
Using Gaussian Process Regression for Efficient Motion Planning
in Environments with Deformable Objects

Barbara Frank and Cyrill Stachniss and Nichola Abdo and Wolfram Burgard
Institute of Computer Science

Autonomous Intelligent Systems
Georges-Koehler-Allee 079
D-79110 Freiburg, Germany

Abstract

The ability to plan their own motions and to reliably ex-
ecute them is an important precondition for autonomous
robots. In this paper, we consider the problem of plan-
ning the motion of a mobile manipulation robot in
the presence of deformable objects in the environment.
Our approach combines probabilistic roadmap planning
with a deformation simulation system. Since the physi-
cal deformation simulation is computationally demand-
ing, we use an efficient variant of Gaussian process re-
gression to estimate the deformation cost for individ-
ual objects based on training examples. We generate
the training data by employing a simulation system in
a preprocessing step. Consequently, no simulations are
needed during runtime. We implemented and tested our
approach on a mobile manipulation robot. Our experi-
ments show that the robot is able to accurately predict
and thus consider the deformation cost its manipulator
introduces to the environment during motion planning.
Simultaneously, the computation time is substantially
reduced compared to a system that performs physical
simulations online.

1 Introduction
The ability to plan its own motion is an important ca-
pability of a truly autonomous robot. There is a large
body of literature on path and motion planning for mo-
bile robots, most of them assume a static world or envi-
ronments that consist of rigid objects only. Recently, sev-
eral researchers addressed the problem of planning for de-
formable robots (Holleman, Kavraki, and Warren 1998;
Anshelevich et al. 2000; Bayazit, Lien, and Amato 2002;
Gayle et al. 2005) or the problem of dealing with deformable
environments (Rodrı́guez, Lien, and Amato 2006) or de-
formable objects such as cloth or towels (Maitin-Shepard,
M. Cusumano-Towner, and Abbeel 2010). Real world appli-
cations of planning in deformable environments include sur-
gical simulations, where the interaction with (and potential
injury of) organs should be minimized (Gayle et al. 2005;
Maris, Botturi, and Fiorini 2010).

A straightforward way of considering deformations of ob-
jects during planning is to generate collision-free trajecto-
ries while considering all deformable objects as free space.
During path planning, the planner has to simulate the de-
formation of the objects resulting from the interaction with

Figure 1: Our mobile manipulation robot Zora deforming a
plush teddy bear.

the robot and its manipulator and consider these additional
costs. The problem with this method is that an appropri-
ate physical simulation typically requires substantial com-
putational resources, which makes such an approach unsuit-
able for realistic problems. In our previous work (Frank et
al. 2008; 2009), we considered the problem of 2D naviga-
tion among deformable objects in the context of reactive
collision avoidance systems. Our method approximated the
deformation cost function using a low-dimensional grid to
allow for an efficient estimation of the expected deforma-
tion cost. This approach, however, is no longer feasible for
manipulation robots due to their typically high-dimensional
configuration spaces.

In this paper, we present a novel approach that applies effi-
cient Gaussian process regression to approximate the defor-
mation cost functions of objects in the configuration space
of the robot. This allows to efficiently plan trajectories in
the presence of deformable objects even for manipulation
robots such as the one shown in Fig. 1. Throughout this pa-
per we assume that the robot can deform the objects but can-
not move them in the environment. To improve the efficiency
of the learning process, we furthermore sample a restricted
set of trajectories only. In different experiments, we demon-
strate that our approach yields accurate estimates and, at the
same time, allows for efficient planning of trajectories along
which the robot interacts with deformable objects.

