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Abstract—In this paper, we present our recently developed
robotic system that can navigate in environments with deformable §
objects. To achieve this, we propose techniques to learn models of [
deformable objects by physical interaction between the robot ath
the objects. We determine the model parameters by establishing a
relation between the applied forces and the corresponding surfac
deformations as observed with a depth camera. After modeling
the objects in a scene, the robot can perform its navigation tasks

more efficiently by considering the cost of deformations durin . . . ,
y oy 9 9 Fig. 1. Reconstructing a model of a deformable object: manijpumaobot

path p'a””'r?g- As we de.monStrate In _real-worlql experiments, (left) equipped with a depth camera and force-feedback sgnsddle) and
our system is able to estimate appropriate physical parameters 4 . "ap perception of the robot (right).

that can be used to predict future deformations and exploits this
information during path planning.

most applications considering deformations assume theat th
[. INTRODUCTION elasticity parameters of objects in the scene are givensé'he

Perceiving the surroundings and mode”ng the en\/ironmé}ﬁ.rameters are required for the accurate simulation of the
is an important Competence of inte”igent mobile robotsein deformation and the Computation of the deformation costs.
such models are relevant for efficiently solving other higvel In practice, the underlying parameters for the appropriate
tasks. For example, generating a collision-free path tjingbe Simulation of deformations are typically adjusted manuall
environment in an efficient way requires path planning whichhereby, the parameters are usually modified until the resul
builds on top of a model of the environment. In this paper, wgoks visually plausible. This might be applicable for cartgy
present a complete robotic system that is able to perceie fi2Rmes or movies, but does not necessarily lead to a physicall
environment and model the deformable objects in the scef@alistic computation of the involved forces. These forces
The system estimates the deformation properties of objedigwever, need to be known accurately for navigation in the
and finally is able to plan a trajectory through the environte Presence of deformable objects. For example, whenevetsobo
taking potentia| object deformations into account. interact with real-world ObjeCtS, Only limited forces shabu

Dealing with deformable objects in the environment i8€ applied to them. This is of utmost importance in medical
relevant for building robust robotic systems, especiallyew applications or in domestic settings, i.e. whenever robate
operating in domestic environments. Even though the nigjorf0 manipulate plants or clothes. Especially in these dosnain
of path planning approaches focuses on planning in statie efOPOts need exact knowledge about the parameters of the
ronments and with rigid obstacles [16, 17], not all obstaele deformation process.
rigid in reality. Considering that an object such as a cartai  In this paper, we consider the problem of estimating the
deformable can enable a robot to accomplish navigatiorstagkasticity parameters of objects and subsequently use them
that otherwise cannot be carried out. In domestic enviroismein the path planning process. Generating such realistic-mod
— a key target domain for service robots — a robot musis of deformable objects not only involves observing and
deal with many deformable objects such as plants, curtainsconstructing the three-dimensional surface of an object
or cloth. Ignoring the deformation properties will clealitjmit  Physical interaction with the object under consideratien i
the tasks a service robot can carry out. required to learn about its behavior when exposed to externa

To consider deformable objects in the path planning proceésrces. Therefore, we equipped our robot with a force sensor
such objects need to be handled in the simulation systenthe end of the manipulator and with a depth camera.
that underlies the planner. The realistic simulation ofeabj This setup allows the robot to interact with objects and
deformations is still an active area of research. There ew measure the forces exerted on them while at the same
ists a variety of relevant applications in computer graphictime observing the deformations (see Figure 1). Based on
robotics [23], virtual reality, games, movies, and medicdhe observed deformations and forces, our approach seeks to
simulation [18, 6, 21]. Most planning techniques as well afetermine the elasticity parameters of the object. Thisised



by simulating the object deformation under the appliedderc fully autonomous exploration, whereas Lagigal. use a fixed

An error minimization approach is applied to iterativelyaptl manipulator in combination with an accurate measuringatevi
the deformation parameters so that the difference between and place the objects on a turntable.

real object under deformation and the simulation is mingdiz  This paper summarizes and combines the work carried out
As we will demonstrate in the experimental section of this [8, 10, 9]. In contrast to most of the previous approaches,
paper, our approach is able to find elasticity parameterts tloar method has been realized on a real mobile manipulation
enable our robot to accurately predict the deformation aFrerobot and deals with real data. Furthermore, the resulting
world objects. models can directly be used for simulations, which have been
shown to be relevant to robot navigation in environments
containing deformable objects.

