ti:

Cdef (Γ, θ) =

tn
∑

t=t1

Cdef (pr(ti), θ(ti)), (3)

where pr(ti) is the position of the robot on Γ at time ti.

θ(t1) is given by θ, all other directions θ(ti) are determined

as the difference between pr(ti) and pr(ti−1).

IV. PATH PLANNING

WITH DEFORMABLE OBJECTS

In this chapter, we describe our path planning system

and introduce the approximate deformation cost function

that allows for a speedup of the path planning process in

environments with deformable obstacles.

A. Overview of the Path Planning System

The general path planning problem is to find a sequence of

valid robot configurations that lead from the starting to the

goal configuration. Probabilistic roadmap planners achieve

this by constructing a roadmap that represents the environ-

ment of the robot and by applying a graph search algorithm

to find a path from the starting to the goal configuration

for a given environment. The roadmap is constructed in a

preprocessing step by sampling points in the configuration

space of the robot. These points have to satisfy certain

feasibility constraints. In general, valid configurations are

required to be part of the free configuration space Cfree . In

our situation, however, we modify this constraint to only

require configurations to be in Cfree ∪ Cdef , i.e., we also

accept configurations that lead to collisions with deformable

objects. In our current implementation, we use Hammersley-

sampling [22] to generate configuration hypotheses in the

space. This deterministic sampling method generates a se-

quence of points that are distributed with low discrepancy.

After enough samples have been generated to cover the

configuration space, a local planner connects neighboring

samples, for which a valid path (one that does not lead

to collisions with rigid obstacles) exists. This results in a

roadmap that represents the environment of the robot and

allows for planning of paths where objects are allowed to be

deformed by the robot.

To answer a path query, we then insert the starting and the

goal configuration into the roadmap and connect them to their

neighbors. Finally, we apply A⋆ to find the best path from

the starting to the goal location on the graph. Here, we search

for the path with the best trade-off between travel costs and

deformation cost. Therefore, we need a way of estimating

the expected deformation cost arising on the edges of the

roadmap.

The simulation system presented in the previous section

can be used inside the planning algorithm to compute the

deformation cost Cdef (i) of an edge i by simulating a robot

moving along this edge deforming the object. The edges

considered during the A⋆ planning are evaluated by trading

deformation against travel cost. In our planning system, we

assume the travel cost to be proportional to the length of the

edge i. This results in the cost function

C(i) := α Cdef (i) + (1 − α) length(i), (4)

where α ∈ (0, 1) is a user-defined weighting coefficient. In

order to obtain an admissible heuristic for A⋆, we use the

Euclidean distance to the goal location weighted with (1−α)

h(n) = (1 − α)‖g − n‖, (5)

where g is the goal location and n the current node in

the roadmap. Thus, we are able to find the path in the

roadmap that optimizes the trade-off between travel cost and

deformation cost for a given user-defined parameter α.

This technique leads to a working planning system that

considers deformations of the objects in the environment

when planning a trajectory for a mobile robot. The draw-

back of this technique, however, is its high computational

requirements. Answering a path query typically takes several

minutes even for small examples. Therefore, we developed

an alternative approach that computes an approximation of

the cost function in advance and thus facilitates online path

planning.

B. Approximative Deformation Cost Function

The goal of the approximative cost function is to quickly

provide an estimate of the deformation costs for all objects

along an edge in the roadmap. Such a function can be used

in the planning approach described above to determine Cdef .

The actual value of the deformation cost function of an object

-1
-0.5

 0
 0.5

x [m]

 -0.5
 0.0

 0.5
 1.0

y [m]

deformation cost

-1
-0.5

 0
 0.5

x [m]

 -0.5
 0.0

 0.5
 1.0

y [m]

deformation cost

Fig. 3. Deformation costs for moving a robot along straight lines through a
curtain. The lines are specified by starting points (x, y) and travel direction
θ = 0◦ (top) resp. θ = 45◦ (bottom) relative to the center of mass of the
obstacle.

mainly depends on the trajectory of the robot relative to

the object. Therefore, we precompute the deformation cost

for a number of line segments through each object. A line

is specified by a starting location (x, y) and the traveling

direction θ as well as the traveled length l on the line

segment. The traveled length is constrained to the maximum

distance that the robot can travel while still deforming the

object.