2 Related Work
Recently, several path planning approaches for deformable
robots in static environments have been presented (Holle-
man, Kavraki, and Warren 1998; Anshelevich et al. 2000;
Bayazit, Lien, and Amato 2002; Gayle et al. 2005). These
approaches have in common that a probabilistic roadmap
is applied to plan motions and a deformation simulation is
used to compute the expected deformations. The considered
deformation models employed in the different approaches
vary. Robots are assumed to be surface patches (Holleman,
Kavraki, and Warren 1998) or consist of primitive volumet-
ric elements (Anshelevich et al. 2000) and are modeled us-
ing mass-spring systems. Gayle et al. (2005) add constraints
for volume preservation to achieve a physically more realis-
tic simulation of deformations. In contrast to our approach,
these planners deform the robot rather than the obstacles to
avoid collisions. Rodrı́guez et al. (2006) proposed an ap-
proach to planning in completely deformable environments.
They employ a mass-spring system with additional physical
constraints for volume-preservation to enforce a more real-
istic behavior of deformable objects. They use rapidly ex-
ploring random trees and apply virtual forces to expand the
leaves of the tree until the goal state is reached. An approach
presented by Maris et al. (2010) plans paths for a surgical
tool. In this work, the organs are modeled as deformable ob-
jects and the aim is to minimize their deformation as well
as penetration. This is done by optimizing the control points
of a path with respect to constraints that consider the stiff-
ness of objects and the penetration depth of the surgical tool.
The tool, however, is constrained to a rod, that always has to
pass through a fixed point (the insertion position), and the
degrees of freedom are limited to four.

A drawback of the approaches discussed above is that
they need to compute the deformation simulations during
runtime. To deal with the high computational load for real
robots, we presented an approximation of the deformation
cost function for wheeled robots moving in a plane (2008;
2009) that can run online. In our new work, we extend our
previous approach to the more complex problem of planning
motions for manipulators that operate in 3D. In this setting,
the possible trajectories that need to be considered are more
complex and thus a more sophisticated method for estimat-
ing the deformation costs is needed. We present an efficient
approximation based on Gaussian processes that allows to
carry out motion planning tasks on the fly.

In the context of robot learning tasks, Gaussian processes
(GPs) are becoming increasingly popular. A good introduc-
tion into GPs can be found in (Rasmussen and Williams
2006). In robotics, GPs have been used e. g. for terrain mod-
eling (Vasudevan et al. 2009), learning motion and observa-
tion models (Ko and Fox. 2009) and several other problems.
In some parts, the approach of Vasudevan et al. (2009) is
similar to our method. To model large outdoor terrain struc-
tures, they perform a nearest-neighbor query on measured
elevation data and consider only inputs in the local neigh-
borhood of the query point. This is done efficiently using a
KD-tree. We apply the same trick to reduce the number of
training samples for the GP to the subset of the most relevant
ones for solving the regression problem at hand.

3 Motion Planning in the Presence of
Deformable Objects

3.1 Planning using Probabilistic Roadmaps
To plan trajectories for our manipulation robot, we use the
probabilistic roadmap framework (Kavraki et al. 1996). The
key idea is to represent the collision-free configuration space
of the robot by a set of samples that form the nodes of a
graph. Edges in this graph model feasible trajectories be-
tween neighboring configurations. Such a roadmap can be
precomputed given a model of the environment. To actually
plan a trajectory for the robot, one connects the current robot
configuration as well as the target configuration to the graph.
Most motion planning systems assign costs to the edges that
correspond to their distance in configuration or work space.
Then, this graph allows for applying graph search techniques
such as A? or Dijkstra’s algorithm to search for the optimal
path between a given starting and goal point in the roadmap.

Since we are interested in considering deformable ob-
jects, we also allow for samples and edges that lead to col-
lisions with these objects when generating the probabilis-
tic roadmap. Accordingly, we need to consider the defor-
mation costs when planning trajectories. Our system uses a
weighted sum between the distance of the nodes in configu-
ration space and the deformation costs. For an edge between
the nodes i and j, its cost is given by

C(i, j) := αCdef (i, j) + (1− α) dist(i, j), (1)

where α ∈ [0, 1] is a user-defined weighting coefficient. The
termCdef (i, j) represents the costs that are introduced when
the robot deforms objects along its trajectory and the term
dist(i, j) corresponds to the distance between nodes in con-
figuration space. Our current implementation applies A? to
find the optimal path in the roadmap given Eq. (1). To obtain
an admissible heuristic for A?, i. e., a heuristic that underes-
timates the real costs, we use the distance to the goal con-
figuration weighted with (1− α). Thus, we are able to find
the path in the roadmap that optimizes the trade-off between
travel cost and deformation cost.

