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Abstract— Observing human activities can reveal a lot about
the structure of the environment, the objects contained therein
and also their functionality. This knowledge, in turn, can
be useful for robots interacting with humans or for robots
performing mobile manipulation tasks. In this paper, we present
an approach to infer the geometric and functional structure of
the environment and the position of certain relevant objects
in it from human activity. We observe this activity using a
full-body motion capture system consisting of a set of inertial
measurement units. This is a hard problem since our data suit
provides odometry estimates only, which severely drift over
time. Therefore, we regard the objects inferred from the activ-
ities as landmarks in a graph-based simultaneous localization
and mapping problem, which we optimize to obtain accurate
estimates about the poses of the objects and the trajectory
of the human. In extensive experiments, we demonstrate the
effectiveness of the proposed method for the reconstruction of
3D representations. The resulting models not only contain a
geometric but also a functional description of the environment
and naturally provide a segmentation into individual objects.

I. INTRODUCTION

Tracking people and observing their activities is an impor-
tant prerequisite for today’s robots to provide better services
for their users, to learn how to carry out tasks and how to
behave in a socially compliant way. Since humans naturally
interact with the real world, tracking their activities also pro-
vides interesting information about the environment and the
functionality of objects in the environment. When learning
accurate models of the environment, this knowledge can be
used to better understand the structure and meaning of the
environment and the manipulated objects. In the context of
mobile robots, 3D models are typically built from the sensor
data of either 3D laser range finders or RGB-D cameras.
Such models provide an accurate metric representation of
the entire environment, but do not contain information on
individual objects or even their function. Thus, in this paper,
we propose a method to build 3D environment models from
tracked human postures by observing specific activities. In
addition to geometric information about objects, this allows
us to learn about the function of objects and possibilities for
interaction with them. A chair, for instance, is typically used
to sit down, a table allows for placing objects on it. Such
models can also be useful for mobile robots, for instance,
to carry out cooperative tasks together with humans or to
plan tasks that involve interactions with objects and require
knowledge about their function. Furthermore, a mobile robot
could directly use the geometric information for localization
or planning of actions.
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Fig. 1. Environment and corresponding 3D model reconstructed from
human activity using our approach.

In our system, the user is wearing a motion capture
suit [14], which provides an estimate of the full body posture
from 17 inertial measurement units (IMUs) at a frequency
of 120 Hz. With the data suit, the human posture is fully
observable, independent of the view point. In contrast, a
mobile robot equipped with an RGB-D camera and a skeleton
tracker would have to change its positions and might fail in
situations, in which a human itself occludes parts of his body.
Our approach shares some ideas with the work of Grzonka
et al. [7, 8]. They estimate the 3D trajectory of a human
based on door-handling and stair-climbing activities and
also consider these activities as landmarks in a graph-based
simultaneous localization and mapping (SLAM) problem.
This formulation allows them to correct for odometry errors
that accumulate due to the inherent drift of the suit. Based
on the detected doors, they are able to build topological
2.5D maps of environments containing multiple levels. Our
method also uses specific activities as landmarks to construct
a graph-based SLAM problem and it reduces the rapidly
accumulating drift in the odometry. In contrast to their
work, however, our method aims at building geometric 3D
models of the basic structure of an environment including
certain relevant objects by inferring walls, tables, screens,
and chairs. With our method, it is possible to quickly build
accurate 3D reconstructions of indoor environments and to
simultaneously reduce the drift of the motion capture suit.

Fig. 1 illustrates the application of our system. It shows the
user wearing the data suit in an example environment along
with some considered objects, namely walls, tables, screens,
and chairs. Furthermore, on the screen, we can see the 3D
model of the environment reconstructed with our approach.



Fig. 2. Activities, collected data points and corresponding reconstructed
objects.

II. RELATED WORK

Localizing and tracking humans in indoor environments
is an active area of research and has received considerable
attention in the past. Applications range from search and
rescue missions [15, 4] over reconstruction of environment
models [7, 8] to tracking of the user in a virtual environment
[3]. Fischer and Gellersen [4] present an overview over the
advantages and disadvantages of different technologies for
tracking emergency responders. Using IMU data to track
persons is a challenging task due to the drift inherent in
the measurement principle.