In a preprocessing step, we carry out the simulations for

a uniform resolution of starting points and directions and

store the deformation costs for a fine length resolution in a

histogram. This leads to the approximate deformation cost

function Ĉdef (x, y, θ, l) → R which returns the deformation

cost for edges of the roadmap.

We compute the deformation cost Ĉdef (x, y, θ, l) of an

arbitrary edge e in the roadmap by first determining the

starting position (x, y), direction θ, and length l relative to

the deformable object. We then apply a kernel smoother [23]

considering all neighboring line segments et in the histogram

Ĉdef (e) =

∑

t
K

(

e−e
t

h

)

Ĉdef (e
t)

∑

t
K

(

e−et

h

) , (6)

where we use the multivariate Gaussian kernel

K(u) =

(

1√
2π

)3

exp

[

−‖u‖2

2

]

. (7)

As distance metric between different line segments, we

employ the Euclidean distance and normalize the orientation

with respect to the positions.

To finally answer path queries, we apply the A⋆ algorithm

on the roadmap. The cost of each edge in the graph is

computed according to Equation (4) using the precomputed

Fig. 4. Test environments: world 1 with curtains (top), world 2 with rubber
ducks (middle), and world 3 with rubber ducks and curtains (bottom).

approximation Ĉdef of Cdef . Storing deformation costs in

a preprocessing step dramatically increases the performance

of our planner as can be seen in the experiments.

Although the precomputation is computationally intense,

depending on the resolution of the approximative deforma-

tion cost function, it has to be done only once for each

distinct object. The following section provides results on the

runtime of the precomputation for different resolutions of the

deformation cost grid. Figure 3 illustrates the deformation

cost Ĉdef of the curtain shown in Figure 1 along a series of

straight lines.

V. EXPERIMENTS

We carried out different experiments to evaluate our path

planning approach. In this section, we first compare the

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 3

∅
 r

el
at

iv
e

er
ro

r
(%

)

experiment

simulation approach fem
simulation approach ms

approx fem hires
approx fem lores
approx ms hires
approx ms lores

Fig. 5. Comparison of the error in the deformation cost for the simulation-
based approach and our approximation.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3

∅
 p

at
h
 p

o
in

t
d
is

ta
n
ce

 (
m

)

experiment

simulation vs. approximation

Fig. 6. Comparison of the simulation-based approach and our approxima-
tion: average deviation of the generated path points for the examples shown
in Figure 7.

deformation cost obtained by the FEM-based simulation

technique with our approximative solution that computes a

deformation cost function for each object in a preprocessing

step. We also analyze the accuracy of our cost function as

well as the required execution time. Next, we investigate

how the deformation cost weighting coefficient α influences

the path search. Finally, we present examples for planned

trajectories in environments with deformable objects. All ex-

periments were carried out on a standard PC with 2.40 GHz

Intel Core Duo Processor and an Nvidia GeForce 7950 GT

graphics card. The Nvidia GPU is used by the simulation

engine.

A. Cost Function and Runtime

In the first experiment, we compare the simulation ap-

proach to estimate the deformation cost with our approxi-

mative cost function. We chose curtains and rubberducks as

deformable objects. The curtains are modeled to be easily

deformable while the rubberducks have high deformation

costs. Both approaches had to solve 25 path queries in the

three test environments depicted in Figure 4. After planning,

the best trajectory is sent to a path execution module that

guides the robot along that trajectory. In our simulation, the

execution of motion commands is affected by noise.

The experiments are carried out for different resolutions

of the approximate cost function. Furthermore, we compare

our approach to a simulation system using the versatile mass-

spring model. We evaluated the error between predicted

and measured deformation cost. The results are shown in

Figure 5. As expected, the error of the simulation technique

Fig. 7. Example trajectories generated by the simulation approach (top row) vs. our approximation approach (bottom row).

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

Fig. 8. Deformation and travel costs of executed trajectories shown in Figure 10 (left) and Figure 9 (right) depending on the weighting coefficient α.

Fig. 9. Different trajectories to the goal point depending on the weighting coefficient α.

