
Learning Deformable Object Models
for Mobile Robot Navigation

using Depth Cameras and a Manipulation Robot
Barbara Frank Ruediger Schmedding Cyrill Stachniss Matthias Teschner Wolfram Burgard

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany

Abstract— In this paper, we present our recently developed
robotic system that can navigate in environments with deformable
objects. To achieve this, we propose techniques to learn models of
deformable objects by physical interaction between the robot and
the objects. We determine the model parameters by establishing a
relation between the applied forces and the corresponding surface
deformations as observed with a depth camera. After modeling
the objects in a scene, the robot can perform its navigation tasks
more efficiently by considering the cost of deformations during
path planning. As we demonstrate in real-world experiments,
our system is able to estimate appropriate physical parameters
that can be used to predict future deformations and exploits this
information during path planning.

I. I NTRODUCTION

Perceiving the surroundings and modeling the environment
is an important competence of intelligent mobile robots since
such models are relevant for efficiently solving other high-level
tasks. For example, generating a collision-free path through the
environment in an efficient way requires path planning which
builds on top of a model of the environment. In this paper, we
present a complete robotic system that is able to perceive the
environment and model the deformable objects in the scene.
The system estimates the deformation properties of objects,
and finally is able to plan a trajectory through the environment,
taking potential object deformations into account.

Dealing with deformable objects in the environment is
relevant for building robust robotic systems, especially when
operating in domestic environments. Even though the majority
of path planning approaches focuses on planning in static envi-
ronments and with rigid obstacles [16, 17], not all obstacles are
rigid in reality. Considering that an object such as a curtain is
deformable can enable a robot to accomplish navigation tasks
that otherwise cannot be carried out. In domestic environments
— a key target domain for service robots — a robot must
deal with many deformable objects such as plants, curtains,
or cloth. Ignoring the deformation properties will clearlylimit
the tasks a service robot can carry out.

To consider deformable objects in the path planning process,
such objects need to be handled in the simulation system
that underlies the planner. The realistic simulation of object
deformations is still an active area of research. There ex-
ists a variety of relevant applications in computer graphics,
robotics [23], virtual reality, games, movies, and medical
simulation [18, 6, 21]. Most planning techniques as well as

Fig. 1. Reconstructing a model of a deformable object: manipulation robot
(left) equipped with a depth camera and force-feedback sensor (middle) and
the 3D perception of the robot (right).

most applications considering deformations assume that the
elasticity parameters of objects in the scene are given. These
parameters are required for the accurate simulation of the
deformation and the computation of the deformation costs.
In practice, the underlying parameters for the appropriate
simulation of deformations are typically adjusted manually.
Thereby, the parameters are usually modified until the result
looks visually plausible. This might be applicable for computer
games or movies, but does not necessarily lead to a physically
realistic computation of the involved forces. These forces,
however, need to be known accurately for navigation in the
presence of deformable objects. For example, whenever robots
interact with real-world objects, only limited forces should
be applied to them. This is of utmost importance in medical
applications or in domestic settings, i.e. whenever robotshave
to manipulate plants or clothes. Especially in these domains
robots need exact knowledge about the parameters of the
deformation process.

In this paper, we consider the problem of estimating the
elasticity parameters of objects and subsequently use them
in the path planning process. Generating such realistic mod-
els of deformable objects not only involves observing and
reconstructing the three-dimensional surface of an object.
Physical interaction with the object under consideration is
required to learn about its behavior when exposed to external
forces. Therefore, we equipped our robot with a force sensor
at the end of the manipulator and with a depth camera.
This setup allows the robot to interact with objects and
to measure the forces exerted on them while at the same
time observing the deformations (see Figure 1). Based on
the observed deformations and forces, our approach seeks to
determine the elasticity parameters of the object. This is done

by simulating the object deformation under the applied forces.
An error minimization approach is applied to iteratively adapt
the deformation parameters so that the difference between the
real object under deformation and the simulation is minimized.
As we will demonstrate in the experimental section of this
paper, our approach is able to find elasticity parameters that
enable our robot to accurately predict the deformation of real-
world objects.

