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Abstract

In this paper, we address the problem of robot navigation in environments with deformable objects. The aim is to
include the costs of object deformations when planning the robot's motions and trade them off against the travel
costs. We present our recently developed robotic system that is able to acquire deformation models of real objects.
The robot determines the elasticity parameters by physical interaction with the object and by establishing a relation
between the applied forces and the resulting surface deformations. The learned deformation models can then be used
to perform physically realistic �nite element simulations. This allows the planner to evaluate robot trajectories and to
predict the costs of object deformations. Since �nite element simulations are time-consuming, we furthermore present
an approach to approximate object-speci�c deformation cost functions by means of Gaussian process regression.
We present two real-world applications of our motion planner for a wheeled robot and a manipulation robot. As we
demonstrate in real-world experiments, our system is able to estimate appropriate deformation parameters of real
objects that can be used to predict future deformations. We show that our deformation cost approximation improves
the ef�ciency of the planner by several orders of magnitude.

Keywords: Mobile robots, deformation models, parameter estimation, motion planning, robot navigation

1. Introduction

Perceiving the surroundings and modeling the envi-
ronment is an important competence of intelligent mo-
bile robots since such models are required for ef�ciently
solving other high-level tasks. For instance, generating
a collision-free path through the environment in an ef-
�cient way requires path planning, which in turn builds
on top of a model of the environment. There exists a va-
riety of approaches for robots to autonomously generate
an appropriate model of the environment by address-
ing the simultaneous localization and mapping prob-
lem [1, 2, 3, 4], by autonomous exploration [5, 6, 7],
or by addressing both problems jointly [8, 9].

In order to plan motions in learned environment
models, the majority of path planning approaches as-
sumes that the environment contains only rigid obsta-
cles [10, 11, 12], although there are a few notable ex-
ceptions such as the works of [13, 14, 15, 16, 17]. In
reality, not all obstacles are rigid. In domestic environ-
ments – a key target domain for service robots – a robot
must deal with many deformable objects such as plants,
curtains, or cloth. Considering that an object such as a
curtain is deformable can enable a robot to accomplish
navigation tasks that otherwise cannot be carried out.

To consider deformable objects in the path planning
process, such objects need to be handled in a simula-
tion system underlying the planner. The realistic sim-
ulation of object deformations is still an active area of
research with a variety of relevant applications in com-
puter graphics, virtual reality, games, movies, but also in
robotics [18, 19], and medical simulations [20, 21, 22].
In most applications, the underlying parameters for an
appropriate deformation simulation are adjusted man-
ually until the results appear visually plausible. This
might be applicable for computer games or movies,
but does not necessarily lead to a physically realistic
computation of the involved forces. These forces, how-
ever, need to be known accurately for navigation in the
presence of deformable objects. For example, whenever
a robot interacts with real-world objects, only limited
forces should be applied to them. This is of utmost im-
portance in medical applications or in domestic settings,
for instance, whenever robots have to manipulate plants
or clothes. Particularly in these domains, robots need
exact knowledge about the parameters of the deforma-
tion process.

In this paper, we present a complete robotic system
that is able to perceive the environment and model the
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deformable objects in the scene. The system estimates
the deformation properties of objects, and �nally is able
to plan a trajectory through the environment, taking po-
tential object deformations into account.

Estimating the elasticity parameters of objects not
only involves observing and reconstructing the three-
dimensional surface of an object. Physical interaction
with the object under consideration is required to learn
about its behavior when exposed to external forces.
Therefore, we equipped our robot with a force sensor
at the end of the manipulator and with a depth camera.
Based on the observed surface deformations and corre-
sponding forces, our approach seeks to determine the
elasticity parameters of the object. This is done by sim-
ulating the object deformation under the applied forces
using a linear �nite element model. An error minimiza-
tion approach is applied to iteratively adapt the defor-
mation parameters such that the difference between the
real object under deformation and the simulation is min-
imized. As we will demonstrate in the experimental sec-
tion of this paper, our approach is able to �nd elasticity
parameters that enable our robot to accurately predict
the deformations of real-world objects.

Furthermore, we address the problem of planning
motions for robots navigating in environments with de-
formable obstacles and to adequately consider the costs
of object deformations. In this context, we present an ef-
�cient approximation of the deformation cost function
of objects. Throughout this paper, we assume that the
robot can deform the objects but does not move them
in the environment. This allows us to generate a set of
trajectory samples in a pre-processing step and to pre-
dict the costs of new trajectories by applying ef�cient
Gaussian process regression. Using this regression ap-
proach, the robot is able to ef�ciently plan trajectories
in the presence of deformable objects without the need
for time-consuming simulations during runtime. In dif-
ferent experiments, we demonstrate that our approach
yields accurate estimates and, at the same time, allows
for ef�cient planning of trajectories along which the
robot interacts with deformable objects.

This paper is organized as follows: after discussing
related work in the next section, we will give an
overview of our planning approach that considers de-
formable objects and describe the basic principles of
the deformation model and the physical simulation un-
derlying our planner in Section 3. In Section 4, we de-
scribe how to learn models of deformable objects with
our manipulation robot. Next, we present our approach
to approximate the deformation cost functions of ob-
jects using Gaussian process regression in Section 5.
Subsequently, we present two applications of our path

planning system applied to a manipulation robot and a
wheeled robot. Finally, in Section 7, we evaluate our
system in different experiments.

2. Related Work

2.1. Deformable Modeling and Parameter Estimation
Deformable modeling and parameter estimation are

active areas of research. To represent non-rigid objects
and to simulate deformations, mass-spring systems have
been frequently used. They are easy to implement and
can be simulated ef�ciently [23, 24]. Their major draw-
back is the tedious modeling as there is no intuitive
relation between spring constants and physical mate-
rial properties in general [25]. Finite element methods
(FEMs) re�ect physical properties of objects in a more
natural way [26]. They are based on elasticity theory
and describe object deformations with a small number
of physical parameters. Their disadvantage lies in the
computational resources required to calculate deforma-
tions.

The co-rotational �nite element approach [27, 28],
which we also use in our current system, avoids non-
linear computations and is computationally more ef�-
cient. Our system, however, does not depend on the un-
derlying deformation model und therefore, arbitrary ap-
proaches can be used in our algorithms. For example,
Mousavi et al. [29] employ a principal component anal-
ysis as a precomputation step in order to gain ef�ciency
for a minimal loss of accuracy. Similarly, reduced de-
formable models [30, 31, 32] employ the modal analy-
sis for a more ef�cient simulation. Other approaches use
third order polynomials for this purpose [33].

There are different approaches to determine the phys-
ical parameters of models. Bianchi et al. [34] learn the
stiffness constants of mass-spring models using a ge-
netic algorithm and comparing it to an FEM reference
model. The identi�cation of mass-spring parameters is
also discussed in the work of Lloyd et al. [35]. They
derive an analytical formulation for the spring param-
eters from a linear �nite element model. Data-driven
representations for deformable objects were employed,
among others, by Fong [36] and Bickel et al. [37]. Fong
[36] extracts force-�elds for different contact points and
displacements on the objects. For haptic rendering of
unseen contact points, the forces are interpolated using
radial basis functions. In a similar way, Bickel et al.
[37] represent heterogeneous and nonlinear material.
The homogeneous parts of objects, however, are mod-
eled using the linear FEM, similar to our approach.

Different approaches deduce the elasticity parame-
ters of objects by optimizing an objective function that
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relates the observations to a �nite element simulation,
which in turn depends on the parameters to be deter-
mined. For instance, Kajberg and Lindkvist [38] deter-
mine the material parameters of thin metal sheets in-
cluding plasticity effects. Choi and Zheng [39] iden-
tify Young's modulus and Poisson's ratio of soft tissues
from indentation tests. Schnur and Zabaras [40] esti-
mate different parameters including Young's modulus
of a two-dimensional nonlinear �nite element model.
The approach of Becker and Teschner [41], in contrast,
works for three-dimensional objects, allows for the si-
multaneous estimation of Young's modulus and Pois-
son's ratio, and furthermore can be reduced to a linear
least squares problem. Both approaches, however, have
been validated using simulated data only.

Estimation of material parameters from real data has
been investigated in the context of soft-tissue modeling
for surgical simulation applications, such as simulation
and training, or computer-aided surgery. Kauer et al.
[42] present an inverse �nite element algorithm that es-
timates the material parameters of soft biological tis-
sues. They consider complex material constitutive laws,
such as nonlinearity and anisotropy, furthermore they
account for viscoelastic behavior. Deformation forces
are measured with an aspiration instrument operated
by a human. Their estimation procedure is designed
to operate on two-dimensional image data. Fugl et al.
[43] present an approach to determine Young's modulus
and different parameters to model heterogeneous mate-
rial from observations of deformations due to gravity
with an RGB-D camera. Lang et al. [44] collect data
of object deformations with a robotic measurement fa-
cility, including force sensors and stereo cameras. They
model deformable objects as a discrete boundary value
problem and estimate Greens' functions from measured
forces and displacements. An interesting approach was
recently presented by Boonvisut et al. [45]. In this work,
a robotic manipulator performs deformation trajecto-
ries, and the parameters are optimized such that a �nite
element simulation of the trajectory agrees with the ob-
served trajectory. Both systems, however, rely on a com-
plex experimental setup with several external cameras.
An alternative approach to tracking deformable objects
based on RGB-D data was proposed by Schulman et al.
[46]. They present a generative probabilistic model that
accounts for occlusions, observation noise, and physical
material properties. This model is optimized based on
observations of a human manipulating and deforming
an object. Since forces cannot be observed, the model is
only determined up to a scale factor.

In contrast to most of the previous approaches to pa-
rameter estimation, our method deals with real data and

has been realized on a real mobile manipulation robot
that can actively deform objects. In our setup, the robot
furthermore carries its sensors on-board and thus is the
basis for fully autonomous exploration.

2.2. Motion Planning with Deformable Objects
Recently, considering physical properties of robots

and environments, for instance in terms of their defor-
mation properties has received increased attention. In
this context, different planners for deformable robots
have been developed. The works of Holleman et al. [47],
Anshelevich et al. [13], and Bayazit et al. [14] mark �rst
steps in this direction. They use a probabilistic roadmap
(PRM) as underlying motion planner and carry out de-
formation simulations to determine the expected defor-
mations of the robot along a path. The underlying de-
formation models, however, vary. Robots are modeled
using a two-dimensional �nite element approximation
[47], or computationally more ef�cient mass-spring sys-
tems [13] and geometric free-form deformations [14].
Gayle et al. [15] present a motion planning framework
for �exible surgical tools that are inserted into rigid
blood vessels. Their deformation model considers con-
straints for volume preservation similar to the model in-
troduced by Teschner et al. [23]. Planning motions for
deformable robots was recently revisited by Mahoney
et al. [48]. Similar to our approach, they address the
computational demands of accurate deformation simu-
lations during runtime by precomputing a set of defor-
mation con�gurations that is considered for planning.
In contrast to our approach, these planners consider
robot deformations that are necessary to avoid collisions
with the environment. An approach to planning in com-
pletely deformable environments has been proposed
by Rodŕ�guez et al. [18]. They employ a mass-spring
model with constraints for volume-preservation [23]
and search for a path to a goal location using rapidly
exploring random trees. Planning for surgical tools in
deformable environments was addressed, among oth-
ers, by Alterovitz et al. [16], Maris et al. [17], and Patil
et al. [19]. Maris et al. [17] plan paths for a surgical tool
using a 3D simulation based on a mass-spring model.
They optimize the control points of a path with respect
to constraints that consider the stiffness of objects and
the penetration depth of the tool. Alterovitz et al. [16], in
contrast, plan needle placement in the 2D plane and ac-
count for deformations using a �nite element simulator
similar to ours. Recently, Patil et al. [19] presented an
extension to this work that also incorporates the poten-
tial uncertainty during path execution into the planning
process and chooses the path with the highest proba-
bility of success. A reactive approach to robot motion
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among deformable clutter such as plants was recently
proposed by Jain et al. [49], they introduce a model-
predictive controller that, based on whole-body tactile
sensing, adapts to deformations and controls the con-
tact force. This approach guides the robot along linear
trajectories to a goal, but does not to plan complex mo-
tions. Furthermore, it requires the robot to be equipped
with tactile sensors along its arm.

