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Abstract

In this paper, we address the problem of robot navigation in environments with deformable objects. The aim is to

include the costs of object deformations when planning the robot’s motions and trade them off against the travel

costs. We present our recently developed robotic system that is able to acquire deformation models of real objects.

The robot determines the elasticity parameters by physical interaction with the object and by establishing a relation

between the applied forces and the resulting surface deformations. The learned deformation models can then be used

to perform physically realistic finite element simulations. This allows the planner to evaluate robot trajectories and to

predict the costs of object deformations. Since finite element simulations are time-consuming, we furthermore present

an approach to approximate object-specific deformation cost functions by means of Gaussian process regression.

We present two real-world applications of our motion planner for a wheeled robot and a manipulation robot. As we

demonstrate in real-world experiments, our system is able to estimate appropriate deformation parameters of real

objects that can be used to predict future deformations. We show that our deformation cost approximation improves

the efficiency of the planner by several orders of magnitude.
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1. Introduction

Perceiving the surroundings and modeling the envi-

ronment is an important competence of intelligent mo-

bile robots since such models are required for efficiently

solving other high-level tasks. For instance, generating

a collision-free path through the environment in an ef-

ficient way requires path planning, which in turn builds

on top of a model of the environment. There exists a va-

riety of approaches for robots to autonomously generate

an appropriate model of the environment by address-

ing the simultaneous localization and mapping prob-

lem [1, 2, 3, 4], by autonomous exploration [5, 6, 7],

or by addressing both problems jointly [8, 9].

In order to plan motions in learned environment

models, the majority of path planning approaches as-

sumes that the environment contains only rigid obsta-

cles [10, 11, 12], although there are a few notable ex-

ceptions such as the works of [13, 14, 15, 16, 17]. In

reality, not all obstacles are rigid. In domestic environ-

ments – a key target domain for service robots – a robot

must deal with many deformable objects such as plants,

curtains, or cloth. Considering that an object such as a

curtain is deformable can enable a robot to accomplish

navigation tasks that otherwise cannot be carried out.

To consider deformable objects in the path planning

process, such objects need to be handled in a simula-

tion system underlying the planner. The realistic sim-

ulation of object deformations is still an active area of

research with a variety of relevant applications in com-

puter graphics, virtual reality, games, movies, but also in

robotics [18, 19], and medical simulations [20, 21, 22].

In most applications, the underlying parameters for an

appropriate deformation simulation are adjusted man-

ually until the results appear visually plausible. This

might be applicable for computer games or movies,

but does not necessarily lead to a physically realistic

computation of the involved forces. These forces, how-

ever, need to be known accurately for navigation in the

presence of deformable objects. For example, whenever

a robot interacts with real-world objects, only limited

forces should be applied to them. This is of utmost im-

portance in medical applications or in domestic settings,

for instance, whenever robots have to manipulate plants

or clothes. Particularly in these domains, robots need

exact knowledge about the parameters of the deforma-

tion process.

In this paper, we present a complete robotic system

that is able to perceive the environment and model the
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deformable objects in the scene. The system estimates

the deformation properties of objects, and finally is able

to plan a trajectory through the environment, taking po-

tential object deformations into account.

Estimating the elasticity parameters of objects not

only involves observing and reconstructing the three-

dimensional surface of an object. Physical interaction

with the object under consideration is required to learn

about its behavior when exposed to external forces.

Therefore, we equipped our robot with a force sensor

at the end of the manipulator and with a depth camera.

Based on the observed surface deformations and corre-

sponding forces, our approach seeks to determine the

elasticity parameters of the object. This is done by sim-

ulating the object deformation under the applied forces

using a linear finite element model. An error minimiza-

tion approach is applied to iteratively adapt the defor-

mation parameters such that the difference between the

real object under deformation and the simulation is min-

imized. As we will demonstrate in the experimental sec-

tion of this paper, our approach is able to find elasticity

parameters that enable our robot to accurately predict

the deformations of real-world objects.

Furthermore, we address the problem of planning

motions for robots navigating in environments with de-

formable obstacles and to adequately consider the costs

of object deformations. In this context, we present an ef-

ficient approximation of the deformation cost function

of objects. Throughout this paper, we assume that the

robot can deform the objects but does not move them

in the environment. This allows us to generate a set of

trajectory samples in a pre-processing step and to pre-

dict the costs of new trajectories by applying efficient

Gaussian process regression. Using this regression ap-

proach, the robot is able to efficiently plan trajectories

in the presence of deformable objects without the need

for time-consuming simulations during runtime. In dif-

ferent experiments, we demonstrate that our approach

yields accurate estimates and, at the same time, allows

for efficient planning of trajectories along which the

robot interacts with deformable objects.

This paper is organized as follows: after discussing

related work in the next section, we will give an

overview of our planning approach that considers de-

formable objects and describe the basic principles of

the deformation model and the physical simulation un-

derlying our planner in Section 3. In Section 4, we de-

scribe how to learn models of deformable objects with

our manipulation robot. Next, we present our approach

to approximate the deformation cost functions of ob-

jects using Gaussian process regression in Section 5.

Subsequently, we present two applications of our path

planning system applied to a manipulation robot and a

wheeled robot. Finally, in Section 7, we evaluate our

system in different experiments.

2. Related Work

2.1. Deformable Modeling and Parameter Estimation

Deformable modeling and parameter estimation are

active areas of research. To represent non-rigid objects

and to simulate deformations, mass-spring systems have

been frequently used. They are easy to implement and

can be simulated efficiently [23, 24]. Their major draw-

back is the tedious modeling as there is no intuitive

relation between spring constants and physical mate-

rial properties in general [25]. Finite element methods

(FEMs) reflect physical properties of objects in a more

natural way [26]. They are based on elasticity theory

and describe object deformations with a small number

of physical parameters. Their disadvantage lies in the

computational resources required to calculate deforma-

tions.

The co-rotational finite element approach [27, 28],

which we also use in our current system, avoids non-

linear computations and is computationally more effi-

cient. Our system, however, does not depend on the un-

derlying deformation model und therefore, arbitrary ap-

proaches can be used in our algorithms. For example,

Mousavi et al. [29] employ a principal component anal-

ysis as a precomputation step in order to gain efficiency

for a minimal loss of accuracy. Similarly, reduced de-

formable models [30, 31, 32] employ the modal analy-

sis for a more efficient simulation. Other approaches use

third order polynomials for this purpose [33].

There are different approaches to determine the phys-

ical parameters of models. Bianchi et al. [34] learn the

stiffness constants of mass-spring models using a ge-

netic algorithm and comparing it to an FEM reference

model. The identification of mass-spring parameters is

also discussed in the work of Lloyd et al. [35]. They

derive an analytical formulation for the spring param-

eters from a linear finite element model. Data-driven

representations for deformable objects were employed,

among others, by Fong [36] and Bickel et al. [37]. Fong

[36] extracts force-fields for different contact points and

displacements on the objects. For haptic rendering of

unseen contact points, the forces are interpolated using

radial basis functions. In a similar way, Bickel et al.

[37] represent heterogeneous and nonlinear material.

The homogeneous parts of objects, however, are mod-

eled using the linear FEM, similar to our approach.

Different approaches deduce the elasticity parame-

ters of objects by optimizing an objective function that
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relates the observations to a finite element simulation,

which in turn depends on the parameters to be deter-

mined. For instance, Kajberg and Lindkvist [38] deter-

mine the material parameters of thin metal sheets in-

cluding plasticity effects. Choi and Zheng [39] iden-

tify Young’s modulus and Poisson’s ratio of soft tissues

from indentation tests. Schnur and Zabaras [40] esti-

mate different parameters including Young’s modulus

of a two-dimensional nonlinear finite element model.

The approach of Becker and Teschner [41], in contrast,

works for three-dimensional objects, allows for the si-

multaneous estimation of Young’s modulus and Pois-

son’s ratio, and furthermore can be reduced to a linear

least squares problem. Both approaches, however, have

been validated using simulated data only.

Estimation of material parameters from real data has

been investigated in the context of soft-tissue modeling

for surgical simulation applications, such as simulation

and training, or computer-aided surgery. Kauer et al.

[42] present an inverse finite element algorithm that es-

timates the material parameters of soft biological tis-

sues. They consider complex material constitutive laws,

such as nonlinearity and anisotropy, furthermore they

account for viscoelastic behavior. Deformation forces

are measured with an aspiration instrument operated

by a human. Their estimation procedure is designed

to operate on two-dimensional image data. Fugl et al.

[43] present an approach to determine Young’s modulus

and different parameters to model heterogeneous mate-

rial from observations of deformations due to gravity

with an RGB-D camera. Lang et al. [44] collect data

of object deformations with a robotic measurement fa-

cility, including force sensors and stereo cameras. They

model deformable objects as a discrete boundary value

problem and estimate Greens’ functions from measured

forces and displacements. An interesting approach was

recently presented by Boonvisut et al. [45]. In this work,

a robotic manipulator performs deformation trajecto-

ries, and the parameters are optimized such that a finite

element simulation of the trajectory agrees with the ob-

served trajectory. Both systems, however, rely on a com-

plex experimental setup with several external cameras.

An alternative approach to tracking deformable objects

based on RGB-D data was proposed by Schulman et al.

[46]. They present a generative probabilistic model that

accounts for occlusions, observation noise, and physical

material properties. This model is optimized based on

observations of a human manipulating and deforming

an object. Since forces cannot be observed, the model is

only determined up to a scale factor.

In contrast to most of the previous approaches to pa-

rameter estimation, our method deals with real data and

has been realized on a real mobile manipulation robot

that can actively deform objects. In our setup, the robot

furthermore carries its sensors on-board and thus is the

basis for fully autonomous exploration.

2.2. Motion Planning with Deformable Objects

Recently, considering physical properties of robots

and environments, for instance in terms of their defor-

mation properties has received increased attention. In

this context, different planners for deformable robots

have been developed. The works of Holleman et al. [47],

Anshelevich et al. [13], and Bayazit et al. [14] mark first

steps in this direction. They use a probabilistic roadmap

(PRM) as underlying motion planner and carry out de-

formation simulations to determine the expected defor-

mations of the robot along a path. The underlying de-

formation models, however, vary. Robots are modeled

using a two-dimensional finite element approximation

[47], or computationally more efficient mass-spring sys-

tems [13] and geometric free-form deformations [14].

Gayle et al. [15] present a motion planning framework

for flexible surgical tools that are inserted into rigid

blood vessels. Their deformation model considers con-

straints for volume preservation similar to the model in-

troduced by Teschner et al. [23]. Planning motions for

deformable robots was recently revisited by Mahoney

et al. [48]. Similar to our approach, they address the

computational demands of accurate deformation simu-

lations during runtime by precomputing a set of defor-

mation configurations that is considered for planning.

In contrast to our approach, these planners consider

robot deformations that are necessary to avoid collisions

with the environment. An approach to planning in com-

pletely deformable environments has been proposed

by Rodrı́guez et al. [18]. They employ a mass-spring

model with constraints for volume-preservation [23]

and search for a path to a goal location using rapidly

exploring random trees. Planning for surgical tools in

deformable environments was addressed, among oth-

ers, by Alterovitz et al. [16], Maris et al. [17], and Patil

et al. [19]. Maris et al. [17] plan paths for a surgical tool

using a 3D simulation based on a mass-spring model.