The key difficulty when considering deformable objects
in real world planning tasks is to obtain the cost of deforma-
tions, i. e., estimating the termCdef (i, j), in an efficient way.
One possible way to determine this quantity is to perform a
physical simulation of the robot movement.

3.2 Determining Deformation Costs
To determine the object deformations introduced by the
robot and the associated costs, we employ a physical simu-
lation engine that is based on finite element methods (FEM).
In particular, we use DefCol Studio (Heidelberger et al.
2006) as our simulation environment. It combines an FEM-
based simulation of the deformations on volumetric meshes
following the approaches described in (Hauth and Strasser
2004; Mueller and Gross 2004), with an efficient collision
handling scheme. In our previous work, we presented an ap-
proach for building such meshes from sensor data and es-
timating the deformation parameters for real objects (Frank
et al. 2010). The parameters, which cannot be observed di-
rectly, are estimated by actively deforming a real object

s

e

l

Figure 2: Trajectory parametrization: starting point s and
end point e on a virtual sphere around the deformable ob-
ject together with the distance l from s towards the object.

and by optimizing the deformation parameters in simula-
tion until the observed and the simulated deformation match.
Here, we use the parameters estimated with our previous
method (Frank et al. 2010).

To define a measure for the deformation cost introduced
by the robot, we use the inner potential energy of the object,
which is computed in each simulation timestep based on the
external forces (resulting from collisions with the robot) and
corresponds to the deformation of the object. The deforma-
tion cost of a trajectory hence is the sum of the deformation
costs of all objects that are in collision with the robot over
all timesteps. For further details, we refer the reader to our
previous work (Frank et al. 2008).

3.3 Limitations
The approach described so far can be used for planning the
trajectory of a robot and its manipulator among deformable
objects. The key problem, however, is the computational re-
quirements. Although the deformation simulation can be ex-
ecuted online for a scene, a large number of trajectory hy-
potheses needs to be evaluated for building the roadmap
as well as for planning a trajectory using A?. Additionally,
small changes in the world require to recompute the costs for
the edges of the roadmap—this makes real world applica-
tions basically impossible. To overcome this limitation, the
next section presents an efficient way to accurately estimate
the deformation costs for individual objects using Gaussian
process regression. Our approach uses the simulation system
to generate the training inputs and estimates the deformation
costs for new trajectories or in a modified environment based
on the training data that are generated beforehand. The com-
bination of the planning system and the regression technique
allows for efficient planning among deformable objects.

4 Efficient Estimation of the Deformation
Cost using Gaussian Process Regression

4.1 Parametrization
The problem of estimating the deformation cost introduced
by a robot can be efficiently approached by regression tech-
niques. Let y1:n be the deformation cost values obtained
from simulation where the virtual robot executed n differ-
ent trajectories x1:n. Then, the goal is to learn a predictive
model p(y∗ | x∗,x1:n, y1:n) for estimating the deformation
cost y∗ given a query trajectory x∗.

In theory, all possible trajectories through a deformable
object can be executed. To bound the complexity of the re-
gression problem, we consider only straight line motions
through the object. This is an assumption but not a really
strong one since the trajectories generated by most roadmap
planners are often piecewise linear motions. The motions
considered to estimate the deformation cost are parametrized
by five parameters: a starting point s and end point e on
a virtual sphere around the object. The points s and e are
each described by an azimuth φ and an elevation angle θ, to-
gether with a distance l from the starting point that describes
the length of the motion. Fig. 2 illustrates this parametriza-
tion. Thus, xi is a five-dimensional vector in our case with
xi = [θsi , φ

s
i , θ

e
i , φ

e
i , li]

T .