II. RELATED WORK

Most approaches to mobile robot path planning assume that
the environment is static and that all objects are rigid [16,
14]. In the last years, however, path planning techniques
for deformable robots in static environments have been pre-
sented [11, 13]. All these approaches operate in simulated
environments. Our planning system, first introduced in [8],
applies FEMs to compute object deformations. In contrast
to [8], we realize in this paper a planning system on a real
physical mobile robot and not only in simulation. This requires
a series of adaptations and new techniques for successfully
planning paths in environments with deformable objects.

Deformable modeling and parameter estimation are active
areas of research. To represent non-rigid objects and to simu-
late deformations, mass-spring systems have been frequently
used as they are easy to implement and can be simulated
efficiently [7]. While such models are able to handle large
deformations, their major drawback is the tedious modeling
as there is no intuitive relation between spring constants and
physical material properties in general [20]. Finite element
methods (FEMs) reflect physical properties of the objects in
a more natural way [2]. The disadvantage of FEMs lies in the
computational resources required to calculate deformations.
A computationally more efficient approach, which we also
use in our current system, is the co-rotational finite element
approach [12, 19] that avoids nonlinear computations.

There exist some approaches to determine the physical
parameters of models. Bianchiet al. [4] learn the stiffness
constants of mass-spring models by using a genetic algorithm
and comparing it to a FEM reference model. Another approach
that estimates the stiffness properties of mass-spring models
was proposed by Burionet al. [5]. They use a particle filter to
obtain a posterior distribution over the stiffness parameters and
evaluate the particles by comparing simulated and observed
deformations. In contrast to our work, they do not compare the
deformed surfaces but the measured forces in the single nodes
of the object. Furthermore, they did only work on simulated
data.

One approach that deals with real objects was presented
by Lang et al. [15]. They describe a deformable model as a
discrete boundary value problem and estimate Greens’ func-
tions from measured forces and displacements. They formulate
the estimation of the deformation matrix as a linear estimation
problem. In contrast to Langet al., we use a different approach
for modeling deformability, namely the finite element method.
In our setup, the mobile manipulation robot furthermore carries
its force sensor and camera on-board and thus is the basis for

fully autonomous exploration, whereas Langet al. use a fixed
manipulator in combination with an accurate measuring device
and place the objects on a turntable.

This paper summarizes and combines the work carried out
in [8, 10, 9]. In contrast to most of the previous approaches,
our method has been realized on a real mobile manipulation
robot and deals with real data. Furthermore, the resulting
models can directly be used for simulations, which have been
shown to be relevant to robot navigation in environments
containing deformable objects.

III. OVERVIEW

Our approach to navigation among deformable objects is
based on a physical simulation of object deformations (see
Section IV) and consists of three main steps:

• data acquisition with a manipulator and a depth camera
(Section V),

• parameter estimation via simulation and error minimiza-
tion (Section VI), and

• path planning using the learned models (Section VII).

In the data acquisition process, our robot first constructs a
3D model of the object under consideration in an undeformed
state. In a next step, the robot interacts with the object and
measures the forces it exerts on the object. Additionally, it
observes the surface of the deformed object. This allows us
to estimate a relationship between the displacement of the
surface points, the applied forces and the physical elasticity
parameters.

After estimating the elasticity parameters, the Young modu-
lus and the Poisson ratio in our case, we can use these models
in an A⋆-based path planning approach. The planner seeks to
find the trajectory that optimizes the trade-off between travel–
and deformation cost. To answer path queries efficiently, the
robot caches the cost of potential trajectories that lead to
objects deformations and generalizes them using regression.
This in turn allows us to avoid time-consuming deformation
simulations during robot navigation.