They optimize the control points of a path with respect

to constraints that consider the stiffness of objects and

the penetration depth of the tool. Alterovitz et al. [16], in

contrast, plan needle placement in the 2D plane and ac-

count for deformations using a finite element simulator

similar to ours. Recently, Patil et al. [19] presented an

extension to this work that also incorporates the poten-

tial uncertainty during path execution into the planning

process and chooses the path with the highest proba-

bility of success. A reactive approach to robot motion
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among deformable clutter such as plants was recently

proposed by Jain et al. [49], they introduce a model-

predictive controller that, based on whole-body tactile

sensing, adapts to deformations and controls the con-

tact force. This approach guides the robot along linear

trajectories to a goal, but does not to plan complex mo-

tions. Furthermore, it requires the robot to be equipped

with tactile sensors along its arm.

A drawback of the planning approaches above is that

they need to compute deformation simulations during

runtime. To allow for an efficient answering of path

queries, our approach generates a set of sample ob-

ject deformations in a preprocessing step and models

the costs introduced by deforming an object with the

Gaussian process (GP) framework [50]. In the context

of robot learning tasks, GPs are becoming increasingly

popular and have been applied to different problems, for

instance, to modeling terrain [51, 52, 53], learning mo-

tion and observation models [54], or modeling gas dis-

tributions [55]. Inspired by the approach of Vasudevan

et al. [52], we deal with large training data sets by or-

ganizing the data in a k-d tree and by considering only

a local neighborhood for the prediction of a new query.

In the context of navigation, GPs have also been used to

incorporate uncertain quantities into the cost function.

Henry et al. [56], for instance, use GPs to predict hu-

man motion behavior when planning robot trajectories,

and Murphy and Newman [57] use GPs to model a cost

function for traversing different terrain types.

This paper builds on our previous work [58, 59, 60,

61] and presents a unifying framework for robot mo-

tion planning in environments with deformable objects.

The system is able to determine appropriate material pa-

rameters of obstacles that can be used in physical sim-

ulations. We furthermore present an approach to model

deformation cost functions that allow for efficient plan-

ning for robots operating in 2D and 3D work space.

3. Path Planning considering Deformable Obstacles

In this section, we give an overview of our planning

approach and introduce the basic concepts of deforma-

tion simulations needed for model learning and plan-

ning.

3.1. Overview of our approach

Our approach to motion planning in environments

with deformable objects consists of several steps: First,

the robot needs to determine an appropriate deformation

model of an obstacle. This is done by physical interac-

tion with the object and by measuring the deformation

forces as well as the deformed surface of the object. The

elasticity parameters of the object are then determined

by optimizing the parameters of a linear finite element

model such that it best fits the observations.

When generating a motion plan, such a model can

be used in a finite element simulation to evaluate the

costs of deforming objects for different robot trajec-

tories. Finite element simulations, however are time-

consuming; and typically thousands of alternative tra-

jectories must be evaluated when searching for a path to

a specific goal. To improve the efficiency of the planner,

we present an approach to learn object-dependent de-

formation cost functions. We assume that the environ-

ment is static and does not change on its own over time,

and that obstacles can indeed be deformed but cannot

be moved by the robot. Furthermore, we only consider

interactions between the robot and obstacles and neglect

interactions between different obstacles. This allows us

to generate a set of training examples of robot trajecto-

ries that lead to object deformations offline by carrying

out corresponding finite element simulations. We model

a deformation cost function for each object individually

using Gaussian process (GP) regression. The samples of

simulated robot trajectories are used to train a GP model

and to estimate the deformation costs of new trajectories

generated by the planner in an efficient way without the

need for time-consuming simulations during runtime.

3.2. Planning using Probabilistic Roadmaps

To plan trajectories for our robots, we use the proba-

bilistic roadmap framework introduced by Kavraki et al.

[62]. The key idea is to represent the collision-free con-

figuration space of the robot by a set of samples that

form the nodes of a graph. Edges in this graph de-

scribe feasible trajectories between neighboring config-

urations. Such a roadmap can be precomputed given a

model of the environment. To actually plan a trajectory

for the robot, the current robot configuration as well as

the target configuration are connected to the graph. Most

motion planning systems assign costs to the edges that

correspond to their distance in configuration or work

space. Then, a standard graph search technique such as

A* or Dijkstra’s algorithm can be applied to search for

the optimal path between a given starting and goal point

in the roadmap.

Since we explicitly allow our robot to interact with

deformable objects, we also allow for samples and

edges that lead to collisions with such objects when gen-

erating the probabilistic roadmap. Accordingly, we need

to consider the deformation costs when planning trajec-

tories. Our system uses a weighted sum between the dis-

tance of the nodes in configuration space and the defor-
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mation costs. For an edge between the nodes i and j, its

cost is given by

C(i, j) := αCdef (i, j) + (1 − α) Ctravel(i, j), (1)

where α ∈ [0, 1] is a user-defined weighting coefficient.

The term Ctravel(i, j) corresponds to the distance be-

tween nodes in configuration space. The term Cdef (i, j)

represents the costs that are introduced when the robot

deforms objects along its trajectory and is determined

efficiently using GP regression.

3.3. Deformation Simulation

To consider non-rigid obstacles in the environment

during planning, we need a model that allows us to com-

pute the deformations given an external force. We first

present an overview of our simulation system DefCol

Studio1,2 before we go into details of the underlying

deformation model based on the finite element method

(FEM) in the next section. Our simulation system uses

a tetrahedral mesh to represent deformable objects and

proceeds as follows: in each time step, it computes de-

formations and unconstrained motions of objects, then it

detects collisions, computes contact forces for colliding

points, and finally computes the resulting deformations

from the repulsion forces.

3.3.1. Collision Detection

For a realistic simulation of the interactions between

the robot and deformable objects, an efficient collision

detection algorithm is required. In our framework, we

employ the spatial subdivision scheme of Teschner et al.

[63]. The key idea of this approach is to implicitly dis-

cretize R
3 into small uniform 3D grid cells and to map

the elements contained in the grid cells to a hash ta-

ble. Since the space is usually filled sparsely and non-

uniformly, this method consumes less memory than an

explicit discretization. The hash key is computed from

the coordinates of the corresponding grid cell. Conse-

quently, only the elements with the same hash key need

to be checked for collisions. To check for collisions, in-

tersections between points and tetrahedra are computed.

This can be done efficiently using barycentric coordi-

nates of the points with respect to the tetrahedra.

1B. Heidelberger: DefCol Studio – Interactive deformable

modeling framework. http://www.beosil.com/projects.

html#DefColStudio, last accessed March 18, 2014.
2M. Teschner: Defcol Studio 1.1.0. http://cg.

informatik.uni-freiburg.de/software.htm, last

accessed March 18, 2014.

3.3.2. Computation of Contact Forces

To handle collisions between the robot and de-

formable objects, we employ the force-based collision

handling scheme proposed by Spillmann et al. [64].

It combines the advantages of penalty and constraint-

based collision handling schemes. For a set of collid-

ing points of a tetrahedral mesh, a collision-free state is

computed using a linearized relation between internal

forces and displacements of all affected points. Con-

tact forces can be computed analytically to obtain the

collision-free state while conserving overall system en-

ergy.

3.4. Deformation Model

A deformable solid can be described by its unde-

formed state and a set of material parameters that deter-

mine how it deforms under applied forces. A deforma-

tion is then specified by a displacement field u : x0 7→

x0 + x, which maps each point x0 of the object in its ref-

erence position to a deformed position x0 + x. Elastic-

ity theory provides the corresponding constitutive equa-

tions. Since we restrict ourselves to linearly elastic, ho-

mogeneous and isotropic material, we employ a linear

relation between stress σ and strain ǫ given by the gen-

eralized Hooke’s law:

σ = Cǫ . (2)

To compute the distribution of elastic forces inside a

continuous solid object and to establish the relation be-

tween object deformation, specified by a displacement

field u, and external forces acting on the object, we con-

sider the total potential energy Π of a solid, which is

given by

Π = U +WP. (3)

Here, WP is the work potential, which is determined by

the external forces acting on an object. The inner or elas-

tic energy U is given by

U =
1

2

∫

V

σ
T
ǫ dV. (4)

A stable equilibrium configuration of a deformation can

be found by minimizing the potential energy, which is

done by setting the derivatives to zero.

3.4.1. Elasticity Parameters

For linearly elastic and isotropic material, the matrix

C in Eq. 2 depends only on two independent elasticity

parameters, Young’s modulus E and Poisson’s ratio ν

[65]. The Young modulus describes the stiffness of an
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object. It measures the force that is needed to enlarge or

compress an object by some fixed amount and is given

by the ratio of stress to strain in the direction of the ap-

plied force:

E =
σ

ε
=

F/A

∆x/x
=

Fx

A∆x
. (5)

Its unit is force per area and it is frequently specified in
N

dm2 .

The Poisson ratio is related to the compressibility of

an object. When a material is expanded in one direction,

a compression in the other two directions perpendicu-

lar to the expansion can be observed, and vice versa a

compression in one direction leads to an extension in

the other two directions. The Poisson ratio is thus given

by the negative ratio of the transverse strain to the axial

strain:

ν = −
εtrans

εaxial

= −
εy

εx

= −
εz

εx

. (6)

Since we consider isotropic material, the changes in the

two directions y, z perpendicular to the direction x of the

applied force are equal.

The Young modulus is always greater than zero, but

not upper-bounded, with larger values characterizing

stiffer materials. For isotropic objects, it can be shown

that the Poisson ratio lies in the range of 0 to 0.5. A

Poisson ratio of 0.5 implies perfect volume conserva-

tion, while a Poisson ratio of 0 corresponds to no vol-

ume conservation at all. For many materials including

foam, it ranges from 0.25 to 0.35, for rubber it is close

to 0.5.

3.4.2. Finite Element Approximation

We use the finite element method (FEM) to approx-

imate the deformation of a continuous object. The key

idea is to discretize the object into a finite set of volu-

metric primitives, tetrahedrons in our case, and to com-

pute the deformations inside the elements by an interpo-

lation using the nodal values. First of all, the displace-

ment field inside a tetrahedron is approximated using

the displacements of the nodes. To compute the strain ǫ

from the nodal deformations in our model, we use the

linear Cauchy strain tensor, which is efficient to com-

pute:

ǫi j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

. (7)

The strain in terms of the displacements q of the nodes

can then be written as a matrix multiplication ǫ = Bq,

where B expresses the partial derivatives from Eq. 7

in terms of the nodal displacements using linear shape

functions. The inner energy Ue of a tetrahedral element

e can then be written as

Ue =
1

2

∫

e

ǫ
T CT
ǫ dV.

Since we use linear shape functions and therefore as-

sume the strain to be constant over an element, this can

be simplified to

Ue =
1

2
qT BT CT Bq

∫

e

dV

=
1

2
qT VeBT CT Bq ,

where Ve is the volume of e. When we define the ele-

ment stiffness matrix to be Ke := VeBT CT B, we obtain

Ue =
1

2
qT Kq . (8)

To find an equilibrium configuration of the deformable

object, we minimize the total potential energy by setting

the partial derivatives of Π with respect to the displace-

ments qi to zero.