A drawback of the planning approaches above is that
they need to compute deformation simulations during
runtime. To allow for an ef�cient answering of path
queries, our approach generates a set of sample ob-
ject deformations in a preprocessing step and models
the costs introduced by deforming an object with the
Gaussian process (GP) framework [50]. In the context
of robot learning tasks, GPs are becoming increasingly
popular and have been applied to different problems, for
instance, to modeling terrain [51, 52, 53], learning mo-
tion and observation models [54], or modeling gas dis-
tributions [55]. Inspired by the approach of Vasudevan
et al. [52], we deal with large training data sets by or-
ganizing the data in ak-d tree and by considering only
a local neighborhood for the prediction of a new query.
In the context of navigation, GPs have also been used to
incorporate uncertain quantities into the cost function.
Henry et al. [56], for instance, use GPs to predict hu-
man motion behavior when planning robot trajectories,
and Murphy and Newman [57] use GPs to model a cost
function for traversing different terrain types.

This paper builds on our previous work [58, 59, 60,
61] and presents a unifying framework for robot mo-
tion planning in environments with deformable objects.
The system is able to determine appropriate material pa-
rameters of obstacles that can be used in physical sim-
ulations. We furthermore present an approach to model
deformation cost functions that allow for ef�cient plan-
ning for robots operating in 2D and 3D work space.

3. Path Planning considering Deformable Obstacles

In this section, we give an overview of our planning
approach and introduce the basic concepts of deforma-
tion simulations needed for model learning and plan-
ning.

3.1. Overview of our approach

Our approach to motion planning in environments
with deformable objects consists of several steps: First,
the robot needs to determine an appropriate deformation
model of an obstacle. This is done by physical interac-
tion with the object and by measuring the deformation

forces as well as the deformed surface of the object. The
elasticity parameters of the object are then determined
by optimizing the parameters of a linear �nite element
model such that it best �ts the observations.

When generating a motion plan, such a model can
be used in a �nite element simulation to evaluate the
costs of deforming objects for different robot trajec-
tories. Finite element simulations, however are time-
consuming; and typically thousands of alternative tra-
jectories must be evaluated when searching for a path to
a speci�c goal. To improve the ef�ciency of the planner,
we present an approach to learn object-dependent de-
formation cost functions. We assume that the environ-
ment is static and does not change on its own over time,
and that obstacles can indeed be deformed but cannot
be moved by the robot. Furthermore, we only consider
interactions between the robot and obstacles and neglect
interactions between different obstacles. This allows us
to generate a set of training examples of robot trajecto-
ries that lead to object deformations of�ine by carrying
out corresponding �nite element simulations. We model
a deformation cost function for each object individually
using Gaussian process (GP) regression. The samples of
simulated robot trajectories are used to train a GP model
and to estimate the deformation costs of new trajectories
generated by the planner in an ef�cient way without the
need for time-consuming simulations during runtime.

3.2. Planning using Probabilistic Roadmaps
To plan trajectories for our robots, we use the proba-

bilistic roadmap framework introduced by Kavraki et al.
[62]. The key idea is to represent the collision-free con-
�guration space of the robot by a set of samples that
form the nodes of a graph. Edges in this graph de-
scribe feasible trajectories between neighboring con�g-
urations. Such a roadmap can be precomputed given a
model of the environment. To actually plan a trajectory
for the robot, the current robot con�guration as well as
the target con�guration are connected to the graph. Most
motion planning systems assign costs to the edges that
correspond to their distance in con�guration or work
space. Then, a standard graph search technique such as
A* or Dijkstra's algorithm can be applied to search for
the optimal path between a given starting and goal point
in the roadmap.

Since we explicitly allow our robot to interact with
deformable objects, we also allow for samples and
edges that lead to collisions with such objects when gen-
erating the probabilistic roadmap. Accordingly, we need
to consider the deformation costs when planning trajec-
tories. Our system uses a weighted sum between the dis-
tance of the nodes in con�guration space and the defor-
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mation costs. For an edge between the nodesi and j, its
cost is given by

C(i; j) := � Cdef(i; j) + (1 � � ) Ctravel(i; j); (1)

where� 2 [0;1] is a user-de�ned weighting coef�cient.
The termCtravel(i; j) corresponds to the distance be-
tween nodes in con�guration space. The termCdef(i; j)
represents the costs that are introduced when the robot
deforms objects along its trajectory and is determined
ef�ciently using GP regression.

3.3. Deformation Simulation

To consider non-rigid obstacles in the environment
during planning, we need a model that allows us to com-
pute the deformations given an external force. We �rst
present an overview of our simulation systemDefCol
Studio1,2 before we go into details of the underlying
deformation model based on the �nite element method
(FEM) in the next section. Our simulation system uses
a tetrahedral mesh to represent deformable objects and
proceeds as follows: in each time step, it computes de-
formations and unconstrained motions of objects, then it
detects collisions, computes contact forces for colliding
points, and �nally computes the resulting deformations
from the repulsion forces.

3.3.1. Collision Detection
For a realistic simulation of the interactions between

the robot and deformable objects, an ef�cient collision
detection algorithm is required. In our framework, we
employ the spatial subdivision scheme of Teschner et al.
[63]. The key idea of this approach is to implicitly dis-
cretizeR3 into small uniform 3D grid cells and to map
the elements contained in the grid cells to a hash ta-
ble. Since the space is usually �lled sparsely and non-
uniformly, this method consumes less memory than an
explicit discretization. The hash key is computed from
the coordinates of the corresponding grid cell. Conse-
quently, only the elements with the same hash key need
to be checked for collisions. To check for collisions, in-
tersections between points and tetrahedra are computed.
This can be done ef�ciently using barycentric coordi-
nates of the points with respect to the tetrahedra.

1B. Heidelberger: DefCol Studio – Interactive deformable
modeling framework.http://www.beosil.com/projects.
html#DefColStudio , last accessed March 18, 2014.

2M. Teschner: Defcol Studio 1.1.0. http://cg.
informatik.uni-freiburg.de/software.htm , last
accessed March 18, 2014.

3.3.2. Computation of Contact Forces
To handle collisions between the robot and de-

formable objects, we employ the force-based collision
handling scheme proposed by Spillmann et al. [64].
It combines the advantages of penalty and constraint-
based collision handling schemes. For a set of collid-
ing points of a tetrahedral mesh, a collision-free state is
computed using a linearized relation between internal
forces and displacements of all affected points. Con-
tact forces can be computed analytically to obtain the
collision-free state while conserving overall system en-
ergy.

3.4. Deformation Model

A deformable solid can be described by its unde-
formed state and a set of material parameters that deter-
mine how it deforms under applied forces. A deforma-
tion is then speci�ed by a displacement �eldu : x0 7!
x0 + x, which maps each pointx0 of the object in its ref-
erence position to a deformed positionx0 + x. Elastic-
ity theory provides the corresponding constitutive equa-
tions. Since we restrict ourselves to linearly elastic, ho-
mogeneous and isotropic material, we employ a linear
relation between stress� and strain� given by the gen-
eralized Hooke's law:

� = C� : (2)

To compute the distribution of elastic forces inside a
continuous solid object and to establish the relation be-
tween object deformation, speci�ed by a displacement
�eld u, and external forces acting on the object, we con-
sider the total potential energy� of a solid, which is
given by

� = U + WP: (3)

Here,WPis the work potential, which is determined by
the external forces acting on an object. The inner or elas-
tic energyU is given by

U =
1
2

Z

V
� T � dV: (4)

A stable equilibrium con�guration of a deformation can
be found by minimizing the potential energy, which is
done by setting the derivatives to zero.

3.4.1. Elasticity Parameters
For linearly elastic and isotropic material, the matrix

C in Eq. 2 depends only on two independent elasticity
parameters, Young's modulusE and Poisson's ratio�
[65]. The Young modulus describes the stiffness of an
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object. It measures the force that is needed to enlarge or
compress an object by some �xed amount and is given
by the ratio of stress to strain in the direction of the ap-
plied force:

E =
�
"

=
F=A
� x=x

=
Fx

A� x
: (5)

Its unit is force per area and it is frequently speci�ed in
N

dm2 .
The Poisson ratio is related to the compressibility of

an object. When a material is expanded in one direction,
a compression in the other two directions perpendicu-
lar to the expansion can be observed, and vice versa a
compression in one direction leads to an extension in
the other two directions. The Poisson ratio is thus given
by the negative ratio of the transverse strain to the axial
strain:

� = �
" trans

" axial
= �

" y

" x
= �

" z

" x
: (6)

Since we consider isotropic material, the changes in the
two directionsy, zperpendicular to the directionx of the
applied force are equal.

The Young modulus is always greater than zero, but
not upper-bounded, with larger values characterizing
stiffer materials. For isotropic objects, it can be shown
that the Poisson ratio lies in the range of 0 to 0:5. A
Poisson ratio of 0:5 implies perfect volume conserva-
tion, while a Poisson ratio of 0 corresponds to no vol-
ume conservation at all. For many materials including
foam, it ranges from 0.25 to 0.35, for rubber it is close
to 0.5.

3.4.2. Finite Element Approximation
We use the �nite element method (FEM) to approx-

imate the deformation of a continuous object. The key
idea is to discretize the object into a �nite set of volu-
metric primitives, tetrahedrons in our case, and to com-
pute the deformations inside the elements by an interpo-
lation using the nodal values. First of all, the displace-
ment �eld inside a tetrahedron is approximated using
the displacements of the nodes. To compute the strain�
from the nodal deformations in our model, we use the
linear Cauchy strain tensor, which is ef�cient to com-
pute:

� i j =
1
2

 
@ui

@x j
+

@u j

@xi

!
: (7)

The strain in terms of the displacementsq of the nodes
can then be written as a matrix multiplication� = Bq,
where B expresses the partial derivatives from Eq. 7

in terms of the nodal displacements using linear shape
functions. The inner energyUe of a tetrahedral element
ecan then be written as

Ue =
1
2

Z

e
� TCT � dV:

Since we use linear shape functions and therefore as-
sume the strain to be constant over an element, this can
be simpli�ed to

Ue =
1
2

qT BTCT Bq
Z

e
dV

=
1
2

qTVeBTCT Bq ;

whereVe is the volume ofe. When we de�ne the ele-
ment stiffness matrix to beKe := VeBTCT B, we obtain

Ue =
1
2

qT Kq : (8)

To �nd an equilibrium con�guration of the deformable
object, we minimize the total potential energy by setting
the partial derivatives of� with respect to the displace-
mentsqi to zero.