4.2 Regression for Estimating Deformation Costs
We approach the problem of estimating the deformation
costs by means of nonparametric regression using the Gaus-
sian process (GP) model (Rasmussen and Williams 2006).
In this Bayesian approach to non-linear regression, one
places a prior on the space of functions using the follow-
ing definition: A Gaussian process is a collection of ran-
dom variables, any of which have a joint Gaussian distri-
bution. More formally, if we assume that {(xi, fi)}ni=1 with
fi = f(xi) are samples from a Gaussian process and define
f = (f1, . . . , fn)

>, we have

f ∼ N (µ,K) , µ ∈ Rn,K ∈ Rn×n . (2)

For simplicity, we set µ = 01. The interesting part of the
GP model is the covariance matrix K. It is specified by
[K]ij = k(xi,xj) using a covariance function k. Intuitively,
the covariance function specifies how similar two function
values f(xi) and f(xj) are. The standard choice for k is the
squared exponential covariance function

kSE(xi,xj) = σ2
f exp

(
−1

2

|xi − xj |2

`2

)
, (3)

where the so-called length-scale parameter ` defines the
global smoothness of the function f and σ2

f denotes the
amplitude (or signal variance) parameter. These parameters,
along with the global noise variance σ2

n that is assumed for
the noise component, are known as the hyperparameters of
the process.

The standard squared exponential covariance function
given in Eq. (3) is clearly suboptimal for our problem. The
reason for that is our parametrization, which is based on
four angles and one Euclidean distance. Considering these
dimensions alike does not allow us to model the “similarity”
between trajectories well. Therefore, we define a variant of
the squared exponential covariance function that considers
that these angles are used to describe two points on a sphere.
Thus, we consider the distance between the starting points
and the end points lying on the sphere from the two inputs

1The expectation is a linear operator and for any deterministic
mean function m(x), the Gaussian process over f ′(x) := f(x)−
m(x) has zero mean.

xi and xj plus the difference in the length of the trajectory.
This results in

k(xi,xj) = σ2
f exp

(
−1

2

d2(xi,xj)

`2

)
, (4)

with

d(xi,xj) = ‖li − lj‖+ ‖p2e(θsi , φ
s
i)− p2e(θsj , φ

s
j)‖+

‖p2e(θei , φ
e
i)− p2e(θej , φ

e
j)‖ (5)

and where p2e(·) is the mapping of the spherical coordinates
to points on the sphere in R3.

Given a set D = {(xi, yi)}ni=1 of training data obtained
from the simulation engine, we aim at predicting the tar-
get value y∗ for a new trajectory specified by x∗. Let X =
[x1; . . . ;xn]

> be the matrix of the inputs and X∗ be defined
analogously for multiple test data points. In the GP model,
any finite set of samples is jointly Gaussian distributed. To
make predictions at X∗, we obtain the predictive mean

E[f(X∗)] = k(X∗,X)
[
k(X,X) + σ2

nI
]−1

y (6)

and the (noise-free) predictive variance

V[f(X∗)] = k(X∗,X∗)− k(X∗,X)[
k(X,X) + σ2

nI
]−1

k(X,X∗), (7)

where I is the identity matrix and k(X,X) refers to the co-
variance matrix built by evaluating the covariance function
k(·, ·) for all pairs of all row vectors (xi,xj) of X.

To sum up, Eq. (6) provides the predictive mean for the
deformation cost when carrying out a movement along x∗

and Eq. (7) provides the corresponding predictive variance.

4.3 Efficient Regression by Problem
Decomposition

With the GP model explained above, we can make predic-
tions for a set of trajectories deforming an object given train-
ing data obtained from the simulation. The key problem in
practice, however, is that a substantial set of training data is
required to obtain accurate predictions of the deformation
cost. For the objects we experimented with, around 3000
training trajectories are needed. The GP framework, how-
ever, has a runtime that is cubic in the number of training ex-
amples so that the approach gets rather inefficient for more
than 1000 training examples.