Most approaches to mobile robot path planning assume that
the environment is static and that all objects are rigid [16,
14]. In the last years, however, path planning techniquesOur approach to navigation among deformable objects is
for deformable robots in static environments have been pileased on a physical simulation of object deformations (see
sented [11, 13]. All these approaches operate in simulat8éction IV) and consists of three main steps:
environments. Our planning system, first introduced in [8], « data acquisition with a manipulator and a depth camera
applies FEMs to compute object deformations. In contrast (Section V),
to [8], we realize in this paper a planning system on a real, parameter estimation via simulation and error minimiza-
physical mobile robot and not only in simulation. This regsi tion (Section VI), and
a series of adaptations and new techniques for successfully path planning using the learned models (Section VII).
planning paths in environments with deformable objects. |, the data acquisition process, our robot first constructs a

Deformable modeling and parameter estimation are actiy®) model of the object under consideration in an undeformed
areas of research. To represent non-rigid objects and 0-singtate. In a next step, the robot interacts with the object and
late deformations, mass-spring systems have been frdguef{easures the forces it exerts on the object. Additionally, i
used as they are easy to implement and can be simulafgderves the surface of the deformed object. This allows us
efficiently [7]. While such models are able to handle largg, estimate a relationship between the displacement of the
deformations, their major drawback is the tedious modeling, face points, the applied forces and the physical elgstic
as there is no intuitive relation between spring constants 8harameters.
physical material properties in general [20]. Finite eleme After estimating the elasticity parameters, the Young modu
methods (FEMs) reflect physical properties of the objects jfis and the Poisson ratio in our case, we can use these models
a more natural way [2]. The disadvantage of FEMs lies in thg g A*-based path planning approach. The planner seeks to
computational resources required to calculate deformatiofing the trajectory that optimizes the trade-off betweendka
A computationally more efficient approach, which we alsgng deformation cost. To answer path queries efficiently, th
use in our current system, is the co-rotational finite elémefypot caches the cost of potential trajectories that lead to
approach [12, 19] that avoids nonlinear computations. g?jects deformations and generalizes them using regressio

There exist some approaches to determine the physiggfis in turn allows us to avoid time-consuming deformation
parameters of models. Bianckt al. [4] learn the stiffness simulations during robot navigation.

constants of mass-spring models by using a genetic algorith
and comparing it to a FEM reference model. Another approach IV. DEFORMATION SIMULATION
that estimates the stiffness properties of mass-springetsod The key idea of our elasticity parameter estimation apgroac
was proposed by Burioet al. [5]. They use a particle filter to is to adapt the parameters of a realistic simulation systeiih u
obtain a posterior distribution over the stiffness parareand the simulated deformations approximate the ones measured o
evaluate the particles by comparing simulated and obser@é real object. This section briefly describes our simaiati
deformations. In contrast to our work, they do not compaee tRnvironment that is based on finite element methods and is
deformed surfaces but the measured forces in the singlesnodged to deform virtual objects.
of the object. Furthermore, they did only work on simulated
data. A. Modeling Objects using Tetrahedral Meshes

One approach that deals with real objects was presentedo simulate the deformations of the object, our system
by Langet al. [15]. They describe a deformable model as eequires a volumetric model of the object. We obtain that
discrete boundary value problem and estimate Greens’ fumeedel by first registering multiple depth images. The résglt
tions from measured forces and displacements. They fotmulpgoint cloud is then transformed into a triangular surfacesime
the estimation of the deformation matrix as a linear esimnat and can be used to determine the volumetric tetrahedral.mesh
problem. In contrast to Lanet al., we use a different approachThe actual internal forces are then computed on the volumet-
for modeling deformability, namely the finite element metho ric mesh based on force-displacement relations. To establi
In our setup, the mobile manipulation robot furthermoreiear this tetrahedral mesh, we employ the meshing approach by
its force sensor and camera on-board and thus is the basisSpillmannet al. [25].