The derivatives of Ue with respect to qi result in
∂Ue

∂qi
= (Ke · q)i and describe the elastic forces acting on

the nodes of the model. As we only consider the point

loads fi in the work potential, the partial derivatives with

respect to the displacements qi are given by ∂WP
∂qi
= fi.

Therefore, setting the derivative of the potential energy
∂Π
∂q

to zero leads to Ke · q − f = 0 When collecting all

element stiffness matrices in a global stiffness matrix K

and correspondingly all displacement vectors in a global

displacement vector Q, the global force-displacement

relation can be written as

F = KQ. (9)

Using linear shape functions and the linear Cauchy

strain tensor for the computation of the strain leads to

problems, as the linearization assumption is only valid

close to the equilibrium. Furthermore, this tensor is not

rotationally invariant. This leads to ghost forces, which

result in distortions for large rotational deformations. To

account for that, we use the co-rotational finite element

formulation of Hauth and Strasser [66] and Müller and

Gross [28] and keep track of the rigid body motion for

each element by extracting the rotation from the trans-

formation matrix using polar decomposition. Applying

the strain tensor in the rotated frame leads to rotational

invariance and has low computational costs compared

to the nonlinear strain tensor.
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The deformation model is interesting for us for two

reasons: first, we want to estimate the elasticity param-

eters E and ν of deformable objects. Second, with avail-

able deformation models of objects in the robot’s envi-

ronment, we want to perform simulations to determine

the costs of robot trajectories that potentially lead to ob-

ject deformations.

4. Learning Deformation Models

Modeling the deformation behavior of real objects re-

quires interaction with them to measure the forces as

well as the resulting deformations. In this section, we

introduce our approach to learn deformation models of

real objects with a manipulation robot. The key idea is

to compare the observations of the robot to a finite ele-

ment simulation. The observation of the force allows us

to establish the force-displacement relation from Eq. 9.

In this way, we are able to estimate the parameters of

the stiffness matrix by minimizing the error between ob-

served and simulated deformation.

4.1. Data Acquisition

Our system for acquiring data of deformable objects

consists of a mobile platform with a 7-DoF manipula-

tor that is equipped with a force-torque sensor and an

RGB-D camera (see Figure 1a). This setup allows the

robot to observe objects from different view points, to

acquire point clouds of their surfaces, to deform them,

and to measure the corresponding deformation forces in

a flexible way. In principle, before deforming an object,

the robot needs to decide, whether or not it is safe to

deform the object without destroying it. This task is not

explicitly handled in our approach. We assume that the

robot can probe to deform the object without directly

destroying it.

The manipulator consists of five Schunk Powercube

modules and a 2-DoF hand. These modules have a high

repeat accuracy of 0.02 degrees and therefore allow for

an accurate estimation of the robot’s position. The de-

formation forces are measured with a Schunk-FTCL-

050 force-torque sensor integrated into the hand. This

sensor is able to measure forces up to 300 N and torques

up to 7 Nm in all three degrees of freedom. Furthermore,

a Microsoft Kinect RGB-D camera using the structured-

light measurement principle is attached to the robot’s

hand. This allows the robot to obtain 3D measurements

of the object under investigation.

4.1.1. Geometric Models for Simulation

The finite element simulation requires a volumetric

model of an object. Such a model can be computed from

a surface mesh of the object. Thus, the robot first ac-

quires a 3D surface representation of the object by ob-

serving it from different viewpoints and by registering

the corresponding point clouds into a consistent model.

The task of a registration algorithm is to align overlap-

ping scans of the same object, that is to compute a trans-

lation and a rotation that align the surfaces correctly.

In our approach, we apply the iterative closest point

(ICP) algorithm by Besl and McKay [67], with some

extensions similar to the ideas given by Pulli [68] and

Rusinkiewicz and Levoy [69]. For known correspon-

dences, the transformation can be computed in closed

form [70]. In general, however, the correspondences are

not known. Thus, the ICP algorithm determines corre-

spondences, for instance, using a nearest-neighbor data

association, computes a transformation that aligns the

scans for these correspondences, and iterates this pro-

cess. Typically, this procedure converges to a minimum

and yields an accurate alignment if a reasonable ini-

tial configuration is chosen. In our case, the robot poses

from which the scans are recorded provide a reasonable

initial guess.

From the registered point clouds, we then generate

a triangular surface mesh which in turn is used to de-

termine the volumetric tetrahedral mesh. To construct

this tetrahedral mesh, we use the approach of Spillmann

et al. [71]. This approach first computes a signed dis-

tance field, in which voxels having a negative sign rep-

resent the volume of the object. In a second step, the

spatial domain is divided into a uniform axis-aligned

grid. All cells of this grid that contain no voxel with

negative sign are discarded. The remaining cells are an

approximation of the object’s volume; the quality of the

approximation is determined by the grid resolution. The

grid cells are then divided into five tetrahedrons each. In

a post-processing step, the tetrahedrons are smoothed to

align with the given surface mesh. The individual steps

of this reconstruction procedure are illustrated in Fig-

ure 1. This approach is particularly suited for real-world

data, as it can handle unorientable, non-manifold, and

even incomplete data.

In some situations, it is not possible for the robot to

observe the object from all necessary viewpoints in or-

der to obtain a closed surface mesh. This might be the

case when the object is partially occluded or parts of

the workspace are not accessible to the robot, e. g. in

case the object is sitting in front of a wall or on a ta-

ble. To obtain a closed surface mesh that clearly limits
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(a) (b) (c) (d)

Figure 1: Object reconstruction: (a) the robot observes a deformable teddy bear, (b) a point cloud obtained with

the RGB-D camera, (c) the surface mesh constructed from four different point clouds, and (d) the tetrahedral mesh

computed from the surface mesh.

the object, we complete the model by assuming a planar

surface for the unobserved parts. These planar surfaces

can be extracted for instance from the walls or the ta-

ble surface. This allows us to generate a model almost

from scratch without much overhead for exploration and

moving. Our experiments show that a complete model is

not needed to estimate the deformation parameters – a

partial model is sufficient. The outcome of this step is

a complete geometric and volumetric object representa-

tion with a known transformation relative to the robot.

In our simulator, we perform all deformation computa-

tions based on the tetrahedral mesh. The coupling of the

surface mesh to the tetrahedral mesh guarantees that the

surface mesh is also deformed. This allows us to com-

pare it to the scanned surface mesh of the real-world

object.

4.1.2. Deformation of Objects

In our experimental setup, the object is placed on a

table in front of the robot and the robot probes the ob-

ject by moving its end effector downward, in the direc-

tion perpendicular to the table surface (Figure 2). This

setup guarantees that the object is fixed between the ta-

ble and the robot, therefore the measured forces corre-

spond to deformations only, not to translations of the

object. Furthermore, the robot deforms the object with a

thin wooden stick instead of its gripper. This has several

reasons: first of all, the RGB-D camera requires a dis-

tance of at least 50 cm to compute depth measurements

from the structured light pattern. Second, increasing the

distance to the region of interest also increases the field

of view and thus the part of the object that can be ob-

served. Third, in this way, we ensure a small point-like

contact region and thereby minimize the amount of oc-

clusion in the region of interest, the deformed surface

region, due to body parts of the robot. The probing pro-

cedure is as follows:

• The end effector approaches the contact point c on

the object and takes a reference measurement.

• Subsequently, it moves forward in discrete steps of

1 cm, pauses and records a new measurement.

• This is done until either a maximal force of 30 N

is exceeded or the robot has moved for more than

10 cm.

In each step t, we obtain a measurement zt = (Pt, ct, ft),

which consists of the point cloud of the deformed ob-

ject surface Pt = {pt | pt ∈ R
3}, the force ft ∈ R

3

acting on the object and the contact point ct ∈ R
3 on

the object. In this way, we obtain a set of measurements

{zt} for a contact point. Our parameter estimation pro-

cedure, explained in the next section, only requires one

observation zt at a time, but collecting a set of obser-

vations allows for multiple runs and therefore a more

robust estimation of the parameters.

4.2. Parameter Estimation

With the measurements acquired by our robot, we

formulate the estimation of an object’s elasticity pa-

rameters, Young’s modulus E and Poisson’s ratio ν, as

an optimization problem in parameter space (E, ν) with

an objective function that minimizes the difference be-

tween the observation and the model prediction.

The governing equation solved by the FEM approxi-

mation (Eq. 9) relates the applied forces Fext and result-

ing displacements Q by a stiffness matrix K(E, ν) that

depends on E and ν (Eq. 9). The inverse problem we in-

tend to solve can be stated as determining the stiffness

8



Figure 2: Deformation of an object: experimental setup (left) and two example measurements (right). The surface

points are colored according to their depth and the magnitudes of the measured forces are indicated by the arrows.

matrix K(E, ν) that explains the relation between mea-

sured force Fext
meas and measured displacement Qmeas:

min
(E,ν)
||K(E, ν)Qmeas − Fext

meas||
2
2 . (10)

However, as the robot only observes the displacements

on the boundary of the object, we cannot directly set

up this equation and solve for (E, ν). Instead, we indi-

rectly relate the observed displacements with the simu-

lated displacements by running a forward FEM simula-

tion for a given stiffness matrix. Then, we can compare

the displacements resulting from the simulation to the

observed displacements and minimize their difference:

min
(E,ν)
||Qmeas −Qsim(E,ν)||

2
2 . (11)

We use a gradient-based method to adapt the material

parameters of an object and to minimize the error. In

the following, we define the boundary conditions of the

FEM simulation that provides us with the simulated dis-

placements. Furthermore, we specify the error function

that is minimized.

4.2.1. FEM Simulation

We initialize the simulation with the tetrahedral

model M and the corresponding surface points P of

an object resulting from Section 4.1.1. Additionally, the

stiffness matrices K(E, ν) of the model elements are

computed using given parameters E, ν. We introduce

boundary conditions for the simulation by fixing the

nodes on the bottom side of the model, which corre-

spond to the part of the object that is in contact with

the table. To start the simulation and deform the model,

we apply the measured force ft to the contact point ct

on the model, that is the mass point on the tetrahe-

dral mesh closest to the contact point. Then, we de-

fine FEMSim(M, ct, ft, E, ν) as a simulation run over a

small amount of time steps until an equilibrium state

is reached, which results in the deformed model ME,ν

and deformed surface points PE,ν. The deformation for

a given force and contact point is governed by the ma-

terial parameters E and ν of the object.

4.2.2. Error Function

The error function for our parameter estimation pro-

cedure reflects the difference between the surface of

the real deformed object and the surface deformed in

simulation. Before we compute the difference between

the deformed model point cloud and the observed point

cloud, we align the deformed surfaces with an ICP reg-

istration procedure to eliminate the effects of small rota-

tions and translations not leading to object deformations

as well as inaccuracies in the global position estimation

of the model with respect to the robot.