The derivatives ofUe with respect toqi result in
@Ue
@qi

= (Ke � q)i and describe the elastic forces acting on
the nodes of the model. As we only consider the point
loadsfi in the work potential, the partial derivatives with
respect to the displacementsqi are given by@WP

@qi
= fi .

Therefore, setting the derivative of the potential energy
@�
@q to zero leads toKe � q � f = 0 When collecting all
element stiffness matrices in a global stiffness matrixK
and correspondingly all displacement vectors in a global
displacement vectorQ, the global force-displacement
relation can be written as

F = KQ: (9)

Using linear shape functions and the linear Cauchy
strain tensor for the computation of the strain leads to
problems, as the linearization assumption is only valid
close to the equilibrium. Furthermore, this tensor is not
rotationally invariant. This leads to ghost forces, which
result in distortions for large rotational deformations. To
account for that, we use the co-rotational �nite element
formulation of Hauth and Strasser [66] and Müller and
Gross [28] and keep track of the rigid body motion for
each element by extracting the rotation from the trans-
formation matrix using polar decomposition. Applying
the strain tensor in the rotated frame leads to rotational
invariance and has low computational costs compared
to the nonlinear strain tensor.
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The deformation model is interesting for us for two
reasons: �rst, we want to estimate the elasticity param-
etersE and� of deformable objects. Second, with avail-
able deformation models of objects in the robot's envi-
ronment, we want to perform simulations to determine
the costs of robot trajectories that potentially lead to ob-
ject deformations.

4. Learning Deformation Models

Modeling the deformation behavior of real objects re-
quires interaction with them to measure the forces as
well as the resulting deformations. In this section, we
introduce our approach to learn deformation models of
real objects with a manipulation robot. The key idea is
to compare the observations of the robot to a �nite ele-
ment simulation. The observation of the force allows us
to establish the force-displacement relation from Eq. 9.
In this way, we are able to estimate the parameters of
the stiffness matrix by minimizing the error between ob-
served and simulated deformation.

4.1. Data Acquisition

Our system for acquiring data of deformable objects
consists of a mobile platform with a 7-DoF manipula-
tor that is equipped with a force-torque sensor and an
RGB-D camera (see Figure 1a). This setup allows the
robot to observe objects from different view points, to
acquire point clouds of their surfaces, to deform them,
and to measure the corresponding deformation forces in
a �exible way. In principle, before deforming an object,
the robot needs to decide, whether or not it is safe to
deform the object without destroying it. This task is not
explicitly handled in our approach. We assume that the
robot can probe to deform the object without directly
destroying it.

The manipulator consists of �ve Schunk Powercube
modules and a 2-DoF hand. These modules have a high
repeat accuracy of 0.02 degrees and therefore allow for
an accurate estimation of the robot's position. The de-
formation forces are measured with a Schunk-FTCL-
050 force-torque sensor integrated into the hand. This
sensor is able to measure forces up to 300 N and torques
up to 7 Nm in all three degrees of freedom. Furthermore,
a Microsoft Kinect RGB-D camera using the structured-
light measurement principle is attached to the robot's
hand. This allows the robot to obtain 3D measurements
of the object under investigation.

4.1.1. Geometric Models for Simulation

The �nite element simulation requires a volumetric
model of an object. Such a model can be computed from
a surface mesh of the object. Thus, the robot �rst ac-
quires a 3D surface representation of the object by ob-
serving it from different viewpoints and by registering
the corresponding point clouds into a consistent model.
The task of a registration algorithm is to align overlap-
ping scans of the same object, that is to compute a trans-
lation and a rotation that align the surfaces correctly.
In our approach, we apply the iterative closest point
(ICP) algorithm by Besl and McKay [67], with some
extensions similar to the ideas given by Pulli [68] and
Rusinkiewicz and Levoy [69]. For known correspon-
dences, the transformation can be computed in closed
form [70]. In general, however, the correspondences are
not known. Thus, the ICP algorithm determines corre-
spondences, for instance, using a nearest-neighbor data
association, computes a transformation that aligns the
scans for these correspondences, and iterates this pro-
cess. Typically, this procedure converges to a minimum
and yields an accurate alignment if a reasonable ini-
tial con�guration is chosen. In our case, the robot poses
from which the scans are recorded provide a reasonable
initial guess.

From the registered point clouds, we then generate
a triangular surface mesh which in turn is used to de-
termine the volumetric tetrahedral mesh. To construct
this tetrahedral mesh, we use the approach of Spillmann
et al. [71]. This approach �rst computes a signed dis-
tance �eld, in which voxels having a negative sign rep-
resent the volume of the object. In a second step, the
spatial domain is divided into a uniform axis-aligned
grid. All cells of this grid that contain no voxel with
negative sign are discarded. The remaining cells are an
approximation of the object's volume; the quality of the
approximation is determined by the grid resolution. The
grid cells are then divided into �ve tetrahedrons each. In
a post-processing step, the tetrahedrons are smoothed to
align with the given surface mesh. The individual steps
of this reconstruction procedure are illustrated in Fig-
ure 1. This approach is particularly suited for real-world
data, as it can handle unorientable, non-manifold, and
even incomplete data.

In some situations, it is not possible for the robot to
observe the object from all necessary viewpoints in or-
der to obtain a closed surface mesh. This might be the
case when the object is partially occluded or parts of
the workspace are not accessible to the robot, e. g. in
case the object is sitting in front of a wall or on a ta-
ble. To obtain a closed surface mesh that clearly limits
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Figure 1: Object reconstruction: (a) the robot observes a deformable teddy bear, (b) a point cloud obtained with
the RGB-D camera, (c) the surface mesh constructed from four different point clouds, and (d) the tetrahedral mesh
computed from the surface mesh.

the object, we complete the model by assuming a planar
surface for the unobserved parts. These planar surfaces
can be extracted for instance from the walls or the ta-
ble surface. This allows us to generate a model almost
from scratch without much overhead for exploration and
moving. Our experiments show that a complete model is
not needed to estimate the deformation parameters – a
partial model is suf�cient. The outcome of this step is
a complete geometric and volumetric object representa-
tion with a known transformation relative to the robot.
In our simulator, we perform all deformation computa-
tions based on the tetrahedral mesh. The coupling of the
surface mesh to the tetrahedral mesh guarantees that the
surface mesh is also deformed. This allows us to com-
pare it to the scanned surface mesh of the real-world
object.

4.1.2. Deformation of Objects
In our experimental setup, the object is placed on a

table in front of the robot and the robot probes the ob-
ject by moving its end effector downward, in the direc-
tion perpendicular to the table surface (Figure 2). This
setup guarantees that the object is �xed between the ta-
ble and the robot, therefore the measured forces corre-
spond to deformations only, not to translations of the
object. Furthermore, the robot deforms the object with a
thin wooden stick instead of its gripper. This has several
reasons: �rst of all, the RGB-D camera requires a dis-
tance of at least 50 cm to compute depth measurements
from the structured light pattern. Second, increasing the
distance to the region of interest also increases the �eld
of view and thus the part of the object that can be ob-
served. Third, in this way, we ensure a small point-like
contact region and thereby minimize the amount of oc-
clusion in the region of interest, the deformed surface
region, due to body parts of the robot. The probing pro-

cedure is as follows:

� The end effector approaches the contact pointc on
the object and takes a reference measurement.

� Subsequently, it moves forward in discrete steps of
1 cm, pauses and records a new measurement.

� This is done until either a maximal force of 30 N
is exceeded or the robot has moved for more than
10 cm.

In each stept, we obtain a measurementzt = (Pt; ct; f t),
which consists of the point cloud of the deformed ob-
ject surfacePt = fpt j pt 2 R3g, the forcef t 2 R3

acting on the object and the contact pointct 2 R3 on
the object. In this way, we obtain a set of measurements
fztgfor a contact point. Our parameter estimation pro-
cedure, explained in the next section, only requires one
observationzt at a time, but collecting a set of obser-
vations allows for multiple runs and therefore a more
robust estimation of the parameters.

4.2. Parameter Estimation

With the measurements acquired by our robot, we
formulate the estimation of an object's elasticity pa-
rameters, Young's modulusE and Poisson's ratio� , as
an optimization problem in parameter space (E; � ) with
an objective function that minimizes the difference be-
tween the observation and the model prediction.

The governing equation solved by the FEM approxi-
mation (Eq. 9) relates the applied forcesFext and result-
ing displacementsQ by a stiffness matrixK(E; � ) that
depends onE and� (Eq. 9). The inverse problem we in-
tend to solve can be stated as determining the stiffness
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Figure 2: Deformation of an object: experimental setup (left) and two example measurements (right). The surface
points are colored according to their depth and the magnitudes of the measured forces are indicated by the arrows.

matrix K(E; � ) that explains the relation between mea-
sured forceFext

measand measured displacementQmeas:

min
(E;� )

jjK(E; � )Qmeas� Fext
measjj

2
2 : (10)

However, as the robot only observes the displacements
on the boundary of the object, we cannot directly set
up this equation and solve for (E; � ). Instead, we indi-
rectly relate the observed displacements with the simu-
lated displacements by running a forward FEM simula-
tion for a given stiffness matrix. Then, we can compare
the displacements resulting from the simulation to the
observed displacements and minimize their difference:

min
(E;� )

jjQmeas� Qsim(E;� )jj
2
2 : (11)

We use a gradient-based method to adapt the material
parameters of an object and to minimize the error. In
the following, we de�ne the boundary conditions of the
FEM simulation that provides us with the simulated dis-
placements. Furthermore, we specify the error function
that is minimized.

4.2.1. FEM Simulation
We initialize the simulation with the tetrahedral

model M and the corresponding surface pointsP of
an object resulting from Section 4.1.1. Additionally, the
stiffness matricesK(E; � ) of the model elements are
computed using given parametersE; � . We introduce
boundary conditions for the simulation by �xing the
nodes on the bottom side of the model, which corre-
spond to the part of the object that is in contact with

the table. To start the simulation and deform the model,
we apply the measured forcef t to the contact pointct

on the model, that is the mass point on the tetrahe-
dral mesh closest to the contact point. Then, we de-
�ne FEMSim(M ;ct; f t; E; � ) as a simulation run over a
small amount of time steps until an equilibrium state
is reached, which results in the deformed modelM E;�

and deformed surface pointsPE;� . The deformation for
a given force and contact point is governed by the ma-
terial parametersE and� of the object.

4.2.2. Error Function
The error function for our parameter estimation pro-

cedure re�ects the difference between the surface of
the real deformed object and the surface deformed in
simulation. Before we compute the difference between
the deformed model point cloud and the observed point
cloud, we align the deformed surfaces with an ICP reg-
istration procedure to eliminate the effects of small rota-
tions and translations not leading to object deformations
as well as inaccuracies in the global position estimation
of the model with respect to the robot.