II. RELATED WORK

I1l. OVERVIEW



Fig. 2.  Reconstruction of a geometric model: registered sarfamesh
consisting of four depth images (left) and the resulting weétric model
used in simulation (right).

This approach is particularly suited for our applicatiogjta Fig. 3. Data acquisition: Deforming a plush teddy bear ancttreesponding
can handle unorientable, non-manifold, and even incomplé&Pservation of the robot.
data. In this approach, one first computes a signed distance . _ o ) o
field where voxels having a negative sign represent the welufifiationshipg = K='f even ifK is not invertible in general.
of the object. In a second step, one divides the spatial domai'€ solution can be computed, since only the Eigenvalues
by a uniform axis-aligned grid. We discard all cells of thignodeling the displacement are zero and all others are non-

grid that do not contain any voxel with negative sign. Thé®ro-
remaining cells are an approximation of the object’s volume
whose quality is given by the grid resolution. We divide thes o ] ]
cells into five tetrahedrons each. In a post-processing siep ~ Our system for acquiring real data consists of a mobile
smooth the tetrahedrons to align with the given surface me§@tform equipped with a 7-DoF manipulator including a
This reconstruction step is illustrated in Figure 2. force-torque sensor. To perceive the environment, we use
In our simulator, we perform all deformation computationd@ PMDI[vision]-O3 time-of-flight camera, which is attached
based on the tetrahedral mesh. The coupling of the surfd€eth® gripper of the manipulator. This setup allows us to
mesh to the tetrahedral mesh guarantees that the surfa¢e nf¥ain surface meshes of objects from different view points
is also deformed. This allows us to compare it to the scann@@d therefore to reconstruct complete models (as shown in

V. DATA ACQUISITION

surface mesh of the real-world object. Figure 2). Furthermore, the robot is able to deform objents a
measure the corresponding forces in a flexible way (illtstra
B. Finite Elements Deformation Model in Figure 3).

To simulate the dynamic behavior of an object and the reac-To actually interact with the object, the robot uses its
tion to external forces, we have to compute the internald®rcmanipulator to apply a force to the object. In our current
that act inside the object depending on the current defaomat implementation, the robot approaches the object, and step b
These forces are computed using a force-displacemetierelastep, increases the force, until a maximum force of 20N is
that is derived from the underlying deformation model. applied or the end-effector moved for more than 10cm. In

The basic idea of the finite element method is to dividenis way, we obtain a set of force measuremertss R? in
the object into smaller elements and to establish the forambination with corresponding surface meshgs R3" for
displacement relations on these small elements. In our, cageery point in timet. We assume here, thaf contains only
these elements are the tetrahedrons mentioned above. Thésobject, i. e. the parts of the robotic body have alreadnbe
allows us to assume constant stress over an element, whiemoved. In addition to that, we estimate the contact pgint
results in a linear force-displacement-relation. Putdlighese of the manipulator on the surface. This information is reggli
relations together, one can establish the so-called s$iffn for the parameter estimation process described below.
matrix K = K(F,v) that depends on the Young modulus
E and the Poisson ratie. Forn being the number of vertices
of an object, the dimension & is 3n x 3n. The global force-  The deformation model introduced in Section IV requires to
displacement relation then becomes specify two parameters: The Young modulus and the Poisson

f = Kq 1) ratio. T_he Yogng moQqusEj deS(_:ribes the stiff!’less of an

’ isotropic elastic material. It is defined as the ratio of timé u

wheref € R3” is the internal force induced by the displaceaxial stress over the uni-axial strain in the range of stiess
mentq € R3" of the vertices of the tetrahedral mesh. which Hooke’s Law holds. In contrast to that, the Poisson

In sum, the stiffness matrix for given parameters allows watio v is the ratio of the contraction or transverse strain
to compute the displacement of the object’s vertices given gerpendicular to the applied load) to the extension orlaxia
external force. strain (in the direction of the applied load).