Therefore, we decompose the overall regression problem
into a number of local ones. For a query trajectory x∗, we de-
termine itsM closest neighbors from the training data under
our distance function given in Eq. (5) as

X′(x∗) = [x′1; . . .x
′
M] = argmin

[x′
1;...;x

′
M]

M∑
k=1

d(x′k,x
∗). (8)

The M closest neighbors X′ to the query trajectory x∗

are the training data points that have the highest influence
on the prediction of y∗ in the GP framework. Considering
only X′ instead of X in the GP is equivalent to assuming
that k(x∗,xi) = 0 for all xi that are not part of X′. In our

current implementation, we are able to get accurate predic-
tions by setting M = 50. We experienced that the loss is
negligible with respect to larger values of M , at least in all
of our experiments. Determining the M closest neighbors to
x∗ can be computed efficiently using a KD-tree that is built
once from the training data. Thus, queries can be obtained in
logarithmic time in the number of training examples and the
GP prediction does not depend on the size of the training set
anymore but only on M .

4.4 Considering the Full Kinematic Chain for
Estimating the Deformation Cost

The deformation simulation system considers the movement
of the robot’s endeffector along the described trajectory to
compute the deformation cost. It does not consider the full
configuration of the arm. This is clearly an approximation
but it allows us to parametrize the regression problem with a
low-dimensional input. Otherwise, the full configuration of
the robot would need to be considered in the GP framework.
With higher-dimensional inputs, a much larger number of
training examples would be needed. To take into account the
fact that not only the end-effector but also other body parts
may deform an object, we sample multiple points along the
kinematic chain of the robot. Then, we perform the estima-
tion of the deformation cost for all sampled points along the
kinematic chain and consider the maximum of the individual
costs

Cdef = max
b

GP(x∗(b),X′(x∗(b)),y′(x∗(b))), (9)

where b refers to the individual body parts and x∗(b) to the
motion that the body parts carry out given the kinematic
structure of the robot. Considering the maximum in Eq. (9)
instead of, for example, the sum, generates more accurate
predictions since the largest deformation forces are typically
generated by one body part only.

5 Experimental Evaluation
5.1 Prediction of Deformation Costs
In this section, we evaluate our GP-based regression tech-
nique for predicting the deformation costs of robot trajecto-
ries. To show the effectiveness of the GP-based technique,
we furthermore compare it to a nearest-neighbor prediction,
which uses the average of the M nearest neighbors as an
estimate. Our deformable object is a plush teddy bear for
which we estimated the deformation parameters. To learn
the deformation cost function of the teddy bear, we gener-
ated a set of samples by performing deformation simulations
for different trajectory parameters. Since the simulation of
sample trajectories is time-consuming, we restrict the ma-
nipulation movements to movements in the plane at different
z-levels. Note that this can easily be generalized to arbitrary
trajectories in 3D.

We consider 3 different data sets, which are D1 with 1,800
trajectory samples at z = 0, 20, and 40 cm, D2 with 1,400 tra-
jectory samples at z = 10 and 30 cm, and D12 which is the
combination of D1 and D2 with 3,200 trajectory samples.
To evaluate the accuracy of the deformation cost prediction,

Table 1: Performance comparison for GP-based regression
and nearest-neighbor approximation.

RMSE ∅ time (ms)
Dataset NN GPStd GPOpt GPStd GPOpt

leave-one-out
D1 24.3 18.4 9.2 26.3 48.2
D2 19.5 27.0 5.8 19.3 42.9
D12 18.0 15.2 7.5 46.9 69.7

cross-validation
D1 on D2 26.9 22.5 17.8 19.4 42.1
D2 on D1 17.3 14.6 9.4 25.0 46.5

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GPStd
GPOpt

 0

 2

 4

 6

 8

 10

 12

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

Figure 3: Comparison of the prediction performance for
nearest-neighbor estimation and GP-Regression (leave-one-
out cross-validation on D12).

we performed two different experiments, namely leave-one-
out cross-validation for D1, D2, and D12 as well as cross-
validation of D1 on D2 and vice versa. We compare the pre-
diction results for the 50 nearest-neighbor prediction (NN),
the prediction of a GP with standard hyperparameters (GP-
Std), and the prediction of a GP with optimized hyperpa-
rameters (GPOpt). The results for the different data sets are
summarized in Tab. 1. Whereas a visual comparison for the
leave-one-out validation is shown in Fig. 3, the results for
the cross-validation are depicted in Fig. 4.