IV. D EFORMATION SIMULATION

The key idea of our elasticity parameter estimation approach
is to adapt the parameters of a realistic simulation system until
the simulated deformations approximate the ones measured on
the real object. This section briefly describes our simulation
environment that is based on finite element methods and is
used to deform virtual objects.

A. Modeling Objects using Tetrahedral Meshes

To simulate the deformations of the object, our system
requires a volumetric model of the object. We obtain that
model by first registering multiple depth images. The resulting
point cloud is then transformed into a triangular surface mesh
and can be used to determine the volumetric tetrahedral mesh.
The actual internal forces are then computed on the volumet-
ric mesh based on force-displacement relations. To establish
this tetrahedral mesh, we employ the meshing approach by
Spillmannet al. [25].

Fig. 2. Reconstruction of a geometric model: registered surface mesh
consisting of four depth images (left) and the resulting volumetric model
used in simulation (right).

This approach is particularly suited for our application, as it
can handle unorientable, non-manifold, and even incomplete
data. In this approach, one first computes a signed distance
field where voxels having a negative sign represent the volume
of the object. In a second step, one divides the spatial domain
by a uniform axis-aligned grid. We discard all cells of this
grid that do not contain any voxel with negative sign. The
remaining cells are an approximation of the object’s volume,
whose quality is given by the grid resolution. We divide these
cells into five tetrahedrons each. In a post-processing step, we
smooth the tetrahedrons to align with the given surface mesh.
This reconstruction step is illustrated in Figure 2.

In our simulator, we perform all deformation computations
based on the tetrahedral mesh. The coupling of the surface
mesh to the tetrahedral mesh guarantees that the surface mesh
is also deformed. This allows us to compare it to the scanned
surface mesh of the real-world object.

B. Finite Elements Deformation Model

To simulate the dynamic behavior of an object and the reac-
tion to external forces, we have to compute the internal forces
that act inside the object depending on the current deformation.
These forces are computed using a force-displacement-relation
that is derived from the underlying deformation model.

The basic idea of the finite element method is to divide
the object into smaller elements and to establish the force-
displacement relations on these small elements. In our case,
these elements are the tetrahedrons mentioned above. This
allows us to assume constant stress over an element, which
results in a linear force-displacement-relation. Puttingall these
relations together, one can establish the so-called stiffness
matrix K = K(E, ν) that depends on the Young modulus
E and the Poisson ratioν. For n being the number of vertices
of an object, the dimension ofK is 3n×3n. The global force-
displacement relation then becomes

f = Kq, (1)

wheref ∈ R
3n is the internal force induced by the displace-

mentq ∈ R
3n of the vertices of the tetrahedral mesh.

In sum, the stiffness matrix for given parameters allows us
to compute the displacement of the object’s vertices given an
external force.

When restricting ourselves to forces that do neither cause
translations nor rotations, we are able to obtain the inverse

Fig. 3. Data acquisition: Deforming a plush teddy bear and thecorresponding
observation of the robot.

relationshipq = K−1f even if K is not invertible in general.
The solution can be computed, since only the Eigenvalues
modeling the displacement are zero and all others are non-
zero.

V. DATA ACQUISITION

Our system for acquiring real data consists of a mobile
platform equipped with a 7-DoF manipulator including a
force-torque sensor. To perceive the environment, we use
a PMD[vision]-O3 time-of-flight camera, which is attached
to the gripper of the manipulator. This setup allows us to
obtain surface meshes of objects from different view points
and therefore to reconstruct complete models (as shown in
Figure 2). Furthermore, the robot is able to deform objects and
measure the corresponding forces in a flexible way (illustrated
in Figure 3).

To actually interact with the object, the robot uses its
manipulator to apply a force to the object. In our current
implementation, the robot approaches the object, and step by
step, increases the force, until a maximum force of 20 N is
applied or the end-effector moved for more than 10 cm. In
this way, we obtain a set of force measurementsz

f
t ∈ R

3 in
combination with corresponding surface mesheszs

t ∈ R
3n for

every point in timet. We assume here, thatzs
t contains only

the object, i. e. the parts of the robotic body have already been
removed. In addition to that, we estimate the contact pointpt

of the manipulator on the surface. This information is required
for the parameter estimation process described below.