When restricting ourselves to forces that do neither causeln this section, we explain our approach to estimate both
translations nor rotations, we are able to obtain the imverparameters based on observations of the robot. The key idea

VI. PARAMETER ESTIMATION



of our approach is to apply a gradient-descent based erfdgorithm 1 Iterative parameter estimation
minimization approach to minimize the difference betwe®n t Require: Object modelM, observations/, z;, contact pointp;,
real deformation and the simulated one given the elasticit§: Initialize (Eo, vo), i=1

arameters. 2: loop
p 3: (Ei,I/i)T = (Ei_l,lli_l)T —)\VETT(Ei_hI/i_l)

4: Maes = simulatef;, v;, M, th,pt)
5. err = dist(M gy, 2t)
6:
7

if err <e then
return (E;,v;)

To apply gradient descent, we need to define an appropriagé ﬁr”f if

error function, which in our case should reflect the diffeen ;. o loop

between the measured and the simulated surface, sincerthe-su

face can be observed by the robot. To compute this diffeence

we first align the surfaces with a registration procedure and VIl. ROBOT TRAJECTORYPLANNING
then measure the remaining difference. CONSIDERING OBJECT DEFORMATIONS

The task of registration algorithms is to align multiple In our planning system, we apply a standard randomized
overlapping scans of the same object, i.e., to computer@@dmap planning approach [14]. The key challenge here is
translation and a rotation that align the surfaces comectfo efficiently determine the deformation cost. Cost queries
In our approach, we apply the ICP-algorithm by Besl andeed to be frequently answered during planning and thus
McKay [3], with some extensions similar to the ideas given b§arrying out thousands of simulations is too costly for wali
Pulli [22] and Rusinkiewicz [24]. Since the correspondencépplications.
are not known in general, the ICP algorithm_ determine; SOME peformation Cost Functions
correspondences, computes a transformation that aligns thT llow for the effici . f trai es f
scans for these correspondences, and then determines ney &'ow for the © icient gengratlon ° trajectorlies or a
correspondences to compute a new relative position.TUmicamOb”e robot in environments with deformable objects, we

this procedure converges to a minimum and yields an accurgfgktjf up(i_n oufr rfﬁemd‘{v(.)(;k ESA fThe Ié(lay |g_eat|s to_ learn
alignment if a proper initial configuration is chosen. In oyf0St functions for the individual deformablé objects, N

system, we can easily derive a good initial alignment from trparametnzed by different trajectories leading to defdiare

position of the manipulator to which the camera is attached” & Preprocessing step. o .
. i ) The goal of the approximate cost function is to quickly
After applying ICP, we can define the error function be-

provide an estimate of the deformation costs for all objects
tween a modelM/ and the measured surface as along an edge in the roadmap. The actual value of the
deformation cost function mainly depends on the trajectory
Err(E,v) = dist(simulatéE, v, M, ztf,pt),zf), (2) of the robot relative to the object and the object itself. For
each object, we therefore precompute the deformation cost
for a number of linear path segments through the object. A
path segment is specified by a starting locationy) and
the traveling directiond as well as the traveled distance
dist(Mger, 2°) = min |[i — j||?, (3) on the path segment. The traveled distance is constrained to
ize I Mot the maximum distance that the robot can move while still
deforming the object.
wherei and j refer to the points from the observed and the In a preprocessing step, we carry out the simulations for
simulated surface, respectively. a uniform resolution of starting points and directions and
store the deformation costs for a fine length resolution in a
histogram. This leads to the approximate deformation cost
B. Gradient Descent for Parameter Estimation function C'gcf (2, y,6,1) — R which returns the deformation
cost for edges of the roadmap.
Aﬂer defining the error function above, we can applé. Processing path queries
gradient descent to seek for a Young modulisnd Poisson . .
ratio v that minimize the error. Algorithm 1 summarizes the We compute t_he deformation COﬁd_ef(”:’y’e’l)_ O_f an
main routine. The variabl@/ refers to the undeformed objectarb't_rary ed_g_e@ in the _road_map by first determm_mg the
model which is generated from observations of the undefdrm farting p03|t|0n(x,_y), direction 9, and lengthi relative to
object. This model is the basis for all simulations. Line 3 e d_eformable Ot_’JeCt' We t_hen apply a kernel ;moother [1]
the algorithm requires to compute the partial derivativehef considering all neighboring line segmentsin the histogram
error function. Since the error function involves the siatign