Fig. 10. Different trajectories to the goal point depending on the weighting coefficient α. In all our experiments, we set α = 0.2.

is typically smaller compared to our approximative approach.

This, however, comes at the expense of running time as

illustrated in Table I. While our approach answers path

queries even for complex environments in a few hundred

milliseconds on average, the simulation approach spends

generally about half an hour on one query. Thus, our ap-

proach is about four orders of magnitude faster than the

simulation using FEM. We also compared our approach to

a simulation system using the versatile mass-spring model.

Although this simulation system can be evaluated faster, our

approach still is about 2000 times faster. The runtime for the

precomputation of the approximate cost function for different

resolutions of the cost grid is summarized in Table II.

Additionally, we carried out an experiment in a ran-

domized world, where we compare the computed paths

for the simulation and the approximation approach. The

generated trajectory points deviate on average by 0.09 m in

an environment of 2.6× 9 m as depicted in Figure 6 and the

deformation costs of the trajectories deviate by 9.4± 5.2%.

In most cases, the actual trajectories reported by the

different planners do not deviate substantially. As the exam-

ples depicted in Figure 7 illustrate, the resulting trajectories

TABLE I

AVERAGE RUNTIME INCLUDING CONFIDENCE INTERVALS.

World ∅ Query ∅ Query ∅ Query
(FEM) (mass-spring) (our approach)

1 36 m 41 s ± 347 s 12 m 45 s ± 112 s 0.4 s ± 0.04 s
2 30 m 33 s ± 512 s 8 m 10 s ± 73 s 0.2 s ± 0.02 s
3 29 m 43 s ± 130 s 7 m 27 s ± 36 s 0.3 s ± 0.04 s

TABLE II

RUNTIME FOR THE PRECOMPUTATION OF THE DEFORMATION COST

FUNCTION FOR DIFFERENT RESOLUTIONS OF THE COST GRID.

Object Mass-spring simulation FEM simulation

coarse res. fine res. coarse res. fine res.
(200 lines) (7056 lines) (200 lines) (7056 lines)

curtain 17 m 48 s 10 h 37 m 1 h 11 m 41 h 16 m
rubberduck 18 m 21 s 10 h 56 m 1 h 16 m 44 h 44 m

are similar. This suggests that our approximative solution

provides acceptable trajectories for planning in environments

with deformable objects.

Fig. 11. Example trajectory guiding the robot through a deforming object.

B. Determination of the Weighting Coefficient

Equation (4) contains the weighting factor α that trades

off the travel costs with deformation costs. To find good

values for this factor, we carried out a series of planning

experiments with varying values for α. Low values for α

result in the fact that the robot traverses objects that are hard

to deform in order to obtain a short trajectory. In contrast to

this, high values for α will lead to a planning system that

entirely avoids deformations if possible.

In all our experiments we set α = 0.2. As a result, the

robot selects trajectories through easily deformable objects

such as curtains and tries to avoid objects that cause high

deformation costs such as the rubber ducks. Figure 8 depicts

the deformation costs and the travel costs for the environ-

ments shown in Figure 9 and Figure 10. These figures also

depict different trajectories resulting from different values

for α.

Finally, Figure 11 shows a sequence of snapshots taken

during a planning experiment. They illustrate that a robot

using our planning approach selects trajectories through

deformable objects in case the deformation is not too ex-

pensive. More examples and animations are available at our

website [24].

VI. CONCLUSIONS

In this paper, we presented an approach to path planning

in environments with non-rigid objects. Our planner takes

potential deformations of objects into account using a simu-

lation engine that is based on the physically accurate Finite

Element method. To improve the efficiency of the planner,

our approach uses a learned, approximative deformation cost

function that estimates the deformation cost of path segments

relative to an obstacle. This avoids computationally expen-

sive simulations during planning. The cost function is learned

offline and is integrated into a probabilistic roadmap planner.

It allows for computing a path between arbitrary starting

and goal locations using A⋆ on the probabilistic roadmap,

given our cost function that uses a trade off between the

deformation costs and the travel costs. Due to the A⋆ search,

the robot always finds the optimal path in the roadmap.