VI. PARAMETER ESTIMATION

The deformation model introduced in Section IV requires to
specify two parameters: The Young modulus and the Poisson
ratio. The Young modulusE describes the stiffness of an
isotropic elastic material. It is defined as the ratio of the uni-
axial stress over the uni-axial strain in the range of stressin
which Hooke’s Law holds. In contrast to that, the Poisson
ratio ν is the ratio of the contraction or transverse strain
(perpendicular to the applied load) to the extension or axial
strain (in the direction of the applied load).

In this section, we explain our approach to estimate both
parameters based on observations of the robot. The key idea

of our approach is to apply a gradient-descent based error
minimization approach to minimize the difference between the
real deformation and the simulated one given the elasticity
parameters.

A. Error Function

To apply gradient descent, we need to define an appropriate
error function, which in our case should reflect the difference
between the measured and the simulated surface, since the sur-
face can be observed by the robot. To compute this difference,
we first align the surfaces with a registration procedure and
then measure the remaining difference.

The task of registration algorithms is to align multiple
overlapping scans of the same object, i.e., to compute a
translation and a rotation that align the surfaces correctly.
In our approach, we apply the ICP-algorithm by Besl and
McKay [3], with some extensions similar to the ideas given by
Pulli [22] and Rusinkiewicz [24]. Since the correspondences
are not known in general, the ICP algorithm determines some
correspondences, computes a transformation that aligns the
scans for these correspondences, and then determines new
correspondences to compute a new relative position. Typically,
this procedure converges to a minimum and yields an accurate
alignment if a proper initial configuration is chosen. In our
system, we can easily derive a good initial alignment from the
position of the manipulator to which the camera is attached.

After applying ICP, we can define the error function be-
tween a modelM and the measured surfacezs as

Err(E, ν) = dist(simulate(E, ν,M, z
f
t , pt), z

s
t), (2)

with

dist(Mdef, z
s) =

∑

i∈zs

min
j∈Mdef

||i − j||2, (3)

where i and j refer to the points from the observed and the
simulated surface, respectively.

B. Gradient Descent for Parameter Estimation

After defining the error function above, we can apply
gradient descent to seek for a Young modulusE and Poisson
ratio ν that minimize the error. Algorithm 1 summarizes the
main routine. The variableM refers to the undeformed object
model which is generated from observations of the undeformed
object. This model is the basis for all simulations. Line 3 of
the algorithm requires to compute the partial derivative ofthe
error function. Since the error function involves the simulation
approach explained above, the derivatives cannot be computed
in closed form. Thus, we approximate this term numerically.

Algorithm 1 Iterative parameter estimation

Require: Object modelM , observationszf
t , zs

t , contact pointpt,
1: Initialize (E0, ν0), i=1
2: loop
3: (Ei, νi)

T = (Ei−1, νi−1)
T
− λ∇Err(Ei−1, νi−1)

4: Mdef = simulate(Ei, νi, M, z
f
t , pt)

5: err = dist(Mdef , z
s
t)

6: if err < ǫ then
7: return (Ei, νi)
8: end if
9: i++

10: end loop

VII. ROBOT TRAJECTORYPLANNING

CONSIDERINGOBJECTDEFORMATIONS

In our planning system, we apply a standard randomized
roadmap planning approach [14]. The key challenge here is
to efficiently determine the deformation cost. Cost queries
need to be frequently answered during planning and thus
carrying out thousands of simulations is too costly for online
applications.

A. Deformation Cost Functions

To allow for the efficient generation of trajectories for a
mobile robot in environments with deformable objects, we
build upon our recent work [8]. The key idea is to learn
cost functions for the individual deformable objects, which are
parametrized by different trajectories leading to deformations
in a preprocessing step.