-1
approach explained above, the derivatives cannot be cauput, _ % <e - et) Ol % (e - et) 4
in closed form. Thus, we approximate this term numerically. e (¢) ; h 4 (€)) Z h “)

A. Error Function

with




where K (u) is the multivariate Gaussian kernel with iden- &
tity as covariance.

To finally answer path queries online, we apply tHé&
algorithm on the roadmap and use the cost function

C(path) = « Cdef (path) + (1 — @) Ciraver (path), (5) Fig. 4. Left: Color 3D point cloud of the surface of a ball. Mid: Error
. . L . mask showing the differences between the simulated defornsatnd the
wherea € [0,1] is a user-defined weighting coefficient thabbserved deformations of a good parameter estimate (our ajroRed

determines the trade-off between deformation— and pam_cogxels indicate high errors and dark pixels indicate lowoesr Right: Error
Alth h th tati . tati IlV intens mask for suboptimal parameters where the observed deformatiwt in line
oug € precomputation IS CF"T‘F’U a 'Qna Y INENSE, Lith the prediction one (red area). The hole in the model {@rresults from
has to be done only once for each distinct object. Furthezmoscclusions due to the physical interactions of the manipulaith the object.
a cost function for an object can even be transferred between
environments.
Given our current implementation, the robot is able to
answer path queries in typical indoor environments in lkaa t
1 second — in contrast to several hours that would be needed if
the deformation simulations were carried out at run-tina. F 12 3 4 5 6 mem 12 3 4 5 6 mea
further details, we refer the reader to our previous work [8]
It should be noted that our approach makes the assumptiag 5. Learning the deformation parameters of the inflatable(teft) and
that there are no interactions between the different dedbten the plush teddy bear (right). Shown are the results for wffeindependent
. . . . runs.
objects and that they are fixed in the environment, such as
curtains or (rather heavy) plants.

‘Young modulus E
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[}
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o
‘Young modulus E
orMWwAUO~N
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observed deformations. Here, red pixels correspond tosarea
VIIl. EXPERIMENTAL EVALUATION of high error and dark pixels indicate a low error. The middle
Our approach has been implemented and evaluated in § age depﬁct; the error mask after our approach copvergdad an
eral experiments using a real robot and simulated data. the ma;k indicates a low error over the whole ObJeCt,' Thus,
the estimated parameters lead to simulated deformatiais th

A. Parameter Estimation are similar to the real ones. In contrast to that, the rigltgen

In the first set of experiments, we estimated the elastici§f’oWs the error mask for suboptimal parameters. Here, large
parameters of two different deformable objects, namelyalpl €rTors, especially in the area around the physical intienact
teddy bear and an inflatable ball. Additionally, we consider (&rTow) can be observed.
two different sensors: a PMD-[vision]-O3 time-of-flightmer ~ When analyzing the shape of the error function for the
and a Bumblebee stereo camera. real world data, it turned out that the influence of the Young

For both Sensors, the procedure is main]y identical. TﬁeOdUIUS on the error function is Substantia”y Iarger than
manipulator is used to deform the object and to record tHee one of the Poisson ratio. Therefore, we plot only the
applied forces, the proximity sensor is used to scan thechbjeYoung modulus in the subsequent evaluations (although both
The resulting 3D point clouds are then aligned with the modBfirameters are optimized).
of the object using the ICP algorithm. Based on the error Furthermore, we repeated the experiment by applying dif-
function, the simulation and error minimization is carrieat ferent forces to the object to evaluate the robustness of the
to find the correct elasticity parameters. parameter estimation. We deformed the ball with six substan