Lee and Mase [13] use wearable accelerometers and dead
reckoning to recognize different activities such as walking,
standing and climbing stairs as well as changes in the
user’s location in a known environment. Foxlin [6] tracks
pedestrians using shoe-mounted inertial measurement units
and handles drift using zero-velocity updates in an extended
Kalman filter. Ojeda and Borenstein [15] pursue similar
ideas, and also include heuristics to deal with gyroscope
errors [1]. Ziegler et al. [17] presented an approach to deal
with the drift by tracking the human with a mobile robot
using a particle filter.

While the approaches discussed so far deal with the local-
ization of users in known environments, there exist different

approaches to simultaneously generate a map from activities
of the user in a new environment. Schindler et al. [16], for
instance, use a wearable gesture interface equipped with an
infrared proximity sensor and a dual axis accelerometer to
build a topological map of the environment. The accelerom-
eter detects footsteps, while the proximity sensor identifies
doorways. To distinguish different doorways and to uniquely
label doors, the user performs finger pointing gestures. Cinaz
et al. [2] use a laser scanner and an inertial measurement unit
mounted on a helmet to build 2D maps of the environment
and to localize the user wearing the helmet within the map.
Grzonka et al [7, 8] use door-handling and stair-climbing
activities to build approximate 2.5D maps of environments.
A multi-hypothesis tracker handles different possible data
associations and a graph-based optimization corrects for the
drift of the suit. Our system shares ideas with this approach.
In contrast to their approximate topological-metric maps, the
outcome of our system is a functional 3D model that contains
typical objects humans are dealing with.

Virtual and augmented reality applications are becoming
more and more popular. Tracking the activities of users in
such virtual environments seems desirable to allow for inter-
activity. Damian et al. [3], for instance, track the movements
of agents with a data suit similar to ours. Since they consider
only local movements and no walking activity, they do not
account for drift in the global pose estimate.

Knowledge about human activity can also be useful in the
context of scene recognition, inference of scene geometry
and object arrangement. Higuchi et al. [9] introduced a
method for scene recognition and segmentation that employs
conceptual knowledge on relationships between human ac-
tions and objects. In their setup, stereo cameras are used
to track human motions and interactions with objects. The
resulting 3D environmental map contains objects labeled
according to their function. Fouhey et al. [5] use human
actions for inferring constraints on the 3D structure of the
environment from single-view time-lapse images. Observ-
ing and recognizing actions such as sitting, walking, or
reaching allows them to identify functional regions in the
environments corresponding to floors, free space, space for
placing objects or sitting, and to reason on occupied voxels
in the scene, which finally is useful for scene understanding
and recognition. The work of Jiang and Saxena [10, 11]
deals with arranging objects in the environment and inferring
their best placement. They do not directly observe humans
but reason about interactions between humans and objects
by considering the likelihood of different possible human
postures in different places and in relation with different
objects. As they demonstrate, a robot can use the resulting
models for semantic scene labeling and object arrangement.

In contrast to these approaches, our contributions are two-
fold: first of all, we are able to reconstruct 3D models
containing objects relevant to humans, such as walls, chairs,
and tables, together with their functionality. Furthermore,
since we consider recurring encounters of the user with these
reconstructed objects, we are able to correct for the drift in
the user’s pose estimate.



III. SYSTEM OVERVIEW

In our approach, we observe the activities and gestures of
a person using a data suit that provides us with the full-body
pose estimate at high frequencies. We extract different types
of 3D objects from predefined activities and gestures. To ob-
tain a consistent model of the environment, we use a graph-
based solver for the simultaneous localization and mapping
(SLAM) problem. In such a graph, the nodes correspond
to the poses along the trajectory and the edges correspond
to the relative movements between these poses as measured
with the motion capture suit. Additionally, we consider the
individual reconstructed objects as landmark observations
connected to the user poses. Whenever the user revisits an
object that is already contained in the model, we insert a loop
closure constraint between the current pose and the observed
landmark into the graph. In our current system, we make data
associations using a nearest-neighbor approach. Whenever a
loop is closed, we perform a least-squares optimization of the
pose graph to correct for accumulated errors and to obtain a
globally optimal solution. The resulting graph contains the
pose estimates of landmarks as well as pose estimates of the
person. Finally, we apply a post-processing step to convert
the planes for the walls into rectangles. In the remainder of
this paper, we first describe our landmark extraction scheme,
followed by a detailed description of the graph construction
and the objective function we solve with a state-of-the-art
least-squares optimization framework [12].