The goal of the approximate cost function is to quickly
provide an estimate of the deformation costs for all objects
along an edge in the roadmap. The actual value of the
deformation cost function mainly depends on the trajectory
of the robot relative to the object and the object itself. For
each object, we therefore precompute the deformation cost
for a number of linear path segments through the object. A
path segment is specified by a starting location(x, y) and
the traveling directionθ as well as the traveled distancel
on the path segment. The traveled distance is constrained to
the maximum distance that the robot can move while still
deforming the object.

In a preprocessing step, we carry out the simulations for
a uniform resolution of starting points and directions and
store the deformation costs for a fine length resolution in a
histogram. This leads to the approximate deformation cost
function Ĉdef (x, y, θ, l) → R which returns the deformation
cost for edges of the roadmap.

B. Processing path queries

We compute the deformation cost̂Cdef (x, y, θ, l) of an
arbitrary edgee in the roadmap by first determining the
starting position(x, y), direction θ, and lengthl relative to
the deformable object. We then apply a kernel smoother [1]
considering all neighboring line segmentset in the histogram

Cdef (e) =

X

t

K

„

e − et

h

«

Cdef (e
t)

!

X

t

K

„

e − et

h

«

!

−1

(4)

whereK(u) is the multivariate Gaussian kernel with iden-
tity as covariance.

To finally answer path queries online, we apply theA⋆

algorithm on the roadmap and use the cost function

C(path) = α Cdef (path) + (1 − α)Ctravel (path), (5)

whereα ∈ [0, 1] is a user-defined weighting coefficient that
determines the trade-off between deformation– and path costs.

Although the precomputation is computationally intense, it
has to be done only once for each distinct object. Furthermore,
a cost function for an object can even be transferred between
environments.

Given our current implementation, the robot is able to
answer path queries in typical indoor environments in less than
1 second – in contrast to several hours that would be needed if
the deformation simulations were carried out at run-time. For
further details, we refer the reader to our previous work [8].
It should be noted that our approach makes the assumption
that there are no interactions between the different deformable
objects and that they are fixed in the environment, such as
curtains or (rather heavy) plants.

VIII. E XPERIMENTAL EVALUATION

Our approach has been implemented and evaluated in sev-
eral experiments using a real robot and simulated data.

A. Parameter Estimation

In the first set of experiments, we estimated the elasticity
parameters of two different deformable objects, namely a plush
teddy bear and an inflatable ball. Additionally, we considered
two different sensors: a PMD-[vision]-O3 time-of-flight sensor
and a Bumblebee stereo camera.

For both sensors, the procedure is mainly identical. The
manipulator is used to deform the object and to record the
applied forces, the proximity sensor is used to scan the object.
The resulting 3D point clouds are then aligned with the model
of the object using the ICP algorithm. Based on the error
function, the simulation and error minimization is carriedout
to find the correct elasticity parameters.

First, we deformed our plush teddy bear as shown in
Figure 3 and the surface meshes were obtained with the time-
of-flight sensor. With the recorded forces and corresponding
surface meshes, we used our approach to estimate the elasticity
parameters of the object.

Second, we also used a Bumblebee stereo camera. We
deformed an inflatable ball with a diameter of approx. 40 cm
and used the 3D point clouds from the stereo camera. Since
the Bumblebee stereo camera has a much larger field of view
than the PMD sensor, we do not require a 3D model of the
object from multiple scans but can perceive the object once
before the deformation to obtain a sufficient model.

Figure 4 shows three images. The left one shows a 3D point
cloud observation of a ball that can be deformed. The image
in the middle and right depict an error mask that illustrate
the differences between the simulated deformations and the

Fig. 4. Left: Color 3D point cloud of the surface of a ball. Middle: Error
mask showing the differences between the simulated deformations and the
observed deformations of a good parameter estimate (our approach). Red
pixels indicate high errors and dark pixels indicate low errors. Right: Error
mask for suboptimal parameters where the observed deformation is not in line
with the prediction one (red area). The hole in the model (arrow) results from
occlusions due to the physical interactions of the manipulator with the object.