After applying ICP, we can determine the error be-

tween the deformed model point cloud PE,ν and the

measured surface Pt as the mean squared error between

the point correspondences of the surfaces:

Err(PE,ν, Pt) =
1

|Pt |

∑

i∈Pt

min
j∈PE,ν

‖i − j‖2, (12)

where i and j refer to the corresponding points from the

observed and the simulated surface, respectively. In the
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error function, we consider all point correspondences

for the measured point cloud, in contrast to the error

function minimized in the ICP algorithm that considers

only a fraction of point correspondences. Otherwise, we

would possibly ignore the region of interest in which the

object is deformed, due to large point-to-point distances

and the error function would not be informative.

4.2.3. Parameter Optimization

With the above definition of the error function,

we can apply a gradient-based method to search for

Young’s modulus E and Poisson’s ratio ν of an object

that minimize the error. We start with a random initial-

ization of the parameters (E0, ν0) and iteratively adapt

them based on the direction of the gradient of the er-

ror function. Since our error function involves the sim-

ulation approach explained above, the gradient cannot

be computed directly. Therefore, we approximate this

term numerically: we carry out a sequence of deforma-

tion simulations by applying the measured force to the

model and by varying E and ν locally.

We adapt the parameters based on the Resilient back-

propagation (Rprop) update rule that was introduced

by Riedmiller and Braun [72] in the context of learn-

ing weights for neural networks. In this update rule, a

step size ∆k for each parameter k is adjusted individu-

ally in each iteration step based only on the direction,

not on the magnitude of the gradient. More precisely,

the step size for each parameter is increased in each it-

eration i by a factor η+ > 1 if the gradient direction does

not change, that is if a minimum of the error function

is approached, and it is decreased by η− < 1 otherwise,

that is if a minimum of the error function is overstepped.

This procedure is robust with respect to the initialization

of the step size, as the step size quickly adapts to the

problem at hand. Furthermore, it is robust to numerical

inaccuracies, as only the direction, not the magnitude of

the gradient is considered. Thus, it allows for a fast con-

vergence of our estimation procedure. We consider the

estimation procedure converged if either the error im-

provement is below a given threshold ǫ, or if the param-

eter adaptations are below given accuracy thresholds ǫE
and ǫν for both parameters E and ν in subsequent itera-

tion steps.

5. Deformation Cost Functions for Planning

When planning robot motions, we want to consider

the costs of object deformations that are introduced by

the robot. To achieve this, we first define a measure for

such deformation costs that can be obtained by means

of physical simulation of the corresponding robot tra-

jectory. Next, we will introduce the concept of object-

dependent deformation cost functions that can be pre-

computed under certain assumptions and speed up the

planning process. Finally, we present our approach to

model the deformation cost function based on Gaussian

process regression.

5.1. Deformation Costs of a Robot Trajectory

To measure the cost that the robot introduces by de-

forming an object and thereby consuming additional en-

ergy, we consider the potential elastic energy of an ob-

ject, as given in Eq. 8. The elastic energy of an object

corresponds to its deformation and measures its distor-

tion. According to the law of conservation of energy, it

directly corresponds to the energy the robot has to ex-

pend. In case of an undeformed object, the elastic en-

ergy is zero. Otherwise, the elastic energy increases de-

pending on the deformation of the object. Obviously,

more energy must be expended for stiffer objects, which

is encoded in the object’s material parameters and the

stiffness matrix K in Eq. 8. For an object O consisting

of tetrahedral elements {ei}, we define the total inner en-

ergy UO induced by a robot r in a given configuration ζ

to be the sum over the inner energies of all elements ei

of the object: UO(r, ζ) :=
∑

ei∈O

Uei
(r, ζ).

For any given robot configuration ζ, we determine the

total deformation costs Cdef (ζ) :=
∑

O∈W

UO(r, ζ) by sum-

ming over all objects O in our workspaceW. The robot

configuration ζ has to be taken into account, since ob-

jects might deform differently depending on the config-

uration of the robot as well as on the history of configu-

rations.

The total deformation costs of a path Γ in our envi-

ronment naturally result in the sum over the deforma-

tion costs of all objects that are deformed by the robot

while it is moving on the path in discrete time steps ti,

thereby assuming corresponding configurations ζi:

Cdef (Γ) =
∑

ζi∈Γ

Cdef (ζi). (13)

In sum, the deformation costs of a trajectory depend on

the sequence of robot configurations during path execu-

tion and on the material properties of objects, character-

ized by Young’s modulus E and Poisson’s ratio ν.

5.2. Object Deformation Cost Functions

In our definition above, we have seen that the defor-

mation costs are a function of the robot trajectory and

10



s

e

l

Figure 3: Parametrization: the linear trajectory is de-

scribed by starting point s and end point e on a virtual

sphere around the deformable object. Additionally, we

consider the traveled distance l along the trajectory.

the objects on the way. When the planner evaluates tra-

jectory hypotheses, it could in principle carry out de-

formation simulations for each hypothesis online. This,

however, is not desirable in practical applications, since

FEM simulations are time-consuming and typically a

lot of path hypotheses need to be evaluated. Another

possibility is to precompute the deformation costs of

edges when generating a roadmap. This saves computa-

tion time when answering path queries, but has the dis-

advantage that recomputations are necessary whenever

the environment changes, for instance, when objects are

moved.

Our approach is different: we restrict ourselves to an

environment, in which objects can be deformed by the

robot, but cannot be moved. Furthermore, we ignore in-

teractions between different objects. Thereby, we can

introduce the concept of deformation cost functions for

individual objects. Such object deformation cost func-

tions are defined for robot trajectories relative to the ob-

ject. They can be learned once for each type of object

and are independent of the actual locations of obstacles.

The availability of deformation cost functions is advan-

tageous if there are many instances of the same object

type, or if the environment changes frequently.

The idea is to generate some trajectory samples rel-

ative to an object and perform the corresponding FEM

simulations in a preprocessing step. The problem of es-

timating the deformation costs introduced by a robot

given this set of training samples can then be efficiently

approached by regression techniques. Let y1:n be the set

of deformation cost values obtained from n simulations,

in which the virtual robot executed n different trajecto-

ries x1:n. Then, the goal is to learn a predictive model

p(y∗ | x∗, x1:n, y1:n) for estimating the deformation costs

y∗ given a new query trajectory x∗.

In theory, all possible trajectories through a de-

formable object can be executed. To bound the complex-

ity of the regression problem, we consider only straight

line motions through the object here. This is a restric-

tion, but not a strong one since the trajectories gen-

erated by roadmap planners are often piecewise linear

motions. The motions considered to estimate the de-

formation costs are described by a starting point s and

end point e on a virtual sphere around the robot. Fur-

thermore, we take into account the distance l from the

starting point that describes the length of the motion.

Figure 3 illustrates this parametrization. The points s

and e are each described by an azimuth φ and an eleva-

tion angle θ. Thus, xi is a five-dimensional vector in our

case with xi = [θs
i
, φs

i
, θe

i
, φe

i
, li]

T , where the superscript s

refers to the starting point and e to the end point.

5.3. Modeling Deformation Cost Functions using

Gaussian Processes

We approach the problem of estimating the defor-

mation costs of a robot trajectory by means of non-

parametric regression using the Gaussian process (GP)

model [50]. In this Bayesian approach to non-linear re-

gression, one places a prior on the space of functions us-

ing the following definition: A GP is a collection of ran-

dom variables, any of which have a joint Gaussian dis-

tribution. More formally, if we assume that {(xi, yi)}
n
i=1

with yi = f (xi) are samples from a GP and define

y = (y1, . . . , yn)⊤, we have

y ∼ N(µ,K) , µ ∈ Rn,K ∈ Rn×n . (14)

For simplicity, we set µ = 03. The interesting part of

the GP model is the covariance matrix K. It is specified

by [K]i j = k(xi, x j) using a covariance function k. In-

tuitively, the covariance function specifies how similar

two function values f (xi) and f (x j) are depending on

their inputs xi and x j. A popular choice is the squared

exponential covariance function, which is given by

kSE(xi, x j) = σ
2
f exp

(

−
1

2
(xi − x j)

T
Σ(xi − x j)

)

. (15)

Here, Σ = diag(ℓ1, . . . , ℓd)−2 is the length-scale matrix

and σ2
f

the signal variance. These parameters together

with the global noise level σn are known as the hyper-

parameters of the process.

We furthermore consider in our experiments the neu-

ral network covariance function [73, 74, 75], which is

3The expectation is a linear operator and for any deterministic

mean function m(x), the Gaussian process over f ′(x) := f (x) − m(x)

has zero mean.
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known to better adapt to non-smooth data and to ac-

count for variable smoothness. This covariance function

is specified as

kNN(xi, x j) =

σ2
f arcsin
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, (16)

with a bias factor β and Σ, σ f as defined above.

Learning a GP model is equivalent to determining the

hyperparameters of the covariance function that best ex-

plain the training data points. This is formulated as an

optimization problem by maximizing the marginal log

likelihood of the data given the model. We use a stan-

dard gradient optimization approach to find the best hy-

perparameters for a given dataset. More details on the

problem formulation can be found in the work of Ras-

mussen and Williams [50].

Given a set D = {(xi, yi)}
n
i=1

of training data ob-

tained from the physical simulation engine, we are in-

terested in predicting the target value y∗ for a new tra-

jectory specified by x∗. Let X = [x1; . . . ; xn]⊤ be the

matrix of the inputs. We obtain the predictive distribu-

tion p(y∗ | x∗,X, y) for a new observation x∗ that is again

Gaussian with mean

E[ f (x∗)] = k(x∗,X)
[

k(X,X) + σ2
nI

]−1
y (17)

and variance

V[ f (x∗)] = k(x∗, x∗) − k(x∗,X)
[

k(X,X) + σ2
nI

]−1
k(X,X∗), (18)

where I is the identity matrix and k(X,X) refers to the

covariance matrix built by evaluating the covariance

function k(·, ·) for all pairs of all row vectors (xi, x j) of

X. In sum, Eq. 17 provides the predictive mean for the

deformation costs when carrying out a motion along x∗
and Eq. 18 provides the corresponding predictive vari-

ance.

5.4. Efficient Regression by Problem Decomposition

The GP model introduced above allows us to predict

the expected deformation costs of a new trajectory based

on a set of training samples. In high-dimensional input

domains such as our trajectories in 3D space, a consid-

erable set of training samples is needed to obtain a good

function approximation; the function is entirely repre-

sented in terms of the training data points. Training the

GP model as well as computing the predictive distri-

bution for a new data point has a runtime cubic in the

number of training samples due to the necessary inver-

sions of the covariance matrix. For data sets consisting

of thousands of training samples, the approach thus be-

comes inefficient.

Inspired by the approach of Vasudevan et al. [52], we

decompose our regression problem into a number of lo-

cal ones. For a query trajectory x∗, we determine its M

nearest neighbors from the training data as

X′(x∗) = [x′1; . . . ; x′M] = arg min
[x′

1
;...;x′

M
]

M
∑

k=1

d(x′k, x∗), (19)

where the distance function d(·, ·) computes the great

circle distance between starting and end points of the

respective trajectory samples.