After applying ICP, we can determine the error be-
tween the deformed model point cloudPE;� and the
measured surfacePt as the mean squared error between
the point correspondences of the surfaces:

Err(PE;� ; Pt) =
1

jPtj

X

i2Pt

min
j2PE;�

ki � jk2; (12)

wherei and j refer to the corresponding points from the
observed and the simulated surface, respectively. In the
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error function, we consider all point correspondences
for the measured point cloud, in contrast to the error
function minimized in the ICP algorithm that considers
only a fraction of point correspondences. Otherwise, we
would possibly ignore the region of interest in which the
object is deformed, due to large point-to-point distances
and the error function would not be informative.

4.2.3. Parameter Optimization
With the above de�nition of the error function,

we can apply a gradient-based method to search for
Young's modulusE and Poisson's ratio� of an object
that minimize the error. We start with a random initial-
ization of the parameters (E0; � 0) and iteratively adapt
them based on the direction of the gradient of the er-
ror function. Since our error function involves the sim-
ulation approach explained above, the gradient cannot
be computed directly. Therefore, we approximate this
term numerically: we carry out a sequence of deforma-
tion simulations by applying the measured force to the
model and by varyingE and� locally.

We adapt the parameters based on the Resilient back-
propagation (Rprop) update rule that was introduced
by Riedmiller and Braun [72] in the context of learn-
ing weights for neural networks. In this update rule, a
step size� k for each parameterk is adjusted individu-
ally in each iteration step based only on the direction,
not on the magnitude of the gradient. More precisely,
the step size for each parameter is increased in each it-
erationi by a factor� + > 1 if the gradient direction does
not change, that is if a minimum of the error function
is approached, and it is decreased by� � < 1 otherwise,
that is if a minimum of the error function is overstepped.
This procedure is robust with respect to the initialization
of the step size, as the step size quickly adapts to the
problem at hand. Furthermore, it is robust to numerical
inaccuracies, as only the direction, not the magnitude of
the gradient is considered. Thus, it allows for a fast con-
vergence of our estimation procedure. We consider the
estimation procedure converged if either the error im-
provement is below a given threshold� , or if the param-
eter adaptations are below given accuracy thresholds� E

and� � for both parametersE and� in subsequent itera-
tion steps.

5. Deformation Cost Functions for Planning

When planning robot motions, we want to consider
the costs of object deformations that are introduced by
the robot. To achieve this, we �rst de�ne a measure for
such deformation costs that can be obtained by means

of physical simulation of the corresponding robot tra-
jectory. Next, we will introduce the concept of object-
dependent deformation cost functions that can be pre-
computed under certain assumptions and speed up the
planning process. Finally, we present our approach to
model the deformation cost function based on Gaussian
process regression.

5.1. Deformation Costs of a Robot Trajectory

To measure the cost that the robot introduces by de-
forming an object and thereby consuming additional en-
ergy, we consider the potential elastic energy of an ob-
ject, as given in Eq. 8. The elastic energy of an object
corresponds to its deformation and measures its distor-
tion. According to the law of conservation of energy, it
directly corresponds to the energy the robot has to ex-
pend. In case of an undeformed object, the elastic en-
ergy is zero. Otherwise, the elastic energy increases de-
pending on the deformation of the object. Obviously,
more energy must be expended for stiffer objects, which
is encoded in the object's material parameters and the
stiffness matrixK in Eq. 8. For an objectO consisting
of tetrahedral elementsfeig, we de�ne the total inner en-
ergyUO induced by a robotr in a given con�guration�
to be the sum over the inner energies of all elementsei

of the object:UO(r; � ) :=
P

ei2O
Uei (r; � ).

For any given robot con�guration� , we determine the
total deformation costsCdef(� ) :=

P

O2W
UO(r; � ) by sum-

ming over all objectsO in our workspaceW . The robot
con�guration � has to be taken into account, since ob-
jects might deform differently depending on the con�g-
uration of the robot as well as on the history of con�gu-
rations.

The total deformation costs of a path� in our envi-
ronment naturally result in the sum over the deforma-
tion costs of all objects that are deformed by the robot
while it is moving on the path in discrete time stepsti ,
thereby assuming corresponding con�gurations� i :

Cdef(� ) =
X

� i2�

Cdef(� i): (13)

In sum, the deformation costs of a trajectory depend on
the sequence of robot con�gurations during path execu-
tion and on the material properties of objects, character-
ized by Young's modulusE and Poisson's ratio� .

5.2. Object Deformation Cost Functions

In our de�nition above, we have seen that the defor-
mation costs are a function of the robot trajectory and
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Figure 3: Parametrization: the linear trajectory is de-
scribed by starting points and end pointe on a virtual
sphere around the deformable object. Additionally, we
consider the traveled distancel along the trajectory.

the objects on the way. When the planner evaluates tra-
jectory hypotheses, it could in principle carry out de-
formation simulations for each hypothesis online. This,
however, is not desirable in practical applications, since
FEM simulations are time-consuming and typically a
lot of path hypotheses need to be evaluated. Another
possibility is to precompute the deformation costs of
edges when generating a roadmap. This saves computa-
tion time when answering path queries, but has the dis-
advantage that recomputations are necessary whenever
the environment changes, for instance, when objects are
moved.

Our approach is different: we restrict ourselves to an
environment, in which objects can be deformed by the
robot, but cannot be moved. Furthermore, we ignore in-
teractions between different objects. Thereby, we can
introduce the concept of deformation cost functions for
individual objects. Such object deformation cost func-
tions are de�ned for robot trajectories relative to the ob-
ject. They can be learned once for each type of object
and are independent of the actual locations of obstacles.
The availability of deformation cost functions is advan-
tageous if there are many instances of the same object
type, or if the environment changes frequently.

The idea is to generate some trajectory samples rel-
ative to an object and perform the corresponding FEM
simulations in a preprocessing step. The problem of es-
timating the deformation costs introduced by a robot
given this set of training samples can then be ef�ciently
approached by regression techniques. Lety1:n be the set
of deformation cost values obtained fromn simulations,
in which the virtual robot executedn different trajecto-
ries x1:n. Then, the goal is to learn a predictive model
p(y� j x� ; x1:n; y1:n) for estimating the deformation costs
y� given a new query trajectoryx� .

In theory, all possible trajectories through a de-

formable object can be executed. To bound the complex-
ity of the regression problem, we consider only straight
line motions through the object here. This is a restric-
tion, but not a strong one since the trajectories gen-
erated by roadmap planners are often piecewise linear
motions. The motions considered to estimate the de-
formation costs are described by a starting points and
end pointe on a virtual sphere around the robot. Fur-
thermore, we take into account the distancel from the
starting point that describes the length of the motion.
Figure 3 illustrates this parametrization. The pointss
ande are each described by an azimuth� and an eleva-
tion angle� . Thus,xi is a �ve-dimensional vector in our
case withxi = [� s

i ; � s
i ; � e

i ; � e
i ; l i ]

T , where the superscripts
refers to the starting point ande to the end point.

5.3. Modeling Deformation Cost Functions using
Gaussian Processes

We approach the problem of estimating the defor-
mation costs of a robot trajectory by means of non-
parametric regression using the Gaussian process (GP)
model [50]. In this Bayesian approach to non-linear re-
gression, one places a prior on the space of functions us-
ing the following de�nition: A GP is a collection of ran-
dom variables, any of which have a joint Gaussian dis-
tribution. More formally, if we assume thatf(xi ; yi)gn

i=1
with yi = f (xi) are samples from a GP and de�ne
y = (y1; : : : ;yn)> , we have

y � N (� ;K) ; � 2 Rn;K 2 Rn� n : (14)

For simplicity, we set� = 03. The interesting part of
the GP model is the covariance matrixK. It is speci�ed
by [K] i j = k(xi ; x j) using a covariance functionk. In-
tuitively, the covariance function speci�es how similar
two function valuesf (xi) and f (x j) are depending on
their inputsxi andx j . A popular choice is the squared
exponential covariance function, which is given by

kSE(xi ; x j) = � 2
f exp

 
�

1
2

(xi � x j)T � (xi � x j)
!

: (15)

Here,� = diag(̀ 1; : : : ; `d)� 2 is the length-scale matrix
and� 2

f the signal variance. These parameters together
with the global noise level� n are known as the hyper-
parameters of the process.

We furthermore consider in our experiments the neu-
ral network covariance function [73, 74, 75], which is

3The expectation is a linear operator and for any deterministic
mean functionm(x), the Gaussian process overf 0(x) := f (x) � m(x)
has zero mean.
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known to better adapt to non-smooth data and to ac-
count for variable smoothness. This covariance function
is speci�ed as

kNN(xi ; x j) =

� 2
f arcsin

0
BBBBBBBBBB@

� + 2xT
i � x j

q
(� + 2xT

i � xi)(� + 2xT
j � x j)

1
CCCCCCCCCCA

; (16)

with a bias factor� and� ; � f as de�ned above.
Learning a GP model is equivalent to determining the

hyperparameters of the covariance function that best ex-
plain the training data points. This is formulated as an
optimization problem by maximizing the marginal log
likelihood of the data given the model. We use a stan-
dard gradient optimization approach to �nd the best hy-
perparameters for a given dataset. More details on the
problem formulation can be found in the work of Ras-
mussen and Williams [50].

Given a setD = f(xi ; yi)gn
i=1 of training data ob-

tained from the physical simulation engine, we are in-
terested in predicting the target valuey� for a new tra-
jectory speci�ed byx� . Let X = [x1; : : :; xn]> be the
matrix of the inputs. We obtain the predictive distribu-
tion p(y� j x� ;X; y) for a new observationx� that is again
Gaussian with mean

E[ f (x� )] = k(x� ;X)
h
k(X;X) + � 2

nI
i � 1

y (17)

and variance

V[ f (x� )] = k(x� ; x� ) � k(x� ;X)
h
k(X;X) + � 2

nI
i � 1

k(X;X � ); (18)

whereI is the identity matrix andk(X;X) refers to the
covariance matrix built by evaluating the covariance
functionk(�; �) for all pairs of all row vectors (xi ; x j) of
X. In sum, Eq. 17 provides the predictive mean for the
deformation costs when carrying out a motion alongx�

and Eq. 18 provides the corresponding predictive vari-
ance.

5.4. Ef�cient Regression by Problem Decomposition

The GP model introduced above allows us to predict
the expected deformation costs of a new trajectory based
on a set of training samples. In high-dimensional input
domains such as our trajectories in 3D space, a consid-
erable set of training samples is needed to obtain a good
function approximation; the function is entirely repre-
sented in terms of the training data points. Training the
GP model as well as computing the predictive distri-
bution for a new data point has a runtime cubic in the

number of training samples due to the necessary inver-
sions of the covariance matrix. For data sets consisting
of thousands of training samples, the approach thus be-
comes inef�cient.

Inspired by the approach of Vasudevan et al. [52], we
decompose our regression problem into a number of lo-
cal ones. For a query trajectoryx� , we determine itsM
nearest neighbors from the training data as

X0(x� ) = [x0
1; : : :; x0

M] = arg min
[x0

1;:::;x0
M ]

MX

k=1

d(x0
k; x� ); (19)

where the distance functiond(�; �) computes the great
circle distance between starting and end points of the
respective trajectory samples.