Our approach has been implemented and tested exhaus-

tively in environments with deformable objects. Our approx-

imative cost function leads to a speedup of about four orders

of magnitude compared to the same approach without that

approximation while providing similar trajectories.

Despite these encouraging results, further improvements

can be done. The next goal is to acquire models of real

obstacles with our robot and estimate their elasto-mechanical

parameters, for example by using the method proposed in

our previous work [25]. This will allow for applying our

system to real world settings and accurately considering the

properties of real deformable objects.

VII. ACKNOWLEDGMENTS

This work has partly been supported by the German Re-

search Foundation (DFG) under contract number SFB/TR-8.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Pub.,
1991.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion. MIT Press,
2005.

[3] S. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[4] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on

Systems, Man and Cybernetics, vol. 22, no. 2, pp. 224–241, 1992.
[6] O. Bayazit, J.-M. Lien, and N. Amato, “Probabilistic roadmap motion

planning for deformable objects,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation, 2002, pp. 2126–2133.
[7] R. Gayle, P. Segars, M. Lin, and D. Manocha, “Path planning for

deformable robots in complex environments,” in Proc. of Robotics:

Science and Systems (RSS), 2005, pp. 225–232.
[8] L. Kavraki, F. Lamiraux, and C. Holleman, “Towards planning for

elastic objects,” in Robotics: The Algorithmic Perspective. A.K.
Peters, 1998, pp. 313–325, proc. of the Third Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[9] T. Sederberg and S. Parry, “Free-form deformation of solid geometric
models,” in Proc. of the Conf. on Computer graphics and interactive

techniques, 1986, pp. 151–160.
[10] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson,

“Physically Based Deformable Models in Computer Graphics,” Com-

puter Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.
[11] M. Mueller and M. Gross, “Interactive Virtual Materials,” in Graphics

Interface, 2004, pp. 239–246.
[12] M. Hauth and W. Strasser, “Corotational Simulation of Deformable

Solids,” in WSCG, 2004, pp. 137–145.
[13] C. Holleman, L. Kavraki, and J. Warren, “Planning paths for a

flexible surface patch,” in Proc. of the IEEE Int. Conf. on Robotics &

Automation, 1998, pp. 21–26.

[14] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki, “De-
formable volumes in path planning applications,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation, 2000, pp. 2290–2295.
[15] S. Rodrı́guez, J.-M. Lien, and N. Amato, “Planning motion in com-

pletely deformable environments,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation, 2006, pp. 2466–2471.
[16] M. Teschner, B. Heidelberger, M. Mueller, and M. Gross, “A versatile

and robust model for geometrically complex deformable solids,” in
Proc. of Computer Graphics International, 2004, pp. 312–319.

[17] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross, “Optimized spatial hashing for collision detection of de-
formable objects,” in Proc. Vision, Modeling, Visualization (VMV),
2003, pp. 47–54.

[18] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2005.
[19] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-

pathi, A. Fuhrmann, M. Cani, F. Faure, N. Magnenat-Thalmann, and
W. Strasser, “Collision Detection for Deformable Objects,” Computer

Graphics Forum, vol. 24, no. 1, pp. 61–81, 2005.
[20] J. Spillmann, M. Becker, and M. Teschner, “Non-iterative computation

of contact forces for deformable objects,” Journal of WSCG, vol. 15,
no. 1–3, pp. 33–40, 2007.

[21] B. Heidelberger, M. Teschner, J. Spillmann, M. Mueller,
M. Gissler, and M. Becker, “DefColStudio –
interactive deformable modeling framework,”
http://cg.informatik.uni-freiburg.de/software.htm.

[22] M. Branicky, S. LaValle, K. Olson, and L. Yang, “Quasi-randomized
path planning,” in Proc. of the IEEE Int. Conf. on Robotics &

Automation, 2001, pp. 1481–1487.
[23] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.
[24] B. Frank, “Motion planning with deformable objects,” 2008,

http://www.informatik.uni-freiburg.de/˜bfrank/defplan.
[25] M. Becker and M. Teschner, “Robust and efficient estimation of

elasticity parameters using the linear finite element method,” in Proc.

of Simulation and Visualization, 2007, pp. 15–28.