The M nearest neighbors X′ to the query trajectory x∗
are the training data points that have the highest influ-

ence on the prediction of y∗ in the GP framework. Con-

sidering only X′ instead of X in the GP is equivalent to

assuming that k(x∗, xi) = 0 for all xi that are not part

of X′. In our current implementation, we are able to get

appropriate predictions by setting M = 50. We experi-

enced that the loss is negligible with respect to larger

values of M, at least in all our experiments. Determin-

ing the M nearest neighbors to x∗ can be computed effi-

ciently using a k-d tree that is once built from the train-

ing data. Thus, queries can be obtained in logarithmic

time in the number of training examples and the GP

prediction does not depend on the size of the training

set anymore but only on M.

6. Applications on Real Robots

In this section, we present two applications of our

proposed motion planning system. First, we discuss

how to plan motions in 3D workspace for a manipu-

lation robot. Second, we present an implementation on

a wheeled robot that operates in the 2D plane. In this

case, we additionally address the problem of collision

avoidance.

6.1. Arm Planning in 3D

In our first application scenario, we plan motions for

our robotic manipulator presented in Section 4, which

has 7 degrees of freedom in its arm. When construct-

ing the roadmap, we uniformly sample nodes from the

configuration space of the robot. For each node, we

consider the N nearest neighbors and add an edge if

there is a straight line path between both nodes that

does not lead to collisions with rigid obstacles. In our

implementation, N was set to 50. Our current imple-

mentation furthermore applies A* to find the optimal
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End effector trajectory

Force-sensor trajectory

Wrist trajectory

Elbow trajectory

Figure 4: Determining the deformation costs of a ma-

nipulator motion: the manipulator moves downward in

the presence of the deformable bar. We consider the (ap-

proximately linear) trajectories described by its individ-

ual body parts and compute their deformation costs us-

ing GP regression.

path in the roadmap using the cost function given in

Eq. 1. To obtain an admissible heuristic for A*, i. e.,

a heuristic that underestimates the real costs specified

in Eq. 1, we use the distance to the goal configura-

tion weighted with (1 − α). Thus, we are able to find

the path in the roadmap that optimizes the trade-off be-

tween travel costs and deformation costs. The deforma-

tion costs of edges are approximated using the GP-based

regression method introduced in Section 5.

The deformation simulation system considers the mo-

tion of a rigid box surrounding the robot’s end effector

along the described trajectory to compute the deforma-

tion costs. It does not consider the full configuration of

the arm. This is clearly an approximation, but it allows

us to parametrize the regression problem with a low-

dimensional input. Otherwise, the full configuration of

the robot would have to be considered in the GP frame-

work. With higher-dimensional inputs, a larger number

of training examples is required. Furthermore, the defor-

mation cost function of an object would become depen-

dent on the position of the object relative to the robot.

To account for the fact that not only the end effector,

but also other body parts might deform an object, we

sample multiple points along the kinematic chain of the

robot. Then, we perform the estimation of the deforma-

tion costs for the trajectories of all sampled points along

the kinematic chain and consider the maximum of the

individual costs

Cdef = max
b

GP(x∗(b),X′(x∗(b)), y′(x∗(b))), (20)

where b refers to the individual body parts and x∗(b)

to the motion that the body parts carry out given the

kinematic structure of the robot, X′(x∗(b)) and y′(x∗(b))

are the nearest neighboring trajectories and correspond-

ing deformation costs that are used in the GP regres-

sion. Figure 4 illustrates the idea of this approxima-

tion, where the trajectory described by the end effec-

tor would miss the object, the trajectories of the wrist

and the force-sensor, in contrast, would lead to high de-

formation costs. Considering the maximum in Eq. 20

instead of, for example, the sum, generates more accu-

rate predictions since the largest deformation forces are

typically generated by one body part only.

In theory, there may be situations in which this as-

sumption is not valid, for example when a robot with

two manipulators would squeeze an object—such situa-

tions are not considered here.

6.2. Robot Navigation in 2D

In addition to the manipulation robot scenario, we

consider autonomous navigation of wheeled robots in

the presence of deformable objects. We implemented

a navigation system for a wheeled robot, an iRobot

B21r platform operating in real environments with de-

formable objects (Figure 5a). Our application scenario

is an office environment with a set of deformable cur-

tains in the corridor. In the context of robot navigation

in real environments, not only path planning is an is-

sue; during execution of the planned path, localization

and collision avoidance are essential for safe and reli-

able navigation.

In general, the sensor measurements of the robot are

used for collision avoidance, to ensure that the robot

never gets too close to an object. When navigating

among deformable objects, however, the robot might be

required to deform an object, which necessarily leads to

collisions with it. Hence, a new challenge arises, that

is how to interpret the sensor data of the robot and

distinguish measurements corresponding to deformable

objects from measurements belonging to rigid and dy-

namic obstacles that are to be avoided.

A prerequisite to address these issues is an appropri-

ate model of the environment. We use occupancy grid

maps to represent static obstacles (Figure 5c) and aug-

ment them with information on the deformable objects

in the environment (Figure 5b). These models are rep-

resented as described in Section 4 and allow us to es-

timate the deformation costs for moving between grid
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Figure 5: Robot navigation in 2D: our robot Albert in a corridor with curtains (a), the corresponding deformation

model (b) and the grid map representing the static part of the world (c).

cells using our GP-based regression approach presented

in Section 5.3. The path search is carried out using A*

on the grid.

Our implementation is based on CARMEN, a robot

sensing and navigation software [76] allowing indepen-

dent modules to communicate via a middle-ware. It pro-

vides modules for low-level robot control and sensing,

furthermore modules for path planning, localization,

and collision avoidance based on occupancy grid maps.

To integrate our approach into CARMEN, we replaced

the navigation module with our planner that takes into

account deformation costs. In addition to that, we re-

placed the collision detection method and extended the

localization module, which is based on Monte Carlo lo-

calization, in a way that laser beams observing a de-

formable object during deformation are not considered.

This is necessary, as the robot is localized with respect

to the grid map. The grid map, however, cannot repre-

sent deformable objects, in particular their change of

shape during deformation. In the next section, we will

address the problem of interpreting the robot’s sensor

data for localization and collision avoidance.

6.3. Sensor-based Collision Avoidance for Non-

deformable Objects

When navigating autonomously, the robot constantly

has to observe its environment in order to react to un-

foreseen obstacles. At the same time, it might get close

to deformable objects when deforming them. Therefore,

the main problem in our application is to figure out

which measurements correspond to a deformable ob-

ject, in which case they can be ignored by the collision

avoidance system. This section presents our approach

to address this problem. By combining the knowledge

about objects in the environment and their geometry

with estimates of range scans during deformations, we

can reason about the deformability of an observed ob-

ject.

We model this problem in a probabilistic fashion:

Let ci denote the binary random variable describing the

event that beam i observes a deformable object. Then,

p(ci | x, zi) describes the probability that beam i corre-

sponds to a deformable object given the robot position

x and the range measurement zi. Applying Bayes’ for-

mula, we obtain

p(ci | x, zi) =
p(zi | x, ci)p(ci | x)

∑

ci,¬ci
p(zi | x, ci)p(ci | x)

. (21)

Here, p(zi | x, ci) is the sensor model for the observa-

tion of a deformable object and p(ci | x) is the prior de-

noting the probability of observing a deformable object

from position x. We will shortly go into detail of how to

learn these models. The sensor model p(zi | x,¬ci) cor-

responds to the common sensor model p(zi | x) when no

deformable objects are present.

6.3.1. Learning Sensor Models for Deformable Objects

The sensor model p(zi | x, ci) does not only depend on

the robot position but also on the trajectory relative to an

object. For instance, the robot will measure a different

distance to the curtain when it is situated in front of it

than it would while passing through and deforming the

curtain. Therefore, we determine sensor models corre-

sponding to different trajectories of the robot relative to

an object.

For each trajectory, we record different datasets con-

sisting of the robot positions x (provided by the localiza-

tion module) and the ranges zi and then manually label

the beams reflected by a deformable object. From the

labeled measurements obtained along these trajectories,
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p(ci | x), (c) the average beam length, and (d) standard deviation when observing the deformable object.

we compute the statistics

p(ci | x) =
hitsdef

hitsdef +missesdef

, (22)

where hitsdef is the number of beams that are reflected

by a deformable object and missesdef states, how often

no deformable object was observed for a given position

x and viewing angle i. The sensor model p(zi | x, ci) is

described by a Gaussian with average range µ and vari-

ance σ2. An example of such a sensor model for a robot

trajectory through the curtain is shown in Figure 6.

6.3.2. Avoiding Collisions

During path execution, the robot constantly moni-

tors its position and also its sensor measurements for

utilization in the collision avoidance system. In our

case, the robot has to distinguish between allowed colli-

sions with deformable objects and impending collisions

with unforeseen or dynamic obstacles, which have to be

avoided. This is done by filtering out the range measure-

ments that observe a deformable object with high prob-

ability. Therefore, we evaluate Eq. 21 for each beam and

identify those beams that can be neglected for the colli-

sion avoidance.

This labeling or filtering of the range measurements

offers a great potential, since it is done orthogonally

to traditional collision avoidance methods. As a result,

this technique can be combined with any other collision

avoidance technique such as the dynamic window ap-

proach [77] or the nearness diagram technique [78].

The detected measurements, which are identified to

belong to dynamic obstacles, can be incorporated into

the navigation system to update the path of the robot or

into any sensor based collision avoidance routine. Our

current implementation performs replanning if a path is

blocked by a dynamic object or simply stops the robot

if the distance to an obstacle is too close. An example

of the collision detection is given in Figure 7.

7. Experiments

In this section, we present evaluations of our ap-

proaches to deformation model learning, deformation

cost prediction, path planning, and collision avoidance.

7.1. Deformation Model Learning

We carried out different experiments to evaluate

our parameter estimation procedure with observations

of object deformations obtained from simulations and

from interactions with real objects. In simulation exper-

iments, we evaluated the accuracy and precision of the

parameter estimation procedure under the influence of

different sources of noise. For the observed deforma-

tions of real objects, we evaluated the robustness of the

parameter estimation as well as the error in predicting

new force measurements for the estimated parameters.

7.1.1. Simulation Experiments

We evaluated our parameter estimation procedure un-

der controlled conditions in a simulation experiment.

Our test object is a cube with an edge length of 20 cm

and true material parameters E = 100 N
dm2 and ν = 0.3.

The model consists of 625 tetrahedrons and the surface

mesh consists of 2,646 points. We generated a test data

set consisting of 10 force-deformation samples with lin-

early increasing force in the range of 3 to 30 Newton. In

different runs, we evaluated the results of the estimation

procedure under the influence of different noise charac-

teristics. We identified three different sources of noise:
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Figure 9: Force-displacement curves for recorded mea-

surements of real objects.

(1) Noise in the RGB-D measurements, which is

around 2 mm for distances below 1 m, we assume

σp ∼ 2.5 mm.

(2) Noise in the force measurements, which contains

a force-dependent noise component of ∼ 5 % as

specified by the manufacturer and a white noise

component with a magnitude of approximately

1 N: σ f ∼ 0.05|f| + 1 N.

(3) Noise in the estimation of the contact point: σc ∼

20 mm.