TheM nearest neighborsX0 to the query trajectoryx�

are the training data points that have the highest in�u-
ence on the prediction ofy� in the GP framework. Con-
sidering onlyX0 instead ofX in the GP is equivalent to
assuming thatk(x� ; xi) = 0 for all xi that are not part
of X0. In our current implementation, we are able to get
appropriate predictions by settingM = 50. We experi-
enced that the loss is negligible with respect to larger
values ofM, at least in all our experiments. Determin-
ing theM nearest neighbors tox� can be computed ef�-
ciently using ak-d tree that is once built from the train-
ing data. Thus, queries can be obtained in logarithmic
time in the number of training examples and the GP
prediction does not depend on the size of the training
set anymore but only onM.

6. Applications on Real Robots

In this section, we present two applications of our
proposed motion planning system. First, we discuss
how to plan motions in 3D workspace for a manipu-
lation robot. Second, we present an implementation on
a wheeled robot that operates in the 2D plane. In this
case, we additionally address the problem of collision
avoidance.

6.1. Arm Planning in 3D
In our �rst application scenario, we plan motions for

our robotic manipulator presented in Section 4, which
has 7 degrees of freedom in its arm. When construct-
ing the roadmap, we uniformly sample nodes from the
con�guration space of the robot. For each node, we
consider theN nearest neighbors and add an edge if
there is a straight line path between both nodes that
does not lead to collisions with rigid obstacles. In our
implementation,N was set to 50. Our current imple-
mentation furthermore applies A* to �nd the optimal
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End effector trajectory

Force-sensor trajectory

Wrist trajectory

Elbow trajectory

Figure 4: Determining the deformation costs of a ma-
nipulator motion: the manipulator moves downward in
the presence of the deformable bar. We consider the (ap-
proximately linear) trajectories described by its individ-
ual body parts and compute their deformation costs us-
ing GP regression.

path in the roadmap using the cost function given in
Eq. 1. To obtain an admissible heuristic for A*, i. e.,
a heuristic that underestimates the real costs speci�ed
in Eq. 1, we use the distance to the goal con�gura-
tion weighted with (1� � ). Thus, we are able to �nd
the path in the roadmap that optimizes the trade-off be-
tween travel costs and deformation costs. The deforma-
tion costs of edges are approximated using the GP-based
regression method introduced in Section 5.

The deformation simulation system considers the mo-
tion of a rigid box surrounding the robot's end effector
along the described trajectory to compute the deforma-
tion costs. It does not consider the full con�guration of
the arm. This is clearly an approximation, but it allows
us to parametrize the regression problem with a low-
dimensional input. Otherwise, the full con�guration of
the robot would have to be considered in the GP frame-
work. With higher-dimensional inputs, a larger number
of training examples is required. Furthermore, the defor-
mation cost function of an object would become depen-
dent on the position of the object relative to the robot.

To account for the fact that not only the end effector,
but also other body parts might deform an object, we
sample multiple points along the kinematic chain of the
robot. Then, we perform the estimation of the deforma-
tion costs for the trajectories of all sampled points along
the kinematic chain and consider the maximum of the

individual costs

Cdef = max
b

GP(x� (b);X0(x� (b)); y0(x� (b))); (20)

whereb refers to the individual body parts andx� (b)
to the motion that the body parts carry out given the
kinematic structure of the robot,X0(x� (b)) andy0(x� (b))
are the nearest neighboring trajectories and correspond-
ing deformation costs that are used in the GP regres-
sion. Figure 4 illustrates the idea of this approxima-
tion, where the trajectory described by the end effec-
tor would miss the object, the trajectories of the wrist
and the force-sensor, in contrast, would lead to high de-
formation costs. Considering the maximum in Eq. 20
instead of, for example, the sum, generates more accu-
rate predictions since the largest deformation forces are
typically generated by one body part only.

In theory, there may be situations in which this as-
sumption is not valid, for example when a robot with
two manipulators would squeeze an object—such situa-
tions are not considered here.

6.2. Robot Navigation in 2D

In addition to the manipulation robot scenario, we
consider autonomous navigation of wheeled robots in
the presence of deformable objects. We implemented
a navigation system for a wheeled robot, an iRobot
B21r platform operating in real environments with de-
formable objects (Figure 5a). Our application scenario
is an of�ce environment with a set of deformable cur-
tains in the corridor. In the context of robot navigation
in real environments, not only path planning is an is-
sue; during execution of the planned path, localization
and collision avoidance are essential for safe and reli-
able navigation.

In general, the sensor measurements of the robot are
used for collision avoidance, to ensure that the robot
never gets too close to an object. When navigating
among deformable objects, however, the robot might be
required to deform an object, which necessarily leads to
collisions with it. Hence, a new challenge arises, that
is how to interpret the sensor data of the robot and
distinguish measurements corresponding to deformable
objects from measurements belonging to rigid and dy-
namic obstacles that are to be avoided.

A prerequisite to address these issues is an appropri-
ate model of the environment. We use occupancy grid
maps to represent static obstacles (Figure 5c) and aug-
ment them with information on the deformable objects
in the environment (Figure 5b). These models are rep-
resented as described in Section 4 and allow us to es-
timate the deformation costs for moving between grid
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Figure 5: Robot navigation in 2D: our robot Albert in a corridor with curtains (a), the corresponding deformation
model (b) and the grid map representing the static part of the world (c).

cells using our GP-based regression approach presented
in Section 5.3. The path search is carried out using A*
on the grid.

Our implementation is based on CARMEN, a robot
sensing and navigation software [76] allowing indepen-
dent modules to communicate via a middle-ware. It pro-
vides modules for low-level robot control and sensing,
furthermore modules for path planning, localization,
and collision avoidance based on occupancy grid maps.
To integrate our approach into CARMEN, we replaced
the navigation module with our planner that takes into
account deformation costs. In addition to that, we re-
placed the collision detection method and extended the
localization module, which is based on Monte Carlo lo-
calization, in a way that laser beams observing a de-
formable object during deformation are not considered.
This is necessary, as the robot is localized with respect
to the grid map. The grid map, however, cannot repre-
sent deformable objects, in particular their change of
shape during deformation. In the next section, we will
address the problem of interpreting the robot's sensor
data for localization and collision avoidance.

6.3. Sensor-based Collision Avoidance for Non-
deformable Objects

When navigating autonomously, the robot constantly
has to observe its environment in order to react to un-
foreseen obstacles. At the same time, it might get close
to deformable objects when deforming them. Therefore,
the main problem in our application is to �gure out
which measurements correspond to a deformable ob-
ject, in which case they can be ignored by the collision
avoidance system. This section presents our approach
to address this problem. By combining the knowledge
about objects in the environment and their geometry
with estimates of range scans during deformations, we

can reason about the deformability of an observed ob-
ject.

We model this problem in a probabilistic fashion:
Let ci denote the binary random variable describing the
event that beami observes a deformable object. Then,
p(ci j x; zi) describes the probability that beami corre-
sponds to a deformable object given the robot position
x and the range measurementzi . Applying Bayes' for-
mula, we obtain

p(ci j x; zi) =
p(zi j x; ci)p(ci j x)

P
ci ;: ci

p(zi j x; ci)p(ci j x)
: (21)

Here, p(zi j x; ci) is the sensor model for the observa-
tion of a deformable object andp(ci j x) is the prior de-
noting the probability of observing a deformable object
from positionx. We will shortly go into detail of how to
learn these models. The sensor modelp(zi j x; : ci) cor-
responds to the common sensor modelp(zi j x) when no
deformable objects are present.

6.3.1. Learning Sensor Models for Deformable Objects

The sensor modelp(zi j x; ci) does not only depend on
the robot position but also on the trajectory relative to an
object. For instance, the robot will measure a different
distance to the curtain when it is situated in front of it
than it would while passing through and deforming the
curtain. Therefore, we determine sensor models corre-
sponding to different trajectories of the robot relative to
an object.

For each trajectory, we record different datasets con-
sisting of the robot positionsx (provided by the localiza-
tion module) and the rangeszi and then manually label
the beams re�ected by a deformable object. From the
labeled measurements obtained along these trajectories,
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Figure 6: Sensor model for observing the curtain along the trajectory illustrated in (a): shown are (b) the probabilities
p(ci j x), (c) the average beam length, and (d) standard deviation when observing the deformable object.

we compute the statistics

p(ci j x) =
hitsdef

hitsdef + missesdef
; (22)

where hitsdef is the number of beams that are re�ected
by a deformable object and missesdef states, how often
no deformable object was observed for a given position
x and viewing anglei. The sensor modelp(zi j x; ci) is
described by a Gaussian with average range� and vari-
ance� 2. An example of such a sensor model for a robot
trajectory through the curtain is shown in Figure 6.

6.3.2. Avoiding Collisions
During path execution, the robot constantly moni-

tors its position and also its sensor measurements for
utilization in the collision avoidance system. In our
case, the robot has to distinguish between allowed colli-
sions with deformable objects and impending collisions
with unforeseen or dynamic obstacles, which have to be
avoided. This is done by �ltering out the range measure-
ments that observe a deformable object with high prob-
ability. Therefore, we evaluate Eq. 21 for each beam and
identify those beams that can be neglected for the colli-
sion avoidance.

This labeling or �ltering of the range measurements
offers a great potential, since it is done orthogonally
to traditional collision avoidance methods. As a result,
this technique can be combined with any other collision
avoidance technique such as the dynamic window ap-
proach [77] or the nearness diagram technique [78].

The detected measurements, which are identi�ed to
belong to dynamic obstacles, can be incorporated into
the navigation system to update the path of the robot or
into any sensor based collision avoidance routine. Our
current implementation performs replanning if a path is

blocked by a dynamic object or simply stops the robot
if the distance to an obstacle is too close. An example
of the collision detection is given in Figure 7.

7. Experiments

In this section, we present evaluations of our ap-
proaches to deformation model learning, deformation
cost prediction, path planning, and collision avoidance.

7.1. Deformation Model Learning

We carried out different experiments to evaluate
our parameter estimation procedure with observations
of object deformations obtained from simulations and
from interactions with real objects. In simulation exper-
iments, we evaluated the accuracy and precision of the
parameter estimation procedure under the in�uence of
different sources of noise. For the observed deforma-
tions of real objects, we evaluated the robustness of the
parameter estimation as well as the error in predicting
new force measurements for the estimated parameters.

7.1.1. Simulation Experiments
We evaluated our parameter estimation procedure un-

der controlled conditions in a simulation experiment.
Our test object is a cube with an edge length of 20 cm
and true material parametersE = 100 N

dm2 and� = 0:3.
The model consists of 625 tetrahedrons and the surface
mesh consists of 2,646 points. We generated a test data
set consisting of 10 force-deformation samples with lin-
early increasing force in the range of 3 to 30 Newton. In
different runs, we evaluated the results of the estimation
procedure under the in�uence of different noise charac-
teristics. We identi�ed three different sources of noise:
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Figure 7: Different collision avoidance scenarios (top row): Laser beams are evaluated with respect to their likelihood
of observing a deformable object (second row). The bottom row illustrates the classi�cation of the laser beams.
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Figure 9: Force-displacement curves for recorded mea-
surements of real objects.

(1) Noise in the RGB-D measurements, which is
around 2 mm for distances below 1 m, we assume
� p � 2:5 mm.

(2) Noise in the force measurements, which contains
a force-dependent noise component of� 5 % as
speci�ed by the manufacturer and a white noise
component with a magnitude of approximately

1 N: � f � 0:05jf j + 1 N.
(3) Noise in the estimation of the contact point:� c �

20 mm.