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 3 4 5 6 mean

Y
ou

ng
 m

od
ul

us
 E

run

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 3 4 5 6 mean

Y
ou

ng
 m

od
ul

us
 E

run

Fig. 5. Learning the deformation parameters of the inflatable ball (left) and
the plush teddy bear (right). Shown are the results for different independent
runs.

observed deformations. Here, red pixels correspond to areas
of high error and dark pixels indicate a low error. The middle
image depicts the error mask after our approach converged and
the mask indicates a low error over the whole object. Thus,
the estimated parameters lead to simulated deformations that
are similar to the real ones. In contrast to that, the right image
shows the error mask for suboptimal parameters. Here, large
errors, especially in the area around the physical interaction
(arrow) can be observed.

When analyzing the shape of the error function for the
real world data, it turned out that the influence of the Young
modulus on the error function is substantially larger than
the one of the Poisson ratio. Therefore, we plot only the
Young modulus in the subsequent evaluations (although both
parameters are optimized).

Furthermore, we repeated the experiment by applying dif-
ferent forces to the object to evaluate the robustness of the
parameter estimation. We deformed the ball with six substan-
tially different forces and obtained six different surfacescans
using the Bumblebee camera. The resulting estimate for the
young modulus is shown in Figure 5 (left). We can see that the
estimation converges to similar values for the young modulus.
We did the same with the PMD camera deforming the teddy
as shown in the right image.

1) Lessons learned – Time-of-flight vs. Stereo vision:The
Bumblebee stereo camera has different advantages over the
PMD time-of-flight sensor: a bigger field of view, higher
resolution, color information. However, to determine the depth
from stereo vision, textured material is required and the
teddy is comparably difficult to scan. In contrast to that, the
time-of-flight camera directly provides depth informationfor
each pixel. The depth measurements, however, are corrupted
by different sources of noise, e.g. the color of objects, the
background light, the distance to the camera, and even the

Fig. 6. The mobile robot Albert moving through a curtain in simulation as
well as in the real world.

temperature. Thus, accurately mapping the surface of the ball
is not trivial given that the texture resulted in different noise
levels. Only for single-colored objects, such as the teddy bear,
we found the results of the PMD camera acceptable.

Thus, every depth camera setup has its own advantages and
disadvantages and the surface of the object under consideration
has a substantial influence on the decision which sensor to
prefer.

B. Path Planning

For illustrating our planner that considers deformable ob-
jects, we mounted a set of curtains in the corridor of our office
environment. This setup in simulation as well as in reality
is shown in Figure 6. We note here, that even for different
starting and goal locations, the planner chooses the path that
guides the robot in the middle between both curtains since the
resulting deformation cost are in this case smaller than if the
robot would travel through one curtain.

IX. CONCLUSIONS

In this paper, we presented our real robotic system, that is
able to acquire models of deformable objects and to estimate
their elasticity parameters. These parameters are relevant for
robots that need to predict the deformations of objects in their
environment depending on the forces applied to the objects.
Our approach uses a mobile robot that is equipped with a
manipulator, a force sensor, and a depth camera. It applies
a deformation force to an object and records the resulting
force-displacement relation with the force sensor and the
camera. Based on a gradient descent-based error minimization
approach carried out within a realistic finite element-based
simulation system, the robot can determine the elasticity
parameters that best explain the observed deformations. As
we showed in our experiments, we are able to estimate the
parameters of real objects in a robust manner.

ACKNOWLEDGMENT

This work has partly been supported by the German Re-
search Foundation (DFG) under contract number SFB/TR-8.