In each run, we evaluated the iterative parameter es-

timation procedure for all 10 force-displacement sam-

ples. Run 1 to 3 consider the three types of noise men-

tioned above individually and run 4 considers a com-

bination of all types of noise. Figure 8 summarizes the

results in terms of the error in the estimated Young’s

modulus, Poisson’s ratio and the residual mean square

error (MSE) after convergence of the estimation. Fur-

thermore, it illustrates the evolution of the parameters

and the error in one learning run for the different noise

settings. From the results, we can make some interest-

ing observations. The observation noise (run 1) does not

seem to affect the parameter estimation, the parameters

are estimated accurately for all samples while the resid-

ual error after convergence corresponds to the obser-

vation noise. Noise in the force measurements (run 2)

naturally leads to a larger error in the estimated param-

eters. This error is more pronounced for samples with

smaller deformations and forces due to the white noise

component in the force observation. The residual error,

in contrast, is small, the estimated parameters simply
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Figure 8: Parameter estimation results for a simulated data set: The plots in the top row show the relative errors in

the estimated Young’s modulus E (left) and Poisson’s ratio ν (middle), furthermore the residual MSE of the surface

meshes after convergence of the estimation procedure (right). The plots in the bottom row illustrate the evolution of

the corresponding quantities in learning runs for one force-deformation sample (with f ≈ 27 N).

express a different force-displacement relation. An er-

ror in the contact point leads to a different deformation

of the model, hence, the observation can never be en-

tirely consistent with the deformed model. This error is

more pronounced for larger deformations. For a com-

bination of all errors in run 4, the relative error in the

estimation of the Young modulus is still below 10 %,

while for Poisson’s ratio it is around 15 %. Thus, our

estimation procedure allows to identify the material pa-

rameters from force-deformation observations.

7.1.2. Parameter Estimation for Real Objects

We evaluated our parameter estimation approach on

observations of four different real objects: a foam mat

with a size of 50 x 80 x 5 cm, a foam cube of edge length

15 cm, an inflatable ball with a diameter of approxi-

mately 40 cm, and a plush teddy bear with a height of

approximately 50 cm. For each object, we recorded a

test series of force-deformation samples with increasing

force for one contact point. For the teddy bear, we addi-

tionally considered different contact points. The force-

displacement curves for the recorded samples, with the

displacements derived from the manipulator motion are

shown in Figure 9. In the following, we present param-

eter estimation results for each object.

Foam mat: We recorded a series of four force-

deformation samples for one contact point on the foam

mat, and estimated the material parameters for each of

the samples individually. The evolution of the param-

eters and the error in the individual learning runs are

shown in Figure 10. While the estimated values for

the Young modulus correspond well for the last three

samples, the estimation for the first measurement con-

verges to a considerably smaller value. This can be ex-

plained on the one side with the nonlinearity in the

force-displacement curve, and on the other side with a

small deformation region that is hardly noticeable in the

error function – it almost gets lost in the measurement

noise. If we discard sample 1 as outlier, and average

over the remaining three samples, we obtain an estimate

of 340.2 N
dm2 ± 88.2 N

dm2 for Young’s modulus, if we con-

sider 95 % confidence intervals.

The estimation for Poisson’s ratio converges to zero

for each sample. This is surprising, since the Poisson

ratio of foam is reported to be in range of 0.1 to 0.3 in

general. To gain more insight into this behavior of our

estimation procedure, we consider the error function for

sample 3 in Figure 11. This error function was obtained

for a uniform sampling in the parameter space and is

mainly influenced by the value of the Young modulus,

while a change in the Poisson ratio leads to comparably

small changes in the error function. This could be ex-

plained by the fact that the deformation is observed from

above, and since the foam mat is larger than the field of

view of the camera, a possible extension of the object

transverse to the applied force cannot be observed with

our sensor setup.

Foam cube: In addition to the foam mat, we ex-
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dm2 , ν = 0). The corresponding registered surface meshes are shown on the right.

amined a toy cube consisting of a different type of

foam. It is softer, as can be observed from the force-

displacement curve (Figure 9). The Young’s modulus

estimated for different applied forces varies and is in the

range of 148.9 N
dm2 ± 17.2 N

dm2 . Similar to the foam mat,

Poisson’s ratio converges to zero, as an extension of the

object perpendicular to the camera is hardly observable.

Inflatable ball: The inflatable ball has a large diame-

ter and a small force is required to deform it. Thus, we

were able to acquire eight force-deformation samples in

total. The material parameters were estimated for each

sample individually. The estimated Young’s modulus is

in the range of 65.5 N
dm2 ± 8.1 N

dm2 and has a low variance

over the different runs. The variance in the estimated

Poisson’s ratio, in contrast, is rather large (0.27 ± 0.12).

The residual error for the registered meshes is notably

larger than for the foam mat, in particular for larger de-

formation forces. The larger error could be explained

by the fact that the model never entirely fits the ob-

served deformation. An idea to improve the model error

could be to adapt the resolution of the underlying tetra-

hedral model used to compute the deformation. In our

experiments, however, we have not considered this pos-

sibility. We generated tetrahedral meshes with approxi-

mately 1,000 to 2,000 elements to bound the computa-

tion time of the parameter estimation.

Plush teddy: The plush teddy bear is a large and in-

homogeneous object. To study our assumption of ho-

mogeneous material in more detail, we acquired sev-

eral test series of force-deformation observations at

different contact points on its back, head, belly and

chest. Accordingly, we generated two different volumet-

ric meshes for the parameter estimation procedure, one

representing the teddy lying on its belly and one rep-

resenting it lying on its back. We estimated the ma-

terial parameters for each force-deformation observa-

tion and each contact point individually. The results are

summarized in Figure 12. For all contact points, the

variance in the estimated parameters is lower, if larger

forces are applied. This is related to a larger deforma-

tion region in the surface observation, which can be

better matched with the deformed model. Furthermore,

the estimated parameters, in particular the Young modu-

lus, vary for different contact points, the assumption of
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Figure 12: Parameter estimation results for the plush teddy bear for different force-deformation observations on dif-

ferent contact points. The estimated parameters, Young’s modulus (top left) and Poisson’s ratio (top right) and the

residual MSE (bottom) are shown for the individual observations, together with the mean and confidence interval for

each contact point.

∅E ( N
dm2 ) ∅ν MSE (mm) Force error (%) ∅ runtime

Foam (3 samples) 340.2 ± 88.2 0.0 ± 0.0 7.5 ± 0.8 10.0 ± 15.2 2 m 20 s

Cube (7 samples) 148.9 ± 17.2 0.0 ± 0.0 18.2 ± 1.7 12.9 ± 14.0 3 m 7 s

Ball (8 samples) 65.5 ± 8.1 0.27 ± 0.12 15.8 ± 2.7 12.5 ± 17.8 9 m 44 s

Teddy (9 samples) 29.5 ± 3.0 0.07 ± 0.08 18.1 ± 6.0 12.7 ± 10.5 23 m 40 s

Table 1: Parameter estimation results for different real objects. We determined the average over different runs with

different forces applied to one contact point.

homogeneous material is obviously not applicable for

this object. The residual error for the registered surface

meshes tends increase for larger applied forces, which

could be related to the mesh resolution of the underly-

ing volumetric meshes. The parameters estimated in the

different experiments, however, are still similar.

Validation of the learned models: We determined

the material parameters for each object in a test se-

ries with several force-deformation samples. The means

of the estimated parameters together with their 95 %-

confidence intervals over the different runs already give

an indication on the reliability of the estimation. They

are summarized in Table 1 for all objects we considered

in our experiments. In a validation experiment, we ad-

ditionally evaluated how well the determined material

parameters allow us to predict the measured forces. To

this end, we performed a leave-one-out-validation for

each test series. A test series recorded for one contact

point consists of x force-deformation samples with in-

creasing force. In the validation experiment, we used

(x − 1) samples to determine the averaged material pa-

rameters, and the remaining sample to evaluate how ac-

curately the measured force can be predicted assuming

these parameters. In detail, we determined the force that

minimized the difference between the observed surface

and the simulated deformation. Table 1 lists the aver-

aged force prediction errors for all objects. The forces

could be predicted with an error of approximately 10

to 15 %. Thus, the learned models can be useful in pre-

dicting the force a robot has to expend when deforming

objects, although we neglect different material effects,

such as viscoelasticity and nonlinearity.

7.2. Deformation Cost Approximation

In this section, we present evaluations of our ap-

proach to model deformation cost functions of objects

with Gaussian processes. Using the simulation frame-

work described in Section 3.3, we generated several

data sets consisting of trajectory samples that poten-

tially lead to object deformations for artificial and real

deformable objects. We considered trajectories in 2D

that describe the motions of a wheeled robot and tra-

jectories in 3D that describe the motions of a manipu-

lation robot end effector. The trajectory samples were

generated by randomly sampling starting and end point

on the bounding circle and bounding sphere around the

object. An overview of the generated data sets is given

in Table 2. In addition to performing evaluations on the

generated data sets, we use them in the planning appli-

cations in the next section.

In the experiments, we evaluate the accuracy of the

predictions using the mean absolute error (MAE) and
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Figure 13: Prediction accuracy of the local GPD models depending on the number of samples used to train the GP

hyperparameters. Data set: 3D-Teddy, 5,000 training trajectories were available and the 50 nearest neighbors were

used to build the local GPs.

the standardized mean squared error (sMSE)

sMSE =
1

n

n
∑

i=1

(yi − ŷi)
2

σ2
test

. (23)

The sMSE and MAE error losses only take into account

the predictive mean of the model. Since the Gaussian

process framework provides us with an estimate of the

uncertainty of a prediction, we evaluate the fit of this

predictive distribution by considering the negative log

predictive density (NLDP) of the true targets:

− log p(y∗ | x∗,D) =
1

2
log(2πσ2

∗) +
(y∗ − ŷ∗)

2

2σ2
∗

. (24)

It is minimal when the variance equals the error and

penalizes both over-confident and under-confident esti-

mates. This loss can be standardized by subtracting the

NLPD of the trivial model, that is a Gaussian distribu-

tion with mean and standard deviation of the training

set distribution. Thus, we consider the mean standard-

ized log loss (MSLL)

MSLL =
−1

n

n
∑

i=1

log p(yi | xi,D) − log ptrivial(yi | xi,D) ,

(25)

which is approximately zero for simple models and neg-

ative for better models.

We investigate the effects of different optimization

strategies and parameters. In particular, we analyze the

required number of training samples as well as the num-

ber of nearest neighbors to be considered for the indi-

vidual prediction tasks. To demonstrate the benefits of

decomposition and GP regression, we compare our ap-

proach to a full GP model using all training points and

to a weighted average M-nearest neighbor strategy. To

summarize, the different strategies we evaluate are:

GPD our GP decomposition strategy, for each test

point, the M nearest neighbors are selected from

the N training points to build a local GP. The hy-

perparameters, used in all local GPs, are optimized

once on a subset of all samples.

GPO GP decomposition and local optimization strat-

egy, the hyperparameters are optimized for each

local GP and test point individually on M ≪ N

trajectories.

GPF a full GP model using all available training trajec-

tories (if computationally tractable) for hyperpa-

rameter optimization and prediction of a test point.

IDW the baseline strategy predicts the weighted aver-

age of the M nearest neighbors to a test point, with

weights corresponding to the inverse of the dis-

tance to a test point.