In each run, we evaluated the iterative parameter es-
timation procedure for all 10 force-displacement sam-
ples. Run 1 to 3 consider the three types of noise men-
tioned above individually and run 4 considers a com-
bination of all types of noise. Figure 8 summarizes the
results in terms of the error in the estimated Young's
modulus, Poisson's ratio and the residual mean square
error (MSE) after convergence of the estimation. Fur-
thermore, it illustrates the evolution of the parameters
and the error in one learning run for the different noise
settings. From the results, we can make some interest-
ing observations. The observation noise (run 1) does not
seem to affect the parameter estimation, the parameters
are estimated accurately for all samples while the resid-
ual error after convergence corresponds to the obser-
vation noise. Noise in the force measurements (run 2)
naturally leads to a larger error in the estimated param-
eters. This error is more pronounced for samples with
smaller deformations and forces due to the white noise
component in the force observation. The residual error,
in contrast, is small, the estimated parameters simply
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Figure 8: Parameter estimation results for a simulated data set: The plots in the top row show the relative errors in
the estimated Young's modulusE (left) and Poisson's ratio� (middle), furthermore the residual MSE of the surface
meshes after convergence of the estimation procedure (right). The plots in the bottom row illustrate the evolution of
the corresponding quantities in learning runs for one force-deformation sample (withf � 27 N).

express a different force-displacement relation. An er-
ror in the contact point leads to a different deformation
of the model, hence, the observation can never be en-
tirely consistent with the deformed model. This error is
more pronounced for larger deformations. For a com-
bination of all errors in run 4, the relative error in the
estimation of the Young modulus is still below 10 %,
while for Poisson's ratio it is around 15 %. Thus, our
estimation procedure allows to identify the material pa-
rameters from force-deformation observations.

7.1.2. Parameter Estimation for Real Objects
We evaluated our parameter estimation approach on

observations of four different real objects: a foam mat
with a size of 50 x 80 x 5 cm, a foam cube of edge length
15 cm, an in�atable ball with a diameter of approxi-
mately 40 cm, and a plush teddy bear with a height of
approximately 50 cm. For each object, we recorded a
test series of force-deformation samples with increasing
force for one contact point. For the teddy bear, we addi-
tionally considered different contact points. The force-
displacement curves for the recorded samples, with the
displacements derived from the manipulator motion are
shown in Figure 9. In the following, we present param-
eter estimation results for each object.

Foam mat: We recorded a series of four force-
deformation samples for one contact point on the foam
mat, and estimated the material parameters for each of
the samples individually. The evolution of the param-

eters and the error in the individual learning runs are
shown in Figure 10. While the estimated values for
the Young modulus correspond well for the last three
samples, the estimation for the �rst measurement con-
verges to a considerably smaller value. This can be ex-
plained on the one side with the nonlinearity in the
force-displacement curve, and on the other side with a
small deformation region that is hardly noticeable in the
error function – it almost gets lost in the measurement
noise. If we discard sample 1 as outlier, and average
over the remaining three samples, we obtain an estimate
of 340.2 N

dm2 � 88.2 N
dm2 for Young's modulus, if we con-

sider 95 % con�dence intervals.

The estimation for Poisson's ratio converges to zero
for each sample. This is surprising, since the Poisson
ratio of foam is reported to be in range of 0.1 to 0.3 in
general. To gain more insight into this behavior of our
estimation procedure, we consider the error function for
sample 3 in Figure 11. This error function was obtained
for a uniform sampling in the parameter space and is
mainly in�uenced by the value of the Young modulus,
while a change in the Poisson ratio leads to comparably
small changes in the error function. This could be ex-
plained by the fact that the deformation is observed from
above, and since the foam mat is larger than the �eld of
view of the camera, a possible extension of the object
transverse to the applied force cannot be observed with
our sensor setup.

Foam cube: In addition to the foam mat, we ex-
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amined a toy cube consisting of a different type of
foam. It is softer, as can be observed from the force-
displacement curve (Figure 9). The Young's modulus
estimated for different applied forces varies and is in the
range of 148.9N

dm2 � 17.2 N
dm2 . Similar to the foam mat,

Poisson's ratio converges to zero, as an extension of the
object perpendicular to the camera is hardly observable.

In�atable ball: The in�atable ball has a large diame-
ter and a small force is required to deform it. Thus, we
were able to acquire eight force-deformation samples in
total. The material parameters were estimated for each
sample individually. The estimated Young's modulus is
in the range of 65.5N

dm2 � 8.1 N
dm2 and has a low variance

over the different runs. The variance in the estimated
Poisson's ratio, in contrast, is rather large (0.27� 0.12).
The residual error for the registered meshes is notably
larger than for the foam mat, in particular for larger de-
formation forces. The larger error could be explained
by the fact that the model never entirely �ts the ob-
served deformation. An idea to improve the model error
could be to adapt the resolution of the underlying tetra-
hedral model used to compute the deformation. In our

experiments, however, we have not considered this pos-
sibility. We generated tetrahedral meshes with approxi-
mately 1,000 to 2,000 elements to bound the computa-
tion time of the parameter estimation.

Plush teddy:The plush teddy bear is a large and in-
homogeneous object. To study our assumption of ho-
mogeneous material in more detail, we acquired sev-
eral test series of force-deformation observations at
different contact points on its back, head, belly and
chest. Accordingly, we generated two different volumet-
ric meshes for the parameter estimation procedure, one
representing the teddy lying on its belly and one rep-
resenting it lying on its back. We estimated the ma-
terial parameters for each force-deformation observa-
tion and each contact point individually. The results are
summarized in Figure 12. For all contact points, the
variance in the estimated parameters is lower, if larger
forces are applied. This is related to a larger deforma-
tion region in the surface observation, which can be
better matched with the deformed model. Furthermore,
the estimated parameters, in particular the Young modu-
lus, vary for different contact points, the assumption of
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Figure 12: Parameter estimation results for the plush teddy bear for different force-deformation observations on dif-
ferent contact points. The estimated parameters, Young's modulus (top left) and Poisson's ratio (top right) and the
residual MSE (bottom) are shown for the individual observations, together with the mean and con�dence interval for
each contact point.

? E ( N
dm2 ) ? � MSE (mm) Force error (%) ? runtime

Foam (3 samples) 340.2� 88.2 0.0� 0.0 7.5� 0.8 10.0� 15.2 2 m 20 s
Cube (7 samples) 148.9� 17.2 0.0� 0.0 18.2� 1.7 12.9� 14.0 3 m 7 s
Ball (8 samples) 65.5� 8.1 0.27� 0.12 15.8� 2.7 12.5� 17.8 9 m 44 s

Teddy (9 samples) 29.5� 3.0 0.07� 0.08 18.1� 6.0 12.7� 10.5 23 m 40 s

Table 1: Parameter estimation results for different real objects. We determined the average over different runs with
different forces applied to one contact point.

homogeneous material is obviously not applicable for
this object. The residual error for the registered surface
meshes tends increase for larger applied forces, which
could be related to the mesh resolution of the underly-
ing volumetric meshes. The parameters estimated in the
different experiments, however, are still similar.

Validation of the learned models:We determined
the material parameters for each object in a test se-
ries with several force-deformation samples. The means
of the estimated parameters together with their 95 %-
con�dence intervals over the different runs already give
an indication on the reliability of the estimation. They
are summarized in Table 1 for all objects we considered
in our experiments. In a validation experiment, we ad-
ditionally evaluated how well the determined material
parameters allow us to predict the measured forces. To
this end, we performed a leave-one-out-validation for
each test series. A test series recorded for one contact
point consists ofx force-deformation samples with in-
creasing force. In the validation experiment, we used
(x � 1) samples to determine the averaged material pa-
rameters, and the remaining sample to evaluate how ac-
curately the measured force can be predicted assuming
these parameters. In detail, we determined the force that
minimized the difference between the observed surface
and the simulated deformation. Table 1 lists the aver-

aged force prediction errors for all objects. The forces
could be predicted with an error of approximately 10
to 15 %. Thus, the learned models can be useful in pre-
dicting the force a robot has to expend when deforming
objects, although we neglect different material effects,
such as viscoelasticity and nonlinearity.

7.2. Deformation Cost Approximation

In this section, we present evaluations of our ap-
proach to model deformation cost functions of objects
with Gaussian processes. Using the simulation frame-
work described in Section 3.3, we generated several
data sets consisting of trajectory samples that poten-
tially lead to object deformations for arti�cial and real
deformable objects. We considered trajectories in 2D
that describe the motions of a wheeled robot and tra-
jectories in 3D that describe the motions of a manipu-
lation robot end effector. The trajectory samples were
generated by randomly sampling starting and end point
on the bounding circle and bounding sphere around the
object. An overview of the generated data sets is given
in Table 2. In addition to performing evaluations on the
generated data sets, we use them in the planning appli-
cations in the next section.

In the experiments, we evaluate the accuracy of the
predictions using the mean absolute error (MAE) and
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Figure 13: Prediction accuracy of the local GPD models depending on the number of samples used to train the GP
hyperparameters. Data set: 3D-Teddy, 5,000 training trajectories were available and the 50 nearest neighbors were
used to build the local GPs.

the standardized mean squared error (sMSE)

sMSE=
1
n

nX

i=1

(yi � ŷi)2

� 2
test

: (23)

The sMSE and MAE error losses only take into account
the predictive mean of the model. Since the Gaussian
process framework provides us with an estimate of the
uncertainty of a prediction, we evaluate the �t of this
predictive distribution by considering the negative log
predictive density (NLDP) of the true targets:

� log p(y� j x� ;D ) =
1
2

log(2�� 2
� ) +

(y� � ŷ� )2

2� 2
�

: (24)

It is minimal when the variance equals the error and
penalizes both over-con�dent and under-con�dent esti-
mates. This loss can be standardized by subtracting the
NLPD of the trivial model, that is a Gaussian distribu-
tion with mean and standard deviation of the training
set distribution. Thus, we consider the mean standard-
ized log loss (MSLL)

MSLL =
� 1
n

nX

i=1

log p(yi j xi ;D ) � log ptrivial(yi j xi ;D ) ;

(25)

which is approximately zero for simple models and neg-
ative for better models.

We investigate the effects of different optimization
strategies and parameters. In particular, we analyze the
required number of training samples as well as the num-
ber of nearest neighbors to be considered for the indi-
vidual prediction tasks. To demonstrate the bene�ts of
decomposition and GP regression, we compare our ap-
proach to a full GP model using all training points and
to a weighted averageM-nearest neighbor strategy. To
summarize, the different strategies we evaluate are:

GPD our GP decomposition strategy, for each test
point, theM nearest neighbors are selected from

the N training points to build a local GP. The hy-
perparameters, used in all local GPs, are optimized
once on a subset of all samples.

GPO GP decomposition and local optimization strat-
egy, the hyperparameters are optimized for each
local GP and test point individually onM � N
trajectories.

GPF a full GP model using all available training trajec-
tories (if computationally tractable) for hyperpa-
rameter optimization and prediction of a test point.

IDW the baseline strategy predicts the weighted aver-
age of theM nearest neighbors to a test point, with
weights corresponding to the inverse of the dis-
tance to a test point.

For the GP models, we furthermore compare two differ-
ent covariance functions, the squared exponential (GP-
SE) and the nonstationary neural network (GP-NN) co-
variance function.