5.2 Performance
In this section, we analyze the computational overhead intro-
duced by our estimation of the deformation cost compared
to a standard roadmap planner and compare it to a planner
with integrated deformation simulation.

Generation of path examples The computation of the ex-
ample trajectories is done offline in a preprocessing step.
The simulation of one example trajectory takes on average
40 s for a trajectory length of approximately 1 m. The total
simulation time for obtaining the 3,200 path examples we
used in our evaluation was around 129,417 s (approx. 36 h).

Roadmap Computation The roadmap for a given static
and non-deformable environment is computed in a prepro-
cessing step. The main computational load comes from col-
lision checks that need to be performed in order to determine
edges that can be connected by collision-free paths. This is
independent of our deformation cost estimation and takes for
our test scenario with 1,000 sample configurations and 7,306
collision-free edges around 40 min. Evaluating the deforma-
tion cost for the 7,306 edges additionally takes 105 s (note

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GPStd
GPOpt

 0

 2

 4

 6

 8

 10

 12

 14

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GPStd
GPOpt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

Figure 4: Comparison of the prediction performance for
nearest-neighbor estimation and GP-Regression(top: cross-
validation D2 on D1, bottom: cross-validation D1 on D2).

that only the edges intersecting the bounding sphere of the
deformable object need to be further analyzed using our GP
based regression. These were 801 edges in this example.

Answering Path Queries To answer path queries, starting
and goal configurations need to be added to the roadmap.
The planner attempts to connect these to the M nearest
neighbors in the roadmap. The time-consuming factor here
is the collision-checking. We evaluated 12 path queries.
Connecting them to the roadmap took on average 3.5 s.
The necessary evaluation of the deformation costs of the
collision-free edges additionally requires 1.8 s on average.

Comparison to a Roadmap Planner with Integrated De-
formation Simulation Instead of precomputing sample
trajectories and estimating the deformation costs of edges
in the roadmap using regression, it would be possible to per-
form the simulation of the edges directly when construct-
ing the roadmap. Considering the example above, evaluating
801 edges requires an additional 267 min when constructing
the roadmap. Furthermore, when answering path queries, we
need to connect the start and the goal by adding new edges
for which simulations need to be performed online. This
requires another 10 min per path query. In contrast to that,
our GP-based approach adds an overhead of approximately
1.8 s, thus requiring two orders of magnitude less computa-
tion time.

5.3 Example Trajectories
Finally, we carried out two planning experiments that are
designed to illustrate the generated trajectories of our plan-
ner. We placed a deformable plush teddy bear in a shelf that
is considered as a static obstacle. In both experiments, the
robot had to move its arm from its current configuration to a
goal. In the first setting, the target configuration was behind
the teddy bear (Fig. 5) and in the second setting it was on
the other side of the bear (Fig. 6). In both cases, the planner
that does not consider the deformation costs would lead to

Figure 5: Planning example. Left image: shortest path, right
image: trade-off between path cost and deformation cost.

Figure 6: Planning example. Left image: shortest path, right
image: trade-off between path cost and cost introduced by
deforming the bear (only minimal deformations occur here).

significant deformation (left images) whereas our approach
results in less deformation and still short paths (right im-
ages). Videos of the robot executing these trajectories in a
deformation simulation can be found on our website2.

6 Conclusion
In this paper, we presented a novel approach for efficiently
planning the motion of a manipulation robot in environ-
ments that contain deformable objects. Our planner is based
on probabilistic roadmaps and considers deformation costs
that are computed from a physical simulation engine. To
overcome the high computational demands of an appropri-
ate physical deformation simulation, our approach employs
an efficient variant of Gaussian process regression to esti-
mate the deformation cost for individual objects based on
training data. To limit the complexity of the regression prob-
lem, we train the Gaussian process only based on the most
relevant training examples given a specific query trajectory.
The training data is generated offline in a preprocessing
step using a physical deformation simulation system. Conse-
quently, no simulations are needed during runtime. Our ex-
perimental evaluation shows that our approach enables the
robot to accurately estimate the expected deformation cost
that its manipulator introduces to the objects in the scene
along its path. It furthermore shows that our method sub-
stantially reduces the computation time compared to an ap-
proach that relies on the simulation engine during planning.