IV. ACTIVITIES AND LANDMARK EXTRACTION

Since the data suit only provides an odometry estimate,
we extract landmarks from gestures and activities of the
user. In our current system, we consider different kinds
of activities that correspond to different types of objects:
chairs, walls, tables and general rectangular structures (e.g.,
screens and TV sets). We represent chairs by their position
and orientation in 3D space, and specify all other objects
as planes in hessian normal form (additionally we store the
centers of masses for the planes). We extract planar objects
from the motion of the user’s right hand. We defined a
specific gesture indicating that points should belong to the
model: left hand on hip. If we detect this gesture, that is if
the angle between the upper arm and the forearm is below
a threshold, we use the corresponding positions of the right
hand for modeling.

Chairs are extracted and inserted into the model whenever
the user is sitting. We detect this type of activity by mea-
suring the distance between the sensor attached to the pelvis
bone and the sensor attached to the upper leg of the user;
if this is below a certain threshold, we derive the position
of the landmark from the hip position (with some constant
offset) and the orientation from the user’s upper body.

Walls (as well as other planar objects) are modeled by
fitting a plane to a set of data points. We classify a plane
as a wall if its orientation vector is approximately parallel
to the floor. While collecting points, the user can move
his right hand arbitrarily over the surface of the wall, the
only constraint is that the first and the last point should
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Fig. 3. Graph-based formulation of the simultaneous localization and
mapping problem.

be sufficiently far away from each other (to not confuse
walls with general rectangular structures). For each wall, we
initially assume that it extends infinitely, when we add more
walls to the model, however, we cut them at intersections.

Rectangular structures (like screens, posters etc.) are
modeled by fitting a plane to a set of data points collected
when the user moves his hand along the edges of the object.
We extract this type of landmark when the first and the last
point of the model are close to each other. To find the extents
of the object after fitting a plane, we detect its corners in the
data. Let {xi} be an ordered set of data points. For each
point xi, we consider points from its local neighborhood in
positive and negative direction {x+i } and {x−i }. We fit a line
to each of those two subsets and check the angle θ between
the lines. At the corner points, there are local maxima of θ.

Tables are extracted from the motion of the user’s hand
along the two adjacent edges. We detect the corner of the
intersection for these two lines in the same way as for general
rectangular structures. To obtain two more corners, we then
find the two points in the point set that are maximally far
away from each other. The line segment between these two
points is the diagonal of the table. We obtain the last corner
– we assume rectangular tables – by mirroring the first one
over the diagonal. We classify an object as a table if the
normal vector of the plane is approximately perpendicular
to the floor plane.

Fig. 2 illustrates how we extract these different types of
objects and shows the gestures performed by the user, the
extracted data points and the corresponding 3D models of
the objects.

V. LEAST-SQUARES OPTIMIZATION

So far, we have a set of extracted objects or landmarks and
the six degree-of-freedom pose estimates for every segment
of the skeleton generated by the data suit. To construct
a SLAM pose graph, we use the pelvis bone sensor as
reference on the body of the user. Since the data suit provides
us with pose estimates at 120 Hz, we down-sample the poses
to segments of 20 cm, that is we insert a new odometry
node whenever the user has moved for more than 20 cm



with respect to the last odometry node, in order to keep the
number of nodes in the graph at a manageable level. For all
resulting poses of the reference sensor, we insert nodes in
the graph and link such nodes with edges that correspond
to the relative data suit pose estimates as measurements.
More formally, a measurement zij describes the relative
transformation between nodes poses xi and xj . Based on
such a constraint, we can calculate the error

e(xi,xj , zij) = zij 	 (xi 	 xj). (1)

The weighted error for odometry constraints is then

eoij = e(xi,xj , zij)
ᵀΩo

ije(xi,xj , zij), (2)

where Ωo
ij denotes the information matrix used to weight

the error for a constraint zij according to the uncertainty
of a measurement. In our implementation, we chose an
uncertainty of 1 cm for translation per 20 cm segment.