7.2.1. GP Training and Number of Training Samples
GP training is the process of optimizing the hyperpa-

rameters of the covariance function such that the model
best �ts the data. In the �rst set of experiments, we in-
vestigated how many training samples are required to
train GP models and to obtain accurate predictions.

With the GPD strategies, only a subset of the avail-
able training data set is used to train the hyperparam-
eters of the GP models. In a �rst experiment, we in-
vestigated the effect of the number of samplesN used
to train the hyperparameters on the prediction accu-
racy. We considered the Teddy-3D data set and ran-
domly selected 5,000 trajectories as training data and
300 trajectories as test data. For a �xed number of 50
nearest neighbors to build the local GPs, we evaluated
the prediction errors (MAE and sMSE) as well as the
MSLL for varying N. The results of this experiment
are shown in Figure 13 and illustrate that training sets
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Figure 14: Comparison of different strategies to predict the deformation costs of a robot trajectory: shown are the
MAE, sMSE, MSLL depending on the number of training samples. Data set: Foam-3D, 10 nearest neighbors.
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Figure 15: Comparison of different strategies to predict the deformation costs of a robot trajectory: shown are the
MAE, sMSE, MSLL depending on the number of nearest neighbors. The full GP models correspond to 2,000 nearest
neighbors. Data set: Foam-3D, 2,000 training samples.

Data set # trajec- # tetra- run-
tories hedra time

Arti�cial objects:

Duck (2D) 4,284 530 7 h

Curtain-A (2D) 4,693 500 10 h

Real objects:

Curtain-R (2D) 2,035 285 5.5 h

Foam (3D) 22,950 385 24 h

Teddy (3D) 12,620 940 24 h

Table 2: Trajectory data sets for different deformable
objects: the simulation time depends on the length of the
trajectories and on the number of elements of an object,
it increases for more complex objects.

larger than 1,000 samples do not lead to improved ac-
curacies. The computation time for hyperparameter op-
timization, though, is cubic in the number of samples.
For 1,000 samples, optimization with the squared expo-
nential covariance function requires up to two minutes,
with the neural network covariance function around �ve
minutes due to more involved covariance computations.
For 3,000 samples, the optimization already takes up to
half an hour in case of the squared exponential and up to
one hour in case of the neural network covariance func-
tion. In the following experiments, we therefore limit
the maximum number of samples to 1,000 when learn-
ing the hyperparameters of the GP models.

We additionally investigated the required number of
trajectory samples to obtain accurate predictions for
the deformation costs. We split the data sets into 80 %
training trajectories and 20 % test trajectories. From the
available set of training trajectories, a varying number of
samples was used for regression of the test samples. In
this experiment, the number of nearest neighbors used
to build local GPs was �xed to ten. The results of this
experiment for all considered strategies are summarized
in Figure 14 for the 3D foam data set. Increasing the
number of training samples obviously leads to a smaller
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Figure 16: Comparison of the different strategies to pre-
dict the deformation costs of trajectories in a ten-fold
cross-evaluation.

prediction error for all considered strategies. The errors
for the GP models are in general smaller compared to
the baseline strategy, in particular, if fewer training sam-
ples are available. For large training data sets, however,
the error of the baseline strategy approaches the error of
the GP models. As generating new samples by means
of simulations is time-consuming, the training data sets
cannot be arbitrarily increased and the GP models allow
for a better trade-off between the size of the training
set and accuracy. For the considered number of nearest
neighbors, we cannot observe a signi�cant difference
between squared exponential and neural network ker-
nel. Locally optimizing the hyperparameters does not
seem to improve the prediction accuracy either, at least
for the considered number of training samples in this
experiment. The MSLL, however, is smaller for the lo-
cally optimized GPs, which indicates more accurate un-
certainty estimates for these strategies.

7.2.2. Number of Nearest Neighbors
In a further experiment, we investigated the in�u-

ence of the number of nearest neighbors on the pre-

diction accuracy. For a �xed number of 2,000 training
samples, we evaluated the prediction error when con-
sidering up to 100 nearest neighbors for each predic-
tion task. The results of this experiment are summa-
rized in Figure 15 for the 3D foam data set. Increas-
ing the number of nearest neighbors leads to more ac-
curate predictions and uncertainty estimates for all GP
models. With 50 nearest neighbors, the performance is
comparable to a full GP model that considers all data
points. Using only theM nearest neighbors when eval-
uating the GP model, however, speeds up computation
time, since no computations with large matrices are re-
quired. In case of the neural network kernel, evaluation
of one test sample requires approximately 20 ms for a
GP with 50 data points, in contrast to 550 ms for a GP
with 2,000 data points. Locally optimizing the hyper-
parameters does not notably in�uence the prediction er-
rors. The uncertainty estimates, however, are more accu-
rate. If the hyperparameters are optimized for each GP
locally, a computational overhead of 200 ms per sam-
ple is introduced. In contrast to a full GP model, the
local approximation strategies can deal with even larger
data sets, thus resulting in more accurate predictions.
The experiments indicate that a number of 50 nearest
neighbors leads to similar results as the full GP model
while signi�cantly reducing computation time.

7.2.3. Statistical Evaluation
The above experiments showed that a number of

1,000 training samples leads to good prediction results
in the case of 2D trajectories. For 3D trajectories, we al-
ready obtain decent predictions for 5,000 training sam-
ples. For the 3D data sets, a number of 50 nearest neigh-
bors for building local GPs seems to be a reasonable
choice both with respect to minimizing the prediction
errors and the MSLL. In 2D, we set the number of near-
est neighbors to 25, since more nearest neighbors do not
lead to improved prediction results.

With these parameters identi�ed, we performed a 10-
fold cross-validation on all data sets to obtain statisti-
cal results on the performance of the different strate-
gies. Furthermore, we compared the GP models to the
baseline strategy, which predicts the weighted average
over the ten nearest neighbors. We split the available
trajectories into ten folds, and in each run, the test sam-
ples were randomly chosen from one fold and the train-
ing samples were randomly chosen from the remaining
nine folds. The results of this experiment are summa-
rized in Figure 16 for the different strategies and data
sets we considered. In terms of the MAE, the strate-
gies using the neural network covariance function sig-
ni�cantly outperform both the baseline and the squared
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exponential covariance function. For the sMSE, the dif-
ference is less pronounced, but still, the neural network
covariance function leads to the smallest overall errors.
The uncertainty estimates of the two different covari-
ance functions are comparable, and in most cases, they
are improved when locally optimizing the hyperparam-
eters. Considering these results, the GPD strategy using
the neural network covariance function and optimizing
the hyperparameters once on a subset of the available
training samples allows for the best trade-off between
prediction accuracy and runtime. Thus, we use this strat-
egy in all our planning experiments when determining
the deformation costs of the roadmap.

7.3. Motion Planning

In this section, we present example applications and
experimental evaluations of our proposed planning sys-
tem. We �rst demonstrate the planning system for our
manipulator. Second, we investigate the navigation sce-
nario with the wheeled robot in more detail. For this
application, we evaluate the planning algorithm as well
as the collision avoidance.

7.3.1. Arm Planning in 3D
We evaluated our planning system in two different

example applications for our manipulation robot Zora.
First, we show a real-world example with the foam mat
as a deformable obstacle. This example is designed to
close the loop between parameter estimation and motion
planning. The robot initially determined the deforma-
tion parameters of the object, which in turn allows us to
consider the object in simulation and to perform motion
planning. Second, we consider a simulated environment
with deformable rods. This example is designed to il-
lustrate the advantage of considering deformation costs
during planning compared to a planner that ignores de-
formable objects.

Real-world example:We set up an experimental en-
vironment with a deformable foam mat for our manip-
ulation robot Zora (shown in Figure 19). We gener-
ated a roadmap that accounts for the static part of the
world. The roadmap contains 1,000 con�guration sam-
ples and 8,635 connections between nodes. We evalu-
ated the deformation costs of edges using our local GP-
regression approach introduced in Section 5.3 with a
set of 22,950 precomputed trajectory samples. The lo-
cal GPs were built using the neural network covariance
function, and the hyperparameters were optimized for
a subset of 1,000 trajectories. The deformation costs of
edges can be evaluated for the roadmap before answer-
ing any queries using our approximation described in

Section 6.1. With the roadmap precomputed in this way,
arbitrary goal positions can be queried, only new edges
connecting the initial and goal con�guration need to be
evaluated using GP regression at query time.

As an example planning task, the manipulator was re-
quired to move from its initial position, in which the
arm is stretched upwards to a goal con�guration facing
forward, in which the goal position of the end effector
is behind a deformable foam mat. To illustrate the ad-
vantage of considering object deformations when plan-
ning motions, we compare our planner to two alternative
planners, one that treats them as rigid obstacles, and one
that ignores deformable obstacles. A planner treating all
obstacles as rigid is not able to �nd a path, since the goal
con�guration leads to a collision with the foam mat (see
Figure 17a). The plan generated when completely ig-
noring the foam mat is shown in Figure 17b. Executing
this plan results in tearing down the foam mat, as can
be seen in snapshots of the robot motion in Figure 18.
The path generated by our planner is visualized in Fig-
ure 17c, it shows the workspace trajectories of different
manipulator body parts along the edges of the roadmap.
To minimize the deformation of the foam mat, the plan-
ner chooses a motion that approaches the target position
from the front and slightly below. The motion of the ma-
nipulator along this path is shown in Figure 19 and in a
video that can be found online.4

Simulation example:We set up a virtual environment
with four deformable rods as obstacles in the workspace
of the robot. The rods are modeled to be elastic and �xed
to a table and thus can be seen as resembling a construc-
tion site scenario with cables or tubes that can be bent.
To determine the deformation cost function for the rods,
we generated 25,390 training trajectories deforming the
rod that allow us to determine the deformation costs of
edges in the roadmap using GP regression. Since the
four rods have the same deformation properties in this
scenario, training samples need to be computed only
once. The roadmap in this example contains 2,000 robot
con�gurations and 35,408 edges. We evaluated the de-
formation costs of all roadmap edges in a preprocess-
ing step. After these pre-computations, we performed
seven different planning experiments. We evaluated the
planned motions with respect to path length and result-
ing deformation costs and compared them to a planner
that ignores the deformable objects. Results are sum-
marized in Table 3. If deformable objects are ignored,
the deformation costs of the executed trajectories are 1.4
to 1718 times larger compared to our planner while the

4Real-world experiment: http://www.informatik.
uni-freiburg.de/ ˜ bfrank/videos/zora_foam.avi
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(a) Considering the object as rigid. (b) Ignoring deformation costs. (c) Considering deformation costs.

Figure 17: Different motion plans to reach the goal con�guration behind the foam mat. (a) A planner treating all
obstacles as rigid is not able to �nd a path to the goal. (b) A planner ignoring deformable obstacles chooses the
shortest path. (c) Our planner minimizes the trade-off between motion and deformation costs.

Figure 18: When executing the shortest path that ignores deformable objects (Figure 17b), our robot destroys the
experimental setup.

Figure 19: When considering the deformation costs (Figure 17c), our robot keeps the deformation of the foam to a
minimum.

trajectories considering deformation costs are 1.1 to 1.7
times longer. A comparison of the planned trajectories
is illustrated in Figure 20.