First, we deformed our plush teddy bear as shown ti@lly different forces and obtained six different surfeseans
Figure 3 and the surface meshes were obtained with the tiging the Bumblebee camera. The resulting estimate for the
of-flight sensor. With the recorded forces and correspandiyoung modulus is shown in Figure 5 (left). We can see that the
surface meshes, we used our approach to estimate theigfast@stimation converges to similar values for the young maglulu
parameters of the object. We did the same with the PMD camera deforming the teddy

Second, we also used a Bumblebee stereo camera. & eshown in the right image.
deformed an inflatable ball with a diameter of approx. 40cm 1) Lessons learned — Time-of-flight vs. Stereo visibhe
and used the 3D point clouds from the stereo camera. SirRemblebee stereo camera has different advantages over the
the Bumblebee stereo camera has a much larger field of viBMD time-of-flight sensor: a bigger field of view, higher
than the PMD sensor, we do not require a 3D model of thiesolution, color information. However, to determine tiepih
object from multiple scans but can perceive the object onfem stereo vision, textured material is required and the
before the deformation to obtain a sufficient model. teddy is comparably difficult to scan. In contrast to thag th

Figure 4 shows three images. The left one shows a 3D potime-of-flight camera directly provides depth informatifor
cloud observation of a ball that can be deformed. The imagach pixel. The depth measurements, however, are corrupted
in the middle and right depict an error mask that illustratey different sources of noise, e.g. the color of objects, the
the differences between the simulated deformations and teckground light, the distance to the camera, and even the



REFERENCES

[1] E. Alpaydin. Introduction to Machine LearningMIT Press, 2004.

[2] K.-J. Bathe.Finite Element ProceduresPrentice Hall, 2 edition, 1995.

[3] P.J.Besland N.D. McKay. A method for registration of 3kidpesIEEE
Transactions on Pattern Analysis and Machine Intelligericg2):239—
256, Feb 1992.

[4] G. Bianchi, B. Solenthaler, G. Szkely, and M. Hardersm@taneous
topology and stiffness identification for mass-spring modedsed on
fem reference deformations. Med. Image Computing and Computer-
Assisted Interventigrvolume 2, pages 293-301, 2004.

[5] S. Burion, F. Conti, A. Petrovskaya, C. Baur, and O. Kbatdentifying
physical properties of deformable objects by using partiitters. In
Proc. of the Int. Conf. on Robotics & Automation (ICR2P08.

[6] D. Chen and D. Zeltzer. Pump it up: Computer animation of a
biomechanically based model of muscle using the finite elemeritadet
In Proceedings of ACM SIGGRARH992.

[7] F. Conti, O. Khatib, and C. Baur. Interactive renderirfgdeformable
objects based on a filling sphere modelling approachPrc. of the
Int. Conf. on Robotics & Automation (ICRAJ003.

Fig. 6. The mobile robot Albert moving through a curtain in siatidn as  [8] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W.gBta. Effi-

well as in the real world. cient path planning for mobile robots in environments withodfable

objects. InProc. of the Int. Conf. on Robotics & Automation (ICRA)

temperature. Thus, accurately mapping the surface of the b?] éO?ZSrénk R. Schmedding, C. Stachniss, M. Teschner, an@gard

0

—

is not trivial glVGI.’l that the teXtur_e resulted in differertise Learning the elasticity parameters of deformable objects witanipu-
levels. Only for single-colored objects, such as the tedsirb lation robot. InProc. of the Int. Conf. on Intelligent Robots and Systems
we found the results of the PMD camera acceptable. (IROS) 2010. Currently under review.

. 10],B. Frank, C. Stachniss, R. Schmedding, M. Teschner, an8M§ard.
Thus, every depth camera setup has its own advantages ol Real-world robot navigation amongst deformable obstacie®rac. of

disadvantages and the surface of the object under conSafera  the Int. Conf. on Robotics & Automation (ICR&009.

has a substantial influence on the decision which sensorl¥8l R- Gayle, P. Segars, M.C. Lin, and D. Manocha. Path pranifor
deformable robots in complex environments. Mnoc. of Robotics:

prefer. Science and Systems (RS%)ges 225-232, 2005.
. [12] M. Hauth and W. Strasser. Corotational Simulation of defable
B. Path Planning Solids. INWSCG pages 137-145, 2004.