2
http://www.informatik.uni-freiburg.de/˜bfrank/defplan/

Acknowledgments
This work has partly been supported by the DFG un-
der SFB/TR-8, by the European Commission under FP7-
248258-First-MM, and by Microsoft Research, Redmond.

References
Anshelevich, E.; Owens, S.; Lamiraux, F.; and Kavraki, L. 2000.
Deformable volumes in path planning applications. In Proc. of the
Int. Conf. on Robotics & Automation (ICRA).
Bayazit, O.; Lien, J.-M.; and Amato, N. 2002. Probabilistic
roadmap motion planning for deformable objects. In Proc. of the
Int. Conf. on Robotics & Automation (ICRA).
Frank, B.; Becker, M.; Stachniss, C.; Teschner, M.; and Burgard,
W. 2008. Efficient path planning for mobile robots in environments
with deformable objects. In Proc. of the Int. Conf. on Robotics &
Automation (ICRA).
Frank, B.; Stachniss, C.; Schmedding, R.; Teschner, M.; and Bur-
gard, W. 2009. Real-world robot navigation amongst deformable
obstacles. In Proc. of the Int. Conf. on Robotics & Automation
(ICRA).
Frank, B.; Schmedding, R.; Stachniss, C.; Teschner, M.; and Bur-
gard, W. 2010. Learning the elasticity parameters of deformable
objects with a manipulation robot. In Proc. of the Int. Conf. on
Intelligent Robots and Systems (IROS).
Gayle, R.; Segars, P.; Lin, M.; and Manocha, D. 2005. Path plan-
ning for deformable robots in complex environments. In Proc. of
Robotics: Science and Systems (RSS).
Hauth, M., and Strasser, W. 2004. Corotational Simulation of De-
formable Solids. In Int. Conf. on Computer Graphics, Visualiza-
tion, and Computer Vision (WSCG), 137–145.
Heidelberger, B.; Teschner, M.; Spillmann, J.; Mueller, M.;
Gissler, M.; and Becker, M. 2006. DefColStudio 1.1.0.
http://cg.informatik.uni-freiburg.de/software.htm.
Holleman, C.; Kavraki, L.; and Warren, J. 1998. Planning paths
for a flexible surface patch. In Proc. of the Int. Conf. on Robotics
& Automation (ICRA).
Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars, M. 1996.
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Transactions on Robotics and Automation
12(4):566–580.
Ko, J., and Fox., D. 2009. GP-BayesFilters: Bayesian filtering
using gaussian process prediction and observation models. Au-
tonomous Robots.
Maitin-Shepard, J.; M. Cusumano-Towner, J. L.; and Abbeel, P.
2010. Cloth grasp point detection based on multiple-view geomet-
ric cues with application to robotic towel folding. In Proc. of the
Int. Conf. on Robotics & Automation (ICRA).
Maris, B.; Botturi, D.; and Fiorini, P. 2010. Trajectory planning
with task constraints in densely filled environments. In Proc. of the
Int. Conf. on Intelligent Robots and Systems (IROS).
Mueller, M., and Gross, M. 2004. Interactive Virtual Materials. In
Graphics Interface, 239–246.
Rasmussen, C. E., and Williams, C. K. 2006. Gaussian Processes
for Machine Learning. The MIT Press.
Rodrı́guez, S.; Lien, J.-M.; and Amato, N. 2006. Planning mo-
tion in completely deformable environments. In Proc. of the
Int. Conf. on Robotics & Automation (ICRA).
Vasudevan, S.; Ramos, F.; Nettleton, E.; and Durrant-Whyte, H.
2009. Gaussian process modeling of large scale terrain. Journal of
Field Robotics 26(10).