7.3.2. Robot Navigation in 2D
We evaluated our navigation system described in

Section 6.2 on our robot Albert, a wheeled platform
equipped with a laser range scanner. To set up a navi-
gation scenario, we mounted two curtains in the corri-
dor of our lab as deformable objects (see Figure 5). We
performed several experiments to evaluate our motion
planner as well as our approach to classify the sensor
measurements of the robot during navigation.

Path planning: In the environment described above,
the robot is given the task of reaching a goal point be-
yond the curtains. The planner optimizes the weighted
sum of travel costs and deformation costs when search-

(a) (b) (c)

Figure 21: Planning a path for different weightings of
the deformation costs: for� = 0, the deformation costs
are ignored (a), for� = 0:2, a longer trajectory is chosen
to minimize deformations (b), for� = 0:8, deformations
are avoided (c).
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(a) Ignoring deformable objects.

(b) Considering deformation costs.

Figure 20: Comparison of seven planning tasks (T1-T7 in Table 3) in an environment with deformable rods for a
planner that ignores deformable objects and our planner. Our planner chooses longer trajectories that lead to lower
deformation costs.

(a) (b)

Figure 22: The planner prefers trajectories that mini-
mize object deformations. The curtains in setup (a) are
moved 40 cm along the positive y-axis compared to the
setup from the previous experiment (b). The weighting
coef�cient � is set to 0:2 in both examples.

ing for a path, and a weighting coef�cient� (see Eq. 1)
determines their trade-off. In a �rst experiment, we in-
vestigated the in�uence of this weighting coef�cient on
the generated trajectories. For �xed starting points and
goal points, we varied the weighting coef�cient� and
compared the trajectories generated by our planner. The
results for an example planning task can be seen in Fig-
ure 21. In our setup, the deformations of the curtains
are minimized if the robot moves on a trajectory be-
tween both curtains and thereby deforms them equally
at their borders only. We found that for low values of
� � 0:2, the planner prefers trajectories with low to-
tal costs, it avoids large detours and minimizes object
deformations. This fact is illustrated in a second exper-
iment, in which we varied the experimental setup and
moved both curtains. Figure 22 shows the generated tra-

jectory for this setup and compares it to the trajectory
determined for the previous setup. In both cases,� is
set to 0.2. The planner chooses a somewhat longer tra-
jectory in order to minimize the deformation costs.

Sensor interpretation:We evaluated how well our
sensor model for deformable objects is able to predict
the presence of deformable objects during robot naviga-
tion. We determined sensor models for two different tra-
jectories through both curtains with minimal deforma-
tion costs that were chosen preferably by our planner. To
compute the sensor model statistics for each trajectory,
we recorded twelve data sets consisting of laser data and
robot positions along the trajectories. We manually la-
beled the laser beams that were re�ected by the curtain.
For each trajectory, we performed a leave-one-out cross-
validation using eleven data sets for learning the model
and one for evaluation. The results of this experiment
are summarized in Table 4 and demonstrate that the sys-
tem is able to distinguish between deformable and static
obstacles with high accuracy. While the number of false
positives is at around 3 %, the number of false negatives
is below 1 %.

Recognition of dynamic obstacles:The sensor model
is able to distinguish well between deformable and static
non-deformable objects contained in the map of the
robot. For collision avoidance, however, the key ques-
tion is whether the system is able to distinguish well
between deformable objects and close-by dynamic ob-
stacles not contained in the map, given that the dynamic
obstacles are not occluded by deformable objects and
can be perceived by the sensor. Therefore, we performed

25



Planning deformation Path deformation
task weight� length costs

T1:
0.0 659.3 83.5
0.5 1122.9 14.6

T2:
0.0 674.6 69.9
0.5 988.3 4.7

T3:
0.0 539.4 515.6
0.5 821.0 0.3

T4:
0.0 595.6 31.6
0.5 854.5 19.7

T5:
0.0 668.2 45.3
0.5 720.2 0.1

T6:
0.0 741.3 6718.7
0.1 758.5 4346.1

T7:
0.0 741.3 3786.3
0.1 1101.1 2736.5

Table 3: Planner evaluation in the rods environment:
we compare the resulting deformation costs and path
lengths of trajectories computed using our approach to
those resulting from a planner that ignores deformable
objects (� = 0:0).

several experiments, in which the robot moved on a tra-
jectory deforming the curtain while a human was block-
ing its path. The recorded laser scans were labeled ac-
cordingly and evaluated with respect to the prediction
performance. The results are listed in Table 5. In this
experiment, the number of false negatives is comparable
to the situation in static environments while the number
of false positives is around 1 % higher than in the previ-
ous experiment. Our experiments, however, showed that
this still leads to a safe navigation behavior. In the worst
case, false negatives forced the robot to unnecessarily
stop while the false positives usually were outliers in a

True class
Deformable Rigid

P
re

di
ct

ed
cl

as
s Deformable 43857 (97.1%) 621 (0.9%)

Rigid 1292 (2.9%) 65907 (99.1%)
Total 45149 66528

Table 4: Confusion matrix for predicting, whether a sen-
sor measurement corresponds to a deformable object in
a static environment.

True class
Deformable Dynamic

P
re

di
ct

ed
cl

as
s Deformable 8563 (96.5%) 98 (2.1%)

Dynamic 314 (3.5%) 4600 (97.9%)
Total 8877 4698

Table 5: Confusion matrix for predicting, whether a sen-
sor measurement corresponds to a deformable object
in an environment containing both deformable and dy-
namic objects.

region of correctly classi�ed measurements observing a
dynamic obstacle. Thus, the robot was still able to rec-
ognize dynamic obstacles and to avoid collisions with
them.

Real-world navigation example:In a navigation ex-
ample task, we demonstrate the capability of our system
to integrate path planning and collision avoidance and
to navigate safely in the environment described above.
Figure 23 shows a sequence of snapshots of our real
robot moving through the curtains. A video of the robot
navigating in this environment and demonstrating its
ability to avoid collisions with dynamic obstacles can
be found online.5

Outdoor Robot Example:As a further application
scenario for our planner, we consider a tractor-like out-
door robot that navigates in a tree plantation. We ad-
dress this problem in simulation, since we do not have
an outdoor robot with force-sensing capabilities. In this
example, the tree trunk is assumed to be rigid while the
treetop is modeled to be uniformly elastic. Given this
setup, our planner is able to consider deformations of
the twigs and chooses a trajectory with low deformation
costs as illustrated in Figure 24.

7.3.3. Simulation Example
We compared our planner that determines the defor-

mation costs of path segments using GP regression to a
planner that carries out the required simulations during
runtime. In a simulation example, the task was to navi-
gate an environment with rubber ducks and curtains, in
which deformations of the rubber ducks are more ex-
pensive than deformations of curtains. The paths com-
puted by both planners are illustrated in Figure 25. Both
planners generally avoid the rubber ducks. Our planner

5Real-world experiment: http://www.informatik.
uni-freiburg.de/ ˜ bfrank/videos/albert_
curtains.avi
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Figure 23: The mobile robot Albert is navigating through curtains.

Figure 24: Application scenario for a simulated outdoor robot that navigates among vegetation. Our planner chooses
a low-deformation cost trajectory that leads to gentle deformations of the low-hanging twigs of the tree.

(a) Using GPs.

(b) Using Simulations.

Figure 25: Comparison of our planning system (a) with
a planning system that performs simulations during run-
time (b).

underestimates the actual deformation costs of the tra-
jectory by 14 % and the path length deviates by 9.5 %
from the optimal solution found by the planner that uses
simulations. Our planner, however, is able to compute
the plan in less than a second, while the planner that
performs accurate simulations requires more than one
hour to answer the path query.

7.3.4. Computation Time
In this section, we analyze the computational cost of

our proposed motion planner. Besides the computation-
ally intense generation of training examples for the GP
deformation cost function, a model for the static part
of the world has to be determined. The occupancy grid
map for the 2D real-world navigation example was de-
termined independently and readily available with the
CARMEN software package. The roadmap computation
for the static part of the real-world manipulator environ-
ment took approximately half an hour. Given a model of
the static part of the environment and a set of trajectory
training samples for deformable objects, the deforma-
tion costs for motions represented in the static model
can be evaluated using our GP-based regression ap-
proach. In order to speed up planning, the deformation
costs of edges in the roadmap that potentially lead to
object deformations can be precomputed. This required
3 s for the 2D grid map and 420 s for the 3D roadmap
in the foam environment. With these precomputations
available, we evaluated the time required to solve path
queries in 10 runs with random starting and goal points.
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In the 2D environment, path queries could be answered
in 0:3 s on average. In the 3D manipulator setting, an-
swering one query required on average 8 s, including
collision checks for connecting new nodes, evaluating
the deformation costs of new edges and searching for
a path. Evaluating the deformation costs introduces an
overhead of 2.5 s. Thus, path queries can be solved ef-
�ciently, even for manipulation robots with several de-
grees of freedom.

Comparison to a roadmap planner with integrated
simulation: Instead of precomputing sample trajecto-
ries and estimating the deformation costs of edges in
the roadmap using GP regression, it would be possi-
ble to perform the simulations of the motions along
edges when constructing the roadmap. Considering the
roadmap from the manipulation robot example and as-
suming a computation time of 3 s for the simulation of
an edge, evaluating 6,358 edges would require an ad-
ditional 5 h when constructing the roadmap. When an-
swering path queries, the initial and goal con�guration
would be connected to the roadmap. In the worst case,
assuming that each node is connected to its 50 nearest
neighbors, this would require 200 simulations (two sim-
ulation runs are necessary per edge) and another 10 m
per path query, thus increasing the runtime for answer-
ing path queries by approximately two orders of mag-
nitude. In contrast, our planner is able to answer path
queries in the order of seconds, and in this way facil-
itates a prompt response of the robot to new motion
tasks. A further advantage of our deformation cost func-
tions is that they describe the costs relative to an object
and need to be computed only once for each type of ob-
ject, while a roadmap precomputed as described above
would have to be recomputed whenever the environment
changes.

8. Conclusion

In this paper, we presented several techniques to en-
able robot motion in environments with deformable ob-
stacles. We addressed the acquisition of deformation
models, ef�cient representations for planning, and ap-
plication of the developed motion planning framework
to robots operating in real-world environments.

Our robot is equipped with the sensors necessary to
acquire models of deformable objects and determines
their material parameters by minimizing the error be-
tween observed deformation and model prediction. In
several experiments, we demonstrated that the learned
models can be used for realistic simulations of object
deformations and that deformations as well as forces
can be predicted accurately.

To realize an ef�cient planning system and to avoid
time-consuming simulations during planning time, we
introduced deformation cost functions for objects based
on Gaussian process (GP) models. Our roadmap-based
motion planner considers object deformations by opti-
mizing the trade-off between motion costs and deforma-
tion costs. It determines the deformation costs of path
segments in the roadmap using GP-based regression. In
this way, we are able to ef�ciently plan motions. Even
for manipulation robots with several degrees of free-
dom, the planning time is in the order of seconds, and
therefore by several orders of magnitudes faster than a
planner that carries out the deformation simulations on-
line. In several applications, we demonstrated that our
robots are able to successfully navigate in environments
with deformable objects and that they can accomplish
tasks going beyond the capabilities of traditional plan-
ners designed for rigid environments.
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