REFERENCES

[1] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.
[2] K.-J. Bathe.Finite Element Procedures. Prentice Hall, 2 edition, 1995.
[3] P.J. Besl and N.D. McKay. A method for registration of 3-d shapes.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–
256, Feb 1992.

[4] G. Bianchi, B. Solenthaler, G. Szkely, and M. Harders. Simultaneous
topology and stiffness identification for mass-spring modelsbased on
fem reference deformations. InMed. Image Computing and Computer-
Assisted Intervention, volume 2, pages 293–301, 2004.

[5] S. Burion, F. Conti, A. Petrovskaya, C. Baur, and O. Khatib. Identifying
physical properties of deformable objects by using particlefilters. In
Proc. of the Int. Conf. on Robotics & Automation (ICRA), 2008.

[6] D. Chen and D. Zeltzer. Pump it up: Computer animation of a
biomechanically based model of muscle using the finite element method.
In Proceedings of ACM SIGGRAPH, 1992.

[7] F. Conti, O. Khatib, and C. Baur. Interactive rendering of deformable
objects based on a filling sphere modelling approach. InProc. of the
Int. Conf. on Robotics & Automation (ICRA), 2003.

[8] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Effi-
cient path planning for mobile robots in environments with deformable
objects. InProc. of the Int. Conf. on Robotics & Automation (ICRA),
2008.

[9] B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W.Burgard.
Learning the elasticity parameters of deformable objects with a manipu-
lation robot. InProc. of the Int. Conf. on Intelligent Robots and Systems
(IROS), 2010. Currently under review.

[10] B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard.
Real-world robot navigation amongst deformable obstacles. In Proc. of
the Int. Conf. on Robotics & Automation (ICRA), 2009.

[11] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for
deformable robots in complex environments. InProc. of Robotics:
Science and Systems (RSS), pages 225–232, 2005.

[12] M. Hauth and W. Strasser. Corotational Simulation of Deformable
Solids. InWSCG, pages 137–145, 2004.

[13] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for
elastic objects. InRobotics: The Algorithmic Perspective, pages 313–
325. A.K. Peters, 1998. Proc. of the Third Workshop on the Algorithmic
Foundations of Robotics (WAFR).

[14] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces.IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[15] J. Lang, D. K. Pai, and R. J. Woodham. Robotic acquisitionof
deformable models. InProc. of the Int. Conf. on Robotics & Automation
(ICRA), 2002.

[16] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Pub., 1991.
[17] S.M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.
[18] M.C. Metzger, M. Gissler, M. Asal, and M. Teschner. Simultaneous

cutting of coupled tetrahedral and triangulated meshes and its application
in orbital reconstruction.International Journal of Computer Assisted
Radiology and Surgery, 4(5):409–416, 2009.

[19] M. Mueller and M. Gross. Interactive Virtual Materials. In Graphics
Interface, pages 239–246, 2004.

[20] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson.
Physically Based Deformable Models in Computer Graphics.Computer
Graphics Forum, 25(4):809–836, 2006.

[21] G. Picinbono, H. Delingette, and N. Ayache. Non-linearand anisotropic
elastic soft tissue models for medical simulation. InProc. of the
Int. Conf. on Robotics & Automation (ICRA), 2001.

[22] K. Pulli. Multiview registration for large data sets. In Proceedings of the
International Conference on 3D Digital Imaging and Modeling (3DIM),
pages 160–168, 1999.

[23] S. Rodŕıguez, J.-M. Lien, and N.M. Amato. Planning motion in
completely deformable environments. InProc. of the Int. Conf. on
Robotics & Automation (ICRA), pages 2466–2471, 2006.

[24] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm.
In Proceedings of the International Conference on 3D Digital Imaging
and Modeling (3DIM), pages 145–152, 2001.

[25] J. Spillmann, M. Wagner, and M. Teschner. Robust tetrahedral meshing
of triangle soups. InProc. Vision, Modeling, Visualization (VMV), pages
9–16, 2006.