For the GP models, we furthermore compare two differ-

ent covariance functions, the squared exponential (GP-

SE) and the nonstationary neural network (GP-NN) co-

variance function.

7.2.1. GP Training and Number of Training Samples

GP training is the process of optimizing the hyperpa-

rameters of the covariance function such that the model

best fits the data. In the first set of experiments, we in-

vestigated how many training samples are required to

train GP models and to obtain accurate predictions.

With the GPD strategies, only a subset of the avail-

able training data set is used to train the hyperparam-

eters of the GP models. In a first experiment, we in-

vestigated the effect of the number of samples N used

to train the hyperparameters on the prediction accu-

racy. We considered the Teddy-3D data set and ran-

domly selected 5,000 trajectories as training data and

300 trajectories as test data. For a fixed number of 50

nearest neighbors to build the local GPs, we evaluated

the prediction errors (MAE and sMSE) as well as the

MSLL for varying N. The results of this experiment

are shown in Figure 13 and illustrate that training sets
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Figure 14: Comparison of different strategies to predict the deformation costs of a robot trajectory: shown are the

MAE, sMSE, MSLL depending on the number of training samples. Data set: Foam-3D, 10 nearest neighbors.
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Data set # trajec- # tetra- run-

tories hedra time

Artificial objects:

Duck (2D) 4,284 530 7 h

Curtain-A (2D) 4,693 500 10 h

Real objects:

Curtain-R (2D) 2,035 285 5.5 h

Foam (3D) 22,950 385 24 h

Teddy (3D) 12,620 940 24 h

Table 2: Trajectory data sets for different deformable

objects: the simulation time depends on the length of the

trajectories and on the number of elements of an object,

it increases for more complex objects.

larger than 1,000 samples do not lead to improved ac-

curacies. The computation time for hyperparameter op-

timization, though, is cubic in the number of samples.

For 1,000 samples, optimization with the squared expo-

nential covariance function requires up to two minutes,

with the neural network covariance function around five

minutes due to more involved covariance computations.

For 3,000 samples, the optimization already takes up to

half an hour in case of the squared exponential and up to

one hour in case of the neural network covariance func-

tion. In the following experiments, we therefore limit

the maximum number of samples to 1,000 when learn-

ing the hyperparameters of the GP models.

We additionally investigated the required number of

trajectory samples to obtain accurate predictions for

the deformation costs. We split the data sets into 80 %

training trajectories and 20 % test trajectories. From the

available set of training trajectories, a varying number of

samples was used for regression of the test samples. In

this experiment, the number of nearest neighbors used

to build local GPs was fixed to ten. The results of this

experiment for all considered strategies are summarized

in Figure 14 for the 3D foam data set. Increasing the

number of training samples obviously leads to a smaller
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Figure 16: Comparison of the different strategies to pre-

dict the deformation costs of trajectories in a ten-fold

cross-evaluation.

prediction error for all considered strategies. The errors

for the GP models are in general smaller compared to

the baseline strategy, in particular, if fewer training sam-

ples are available. For large training data sets, however,

the error of the baseline strategy approaches the error of

the GP models. As generating new samples by means

of simulations is time-consuming, the training data sets

cannot be arbitrarily increased and the GP models allow

for a better trade-off between the size of the training

set and accuracy. For the considered number of nearest

neighbors, we cannot observe a significant difference

between squared exponential and neural network ker-

nel. Locally optimizing the hyperparameters does not

seem to improve the prediction accuracy either, at least

for the considered number of training samples in this

experiment. The MSLL, however, is smaller for the lo-

cally optimized GPs, which indicates more accurate un-

certainty estimates for these strategies.

7.2.2. Number of Nearest Neighbors

In a further experiment, we investigated the influ-

ence of the number of nearest neighbors on the pre-

diction accuracy. For a fixed number of 2,000 training

samples, we evaluated the prediction error when con-

sidering up to 100 nearest neighbors for each predic-

tion task. The results of this experiment are summa-

rized in Figure 15 for the 3D foam data set. Increas-

ing the number of nearest neighbors leads to more ac-

curate predictions and uncertainty estimates for all GP

models. With 50 nearest neighbors, the performance is

comparable to a full GP model that considers all data

points. Using only the M nearest neighbors when eval-

uating the GP model, however, speeds up computation

time, since no computations with large matrices are re-

quired. In case of the neural network kernel, evaluation

of one test sample requires approximately 20 ms for a

GP with 50 data points, in contrast to 550 ms for a GP

with 2,000 data points. Locally optimizing the hyper-

parameters does not notably influence the prediction er-

rors. The uncertainty estimates, however, are more accu-

rate. If the hyperparameters are optimized for each GP

locally, a computational overhead of 200 ms per sam-

ple is introduced. In contrast to a full GP model, the

local approximation strategies can deal with even larger

data sets, thus resulting in more accurate predictions.

The experiments indicate that a number of 50 nearest

neighbors leads to similar results as the full GP model

while significantly reducing computation time.

7.2.3. Statistical Evaluation

The above experiments showed that a number of

1,000 training samples leads to good prediction results

in the case of 2D trajectories. For 3D trajectories, we al-

ready obtain decent predictions for 5,000 training sam-

ples. For the 3D data sets, a number of 50 nearest neigh-

bors for building local GPs seems to be a reasonable

choice both with respect to minimizing the prediction

errors and the MSLL. In 2D, we set the number of near-

est neighbors to 25, since more nearest neighbors do not

lead to improved prediction results.

With these parameters identified, we performed a 10-

fold cross-validation on all data sets to obtain statisti-

cal results on the performance of the different strate-

gies. Furthermore, we compared the GP models to the

baseline strategy, which predicts the weighted average

over the ten nearest neighbors. We split the available

trajectories into ten folds, and in each run, the test sam-

ples were randomly chosen from one fold and the train-

ing samples were randomly chosen from the remaining

nine folds. The results of this experiment are summa-

rized in Figure 16 for the different strategies and data

sets we considered. In terms of the MAE, the strate-

gies using the neural network covariance function sig-

nificantly outperform both the baseline and the squared
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exponential covariance function. For the sMSE, the dif-

ference is less pronounced, but still, the neural network

covariance function leads to the smallest overall errors.

The uncertainty estimates of the two different covari-

ance functions are comparable, and in most cases, they

are improved when locally optimizing the hyperparam-

eters. Considering these results, the GPD strategy using

the neural network covariance function and optimizing

the hyperparameters once on a subset of the available

training samples allows for the best trade-off between

prediction accuracy and runtime. Thus, we use this strat-

egy in all our planning experiments when determining

the deformation costs of the roadmap.

7.3. Motion Planning

In this section, we present example applications and

experimental evaluations of our proposed planning sys-

tem. We first demonstrate the planning system for our

manipulator. Second, we investigate the navigation sce-

nario with the wheeled robot in more detail. For this

application, we evaluate the planning algorithm as well

as the collision avoidance.

7.3.1. Arm Planning in 3D

We evaluated our planning system in two different

example applications for our manipulation robot Zora.

First, we show a real-world example with the foam mat

as a deformable obstacle. This example is designed to

close the loop between parameter estimation and motion

planning. The robot initially determined the deforma-

tion parameters of the object, which in turn allows us to

consider the object in simulation and to perform motion

planning. Second, we consider a simulated environment

with deformable rods. This example is designed to il-

lustrate the advantage of considering deformation costs

during planning compared to a planner that ignores de-

formable objects.

Real-world example: We set up an experimental en-

vironment with a deformable foam mat for our manip-

ulation robot Zora (shown in Figure 19). We gener-

ated a roadmap that accounts for the static part of the

world. The roadmap contains 1,000 configuration sam-

ples and 8,635 connections between nodes. We evalu-

ated the deformation costs of edges using our local GP-

regression approach introduced in Section 5.3 with a

set of 22,950 precomputed trajectory samples. The lo-

cal GPs were built using the neural network covariance

function, and the hyperparameters were optimized for

a subset of 1,000 trajectories. The deformation costs of

edges can be evaluated for the roadmap before answer-

ing any queries using our approximation described in

Section 6.1. With the roadmap precomputed in this way,

arbitrary goal positions can be queried, only new edges

connecting the initial and goal configuration need to be

evaluated using GP regression at query time.

As an example planning task, the manipulator was re-

quired to move from its initial position, in which the

arm is stretched upwards to a goal configuration facing

forward, in which the goal position of the end effector

is behind a deformable foam mat. To illustrate the ad-

vantage of considering object deformations when plan-

ning motions, we compare our planner to two alternative

planners, one that treats them as rigid obstacles, and one

that ignores deformable obstacles. A planner treating all

obstacles as rigid is not able to find a path, since the goal

configuration leads to a collision with the foam mat (see

Figure 17a). The plan generated when completely ig-

noring the foam mat is shown in Figure 17b. Executing

this plan results in tearing down the foam mat, as can

be seen in snapshots of the robot motion in Figure 18.

The path generated by our planner is visualized in Fig-

ure 17c, it shows the workspace trajectories of different

manipulator body parts along the edges of the roadmap.

To minimize the deformation of the foam mat, the plan-

ner chooses a motion that approaches the target position

from the front and slightly below. The motion of the ma-

nipulator along this path is shown in Figure 19 and in a

video that can be found online.4

Simulation example: We set up a virtual environment

with four deformable rods as obstacles in the workspace

of the robot. The rods are modeled to be elastic and fixed

to a table and thus can be seen as resembling a construc-

tion site scenario with cables or tubes that can be bent.

To determine the deformation cost function for the rods,

we generated 25,390 training trajectories deforming the

rod that allow us to determine the deformation costs of

edges in the roadmap using GP regression. Since the

four rods have the same deformation properties in this

scenario, training samples need to be computed only

once. The roadmap in this example contains 2,000 robot

configurations and 35,408 edges. We evaluated the de-

formation costs of all roadmap edges in a preprocess-

ing step. After these pre-computations, we performed

seven different planning experiments. We evaluated the

planned motions with respect to path length and result-

ing deformation costs and compared them to a planner

that ignores the deformable objects. Results are sum-

marized in Table 3. If deformable objects are ignored,

the deformation costs of the executed trajectories are 1.4

to 1718 times larger compared to our planner while the

4Real-world experiment: http://www.informatik.

uni-freiburg.de/˜bfrank/videos/zora_foam.avi
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(a) Considering the object as rigid. (b) Ignoring deformation costs. (c) Considering deformation costs.

Figure 17: Different motion plans to reach the goal configuration behind the foam mat. (a) A planner treating all

obstacles as rigid is not able to find a path to the goal. (b) A planner ignoring deformable obstacles chooses the

shortest path. (c) Our planner minimizes the trade-off between motion and deformation costs.

Figure 18: When executing the shortest path that ignores deformable objects (Figure 17b), our robot destroys the

experimental setup.

Figure 19: When considering the deformation costs (Figure 17c), our robot keeps the deformation of the foam to a

minimum.

trajectories considering deformation costs are 1.1 to 1.7

times longer. A comparison of the planned trajectories

is illustrated in Figure 20.