: - . 13] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards plagnfor
For IIIUStratmg our planner that considers deformable OIBl elastic objects. IrRobotics: The Algorithmic Perspectivpages 313—

jects, we mounted a set of curtains in the corridor of our effic  325. A K. Peters, 1998. Proc. of the Third Workshop on theofitgmic
environment. This setup in simulation as well as in realitl[i] EoEunﬁatlonkS_ OéRgbotlcks (\GVA(I;R)L- ) 4 MLH. OvesmaProD
. . . . .E. Kavraki, P. Svestka, J.-C. Latombe, an .A. Ovesnarron-
is sr_\own in Figure 6. _We note here, that even for differe abilistic roadmaps for path planning in high-dimensionalfigpmation
starting and goal locations, the planner chooses the path th  spacesIEEE Transactions on Robotics and Automati®B(4):566-580,
guides the robot in the middle between both curtains sinee th  1996.

. . . : .« +[15] J. Lang, D. K. Pai, and R. J. Woodham. Robotic acquisitan
resultlng deformation cost are in this case smaller thahsf t deformable models. IRroc. of the Int. Conf. on Robotics & Automation

robot would travel through one curtain. (ICRA), 2002.
[16] J.-C. Latombe Robot Motion Planning Kluwer Academic Pub., 1991.
IX. CONCLUSIONS [17] S.M. LaVvalle. Planning Algorithms Cambridge Univ. Press, 2006.

. . [18] M.C. Metzger, M. Gissler, M. Asal, and M. Teschner. Sitankous
In this paper, we presented our real robotic system, that'is’ cutting of coupled tetrahedral and triangulated meshestargpplication
able to acquire models of deformable objects and to estimate in orbital reconstruction. International Journal of Computer Assisted

: ‘L Radiology and Surgery4(5):409-416, 2009.
their elasticity parameters. These parameters are relévan [19] M. Mueller and M. Gross. Interactive Virtual Materialdn Graphics

robots that need to predict the deformations of objectséir th Interface pages 239-246, 2004.
environment depending on the forces applied to the objed®] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Garl.

; ; ; ; Physically Based Deformable Models in Computer Graph@msmputer
Our approach uses a mobile robot that is equipped with a Graphics Forum 25(4):809-836, 2006.

manipulator, a force sensor, and a depth camera. It applig§ . Picinbono, H. Delingette, and N. Ayache. Non-linead anisotropic
a deformation force to an object and records the resulting elastic soft tissue models for medical simulation. Pmoc. of the

force-displacement relation with the force sensor and thg, !Nt Conf. on Robotics & Automation (ICR/9001.

. . { ] K. Pulli. Multiview registration for large data sets1 Proceedings of the
camera. Based on a gradient descent-based error miniatizatl ~ |nternational Conference on 3D Digital Imaging and Modgfig8DIM),

approach carried out within a realistic finite element-ldase  pages 160-168, 1999.

simulation system, the robot can determine the elasticig?! S: Rodiguez, J.-M. Lien, and N.M. Amato. Planning motion in
completely deformable environments. Rroc. of the Int. Conf. on

parameters that best explain the observed deformations. As Rrobotics & Automation (ICRApages 2466-2471, 2006.
we showed in our experiments, we are able to estimate fA¢] S. Rusinkiewicz and M. Levoy. Efficient variants of thepialgorithm.

; ; In Proceedings of the International Conference on 3D Digitakbing
parameters of real objects in a robust manner. and Modeling (3DIM) pages 145-152, 2001.

[25] J. Spillmann, M. Wagner, and M. Teschner. Robust tettedieneshing
ACKNOWLEDGMENT of triangle soups. IfProc. Vision, Modeling, Visualization (VM\pages

This work has partly been supported by the German Re- 9-16. 2006.
search Foundation (DFG) under contract number SFB/TR-8.