7.3.2. Robot Navigation in 2D

We evaluated our navigation system described in

Section 6.2 on our robot Albert, a wheeled platform

equipped with a laser range scanner. To set up a navi-

gation scenario, we mounted two curtains in the corri-

dor of our lab as deformable objects (see Figure 5). We

performed several experiments to evaluate our motion

planner as well as our approach to classify the sensor

measurements of the robot during navigation.

Path planning: In the environment described above,

the robot is given the task of reaching a goal point be-

yond the curtains. The planner optimizes the weighted

sum of travel costs and deformation costs when search-

(a) (b) (c)

Figure 21: Planning a path for different weightings of

the deformation costs: for α = 0, the deformation costs

are ignored (a), for α = 0.2, a longer trajectory is chosen

to minimize deformations (b), for α = 0.8, deformations

are avoided (c).
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(a) Ignoring deformable objects.

(b) Considering deformation costs.

Figure 20: Comparison of seven planning tasks (T1-T7 in Table 3) in an environment with deformable rods for a

planner that ignores deformable objects and our planner. Our planner chooses longer trajectories that lead to lower

deformation costs.

(a) (b)

Figure 22: The planner prefers trajectories that mini-

mize object deformations. The curtains in setup (a) are

moved 40 cm along the positive y-axis compared to the

setup from the previous experiment (b). The weighting

coefficient α is set to 0.2 in both examples.

ing for a path, and a weighting coefficient α (see Eq. 1)

determines their trade-off. In a first experiment, we in-

vestigated the influence of this weighting coefficient on

the generated trajectories. For fixed starting points and

goal points, we varied the weighting coefficient α and

compared the trajectories generated by our planner. The

results for an example planning task can be seen in Fig-

ure 21. In our setup, the deformations of the curtains

are minimized if the robot moves on a trajectory be-

tween both curtains and thereby deforms them equally

at their borders only. We found that for low values of

α ≈ 0.2, the planner prefers trajectories with low to-

tal costs, it avoids large detours and minimizes object

deformations. This fact is illustrated in a second exper-

iment, in which we varied the experimental setup and

moved both curtains. Figure 22 shows the generated tra-

jectory for this setup and compares it to the trajectory

determined for the previous setup. In both cases, α is

set to 0.2. The planner chooses a somewhat longer tra-

jectory in order to minimize the deformation costs.

Sensor interpretation: We evaluated how well our

sensor model for deformable objects is able to predict

the presence of deformable objects during robot naviga-

tion. We determined sensor models for two different tra-

jectories through both curtains with minimal deforma-

tion costs that were chosen preferably by our planner. To

compute the sensor model statistics for each trajectory,

we recorded twelve data sets consisting of laser data and

robot positions along the trajectories. We manually la-

beled the laser beams that were reflected by the curtain.

For each trajectory, we performed a leave-one-out cross-

validation using eleven data sets for learning the model

and one for evaluation. The results of this experiment

are summarized in Table 4 and demonstrate that the sys-

tem is able to distinguish between deformable and static

obstacles with high accuracy. While the number of false

positives is at around 3 %, the number of false negatives

is below 1 %.

Recognition of dynamic obstacles: The sensor model

is able to distinguish well between deformable and static

non-deformable objects contained in the map of the

robot. For collision avoidance, however, the key ques-

tion is whether the system is able to distinguish well

between deformable objects and close-by dynamic ob-

stacles not contained in the map, given that the dynamic

obstacles are not occluded by deformable objects and

can be perceived by the sensor. Therefore, we performed
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Planning deformation Path deformation

task weight α length costs

T1:
0.0 659.3 83.5

0.5 1122.9 14.6

T2:
0.0 674.6 69.9

0.5 988.3 4.7

T3:
0.0 539.4 515.6

0.5 821.0 0.3

T4:
0.0 595.6 31.6

0.5 854.5 19.7

T5:
0.0 668.2 45.3

0.5 720.2 0.1

T6:
0.0 741.3 6718.7

0.1 758.5 4346.1

T7:
0.0 741.3 3786.3

0.1 1101.1 2736.5

Table 3: Planner evaluation in the rods environment:

we compare the resulting deformation costs and path

lengths of trajectories computed using our approach to

those resulting from a planner that ignores deformable

objects (α = 0.0).

several experiments, in which the robot moved on a tra-

jectory deforming the curtain while a human was block-

ing its path. The recorded laser scans were labeled ac-

cordingly and evaluated with respect to the prediction

performance. The results are listed in Table 5. In this

experiment, the number of false negatives is comparable

to the situation in static environments while the number

of false positives is around 1 % higher than in the previ-

ous experiment. Our experiments, however, showed that

this still leads to a safe navigation behavior. In the worst

case, false negatives forced the robot to unnecessarily

stop while the false positives usually were outliers in a

True class

Deformable Rigid

P
re

d
ic

te
d

cl
as

s

Deformable 43857 (97.1%) 621 (0.9%)

Rigid 1292 (2.9%) 65907 (99.1%)

Total 45149 66528

Table 4: Confusion matrix for predicting, whether a sen-

sor measurement corresponds to a deformable object in

a static environment.

True class

Deformable Dynamic

P
re

d
ic

te
d

cl
as

s

Deformable 8563 (96.5%) 98 (2.1%)

Dynamic 314 (3.5%) 4600 (97.9%)

Total 8877 4698

Table 5: Confusion matrix for predicting, whether a sen-

sor measurement corresponds to a deformable object

in an environment containing both deformable and dy-

namic objects.

region of correctly classified measurements observing a

dynamic obstacle. Thus, the robot was still able to rec-

ognize dynamic obstacles and to avoid collisions with

them.

Real-world navigation example: In a navigation ex-

ample task, we demonstrate the capability of our system

to integrate path planning and collision avoidance and

to navigate safely in the environment described above.

Figure 23 shows a sequence of snapshots of our real

robot moving through the curtains. A video of the robot

navigating in this environment and demonstrating its

ability to avoid collisions with dynamic obstacles can

be found online.5

Outdoor Robot Example: As a further application

scenario for our planner, we consider a tractor-like out-

door robot that navigates in a tree plantation. We ad-

dress this problem in simulation, since we do not have

an outdoor robot with force-sensing capabilities. In this

example, the tree trunk is assumed to be rigid while the

treetop is modeled to be uniformly elastic. Given this

setup, our planner is able to consider deformations of

the twigs and chooses a trajectory with low deformation

costs as illustrated in Figure 24.

7.3.3. Simulation Example

We compared our planner that determines the defor-

mation costs of path segments using GP regression to a

planner that carries out the required simulations during

runtime. In a simulation example, the task was to navi-

gate an environment with rubber ducks and curtains, in

which deformations of the rubber ducks are more ex-

pensive than deformations of curtains. The paths com-

puted by both planners are illustrated in Figure 25. Both

planners generally avoid the rubber ducks. Our planner

5Real-world experiment: http://www.informatik.

uni-freiburg.de/˜bfrank/videos/albert_

curtains.avi
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Figure 23: The mobile robot Albert is navigating through curtains.

Figure 24: Application scenario for a simulated outdoor robot that navigates among vegetation. Our planner chooses

a low-deformation cost trajectory that leads to gentle deformations of the low-hanging twigs of the tree.

(a) Using GPs.

(b) Using Simulations.

Figure 25: Comparison of our planning system (a) with

a planning system that performs simulations during run-

time (b).

underestimates the actual deformation costs of the tra-

jectory by 14 % and the path length deviates by 9.5 %

from the optimal solution found by the planner that uses

simulations. Our planner, however, is able to compute

the plan in less than a second, while the planner that

performs accurate simulations requires more than one

hour to answer the path query.

7.3.4. Computation Time

In this section, we analyze the computational cost of

our proposed motion planner. Besides the computation-

ally intense generation of training examples for the GP

deformation cost function, a model for the static part

of the world has to be determined. The occupancy grid

map for the 2D real-world navigation example was de-

termined independently and readily available with the

CARMEN software package. The roadmap computation

for the static part of the real-world manipulator environ-

ment took approximately half an hour. Given a model of

the static part of the environment and a set of trajectory

training samples for deformable objects, the deforma-

tion costs for motions represented in the static model

can be evaluated using our GP-based regression ap-

proach. In order to speed up planning, the deformation

costs of edges in the roadmap that potentially lead to

object deformations can be precomputed. This required

3 s for the 2D grid map and 420 s for the 3D roadmap

in the foam environment. With these precomputations

available, we evaluated the time required to solve path

queries in 10 runs with random starting and goal points.
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In the 2D environment, path queries could be answered

in 0.3 s on average. In the 3D manipulator setting, an-

swering one query required on average 8 s, including

collision checks for connecting new nodes, evaluating

the deformation costs of new edges and searching for

a path. Evaluating the deformation costs introduces an

overhead of 2.5 s. Thus, path queries can be solved ef-

ficiently, even for manipulation robots with several de-

grees of freedom.

Comparison to a roadmap planner with integrated

simulation: Instead of precomputing sample trajecto-

ries and estimating the deformation costs of edges in

the roadmap using GP regression, it would be possi-

ble to perform the simulations of the motions along

edges when constructing the roadmap. Considering the

roadmap from the manipulation robot example and as-

suming a computation time of 3 s for the simulation of

an edge, evaluating 6,358 edges would require an ad-

ditional 5 h when constructing the roadmap. When an-

swering path queries, the initial and goal configuration

would be connected to the roadmap. In the worst case,

assuming that each node is connected to its 50 nearest

neighbors, this would require 200 simulations (two sim-

ulation runs are necessary per edge) and another 10 m

per path query, thus increasing the runtime for answer-

ing path queries by approximately two orders of mag-

nitude. In contrast, our planner is able to answer path

queries in the order of seconds, and in this way facil-

itates a prompt response of the robot to new motion

tasks. A further advantage of our deformation cost func-

tions is that they describe the costs relative to an object

and need to be computed only once for each type of ob-

ject, while a roadmap precomputed as described above

would have to be recomputed whenever the environment

changes.

8. Conclusion

In this paper, we presented several techniques to en-

able robot motion in environments with deformable ob-

stacles. We addressed the acquisition of deformation

models, efficient representations for planning, and ap-

plication of the developed motion planning framework

to robots operating in real-world environments.

Our robot is equipped with the sensors necessary to

acquire models of deformable objects and determines

their material parameters by minimizing the error be-

tween observed deformation and model prediction. In

several experiments, we demonstrated that the learned

models can be used for realistic simulations of object

deformations and that deformations as well as forces

can be predicted accurately.

To realize an efficient planning system and to avoid

time-consuming simulations during planning time, we

introduced deformation cost functions for objects based

on Gaussian process (GP) models. Our roadmap-based

motion planner considers object deformations by opti-

mizing the trade-off between motion costs and deforma-

tion costs. It determines the deformation costs of path

segments in the roadmap using GP-based regression. In

this way, we are able to efficiently plan motions. Even

for manipulation robots with several degrees of free-

dom, the planning time is in the order of seconds, and

therefore by several orders of magnitudes faster than a

planner that carries out the deformation simulations on-

line. In several applications, we demonstrated that our

robots are able to successfully navigate in environments

with deformable objects and that they can accomplish

tasks going beyond the capabilities of traditional plan-

ners designed for rigid environments.
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