Since the user touches all landmarks except the chairs with
the right hand, we also obtain relative measurements for each
landmark by relating the poses of the right hand to the refer-
ence joint on the body. The relative inner body pose estimates
are not subject to drift since an underlying biomechanical
model constrains them. Furthermore, the relative orientations
reported by the IMUs are typically accurate since the gravity
vector is globally consistent. Therefore, we add landmark
edges between the pose xr and the landmark lk with a
measurement zrk to the graph similar to the odometry edges,
but with a different information matrix Ωl

rk, which assumes
a smaller uncertainty. The measurement zrk corresponds to
the relative position of the landmarks center of mass. We
estimate the orientation of the landmark from the collected
data points as described in the previous section. The weighted
error for landmark constraints is then

elrk = e(xr, lk, zrk)ᵀΩl
rke(xr, lk, zrk). (3)

In addition, we consider loop closure constraints whenever
the user revisits previously observed landmarks. Fig. 3 illus-
trates the constructed graph. To identify loop closures, we
make nearest-neighbor data associations. Thus, we assume
that individual landmarks are sufficiently far away. Whenever
two landmark observations are below a given threshold, we
insert a loop closure constraint into the graph.

Loop closure constraints describe the difference in the
expected and measured relative transformation between the
user and the object in the map. We consider walls separately,
since the user does not necessarily return to the same spot
and only his distance in the direction normal to the wall
is relevant when minimizing the error in the observation.
Therefore, we model the weighted error between a pose xi

corresponding to the position of the right hand with respect
to the estimated wall wj as follows

ewij = (zi,j − h(xi, Pj))
ᵀΩw

ij(zi,j − h(xi, Pj)), (4)

where h(xi, Pj) computes the distance of the hand to the
plane, Ωw

ij is the corresponding information matrix for walls
and zij is the current observation of a plane, fit to the data
points.

Fig. 4. 3D model computed with a traditional graph-based SLAM approach
using the data of a 3D laser range finder. This example office environment
consists of three tables and four chairs which are the landmarks for our
SLAM method. The corresponding model reconstructed with our method is
shown below.

Based on the three different types of constraints, we
formulate a joint optimization problem with the following
objective function:

x∗, l∗,w∗ = argmin
x,l,w

∑
i,j e

o
ij +

∑
i,j e

l
ij +

∑
i,j e

w
ij . (5)

This function is then optimized using the g2o framework
of Kümmerle et al. [12]. While the user is acquiring data,
we incrementally add objects to the model, check for loop
closures and carry out an optimization step whenever the
user revisits a landmark.

VI. EXPERIMENTAL EVALUATION

We evaluated our approach on data sets acquired with
an inertial motion capture system. The inertial measurement
units (IMUs) consist of 3D linear accelerometers, 3D rate
gyroscopes and 3D magnetometers, which are fused to obtain
the positions and orientations of the sensors. The data suit
performs a pre-processing and filtering of the raw data to
prevent the individual IMUs from drifting apart. To this
end, it uses a biomechanical model of the human body
that constrains the movements of the IMUs. This model
requires measurements of the individual body segments such
as body height, arm and leg length for each user, which
are provided manually. Furthermore, it requires the user
to perform a calibration step in a so-called T-pose, prior



to operation. In total, we collected nine data sets in two
different office environments with multiple walls, tables,
chairs and screens. In each run, we collected data with
different gestures and multiple loop-closures over three to
six minutes. For evaluation of our system, we additionally
recorded the trajectory of the person using a highly-accurate
and well-calibrated optical motion capture system. For this
purpose, the user wore a helmet with uniquely identifiable
markers during the experiments. Due to the nature of the
measurements from the IMU sensors, the open-loop pose
estimates are subject to serious drift, which is already evident
at the scale of small rooms. Therefore, we designed the
experiments in a way to close loops as often as possible
and avoided trajectories longer than 5 m to 10 m without
loop closure. In this way, we confine the pose uncertainty
to reasonable boundaries and are able to successfully solve
the data association problem.

Interesting questions arise from the chosen sensor setup.
For SLAM solutions, the accuracy of the resulting model
and the pose estimate are typically the quantities of interest.
To provide an intuition about the achievable accuracy of
the 3D model computed by our method, we collected a
set of 3D range scans and created a reference point cloud
for comparison. Fig. 4 shows the resulting model computed
with a traditional 3D SLAM approach and the corresponding
model generated with our approach for visual comparison.
We evaluated the size of the reconstructed model and com-
pared it to the ground truth provided by the point cloud.
In detail, we determined for each object the mean absolute
percentage error:

MAPE =
100 %

n

n∑
i=1

|ŷi − yi|
yi

,

where ŷi are the edge lengths of the reconstructed objects and
yi the actual edge lengths. Tab. I summarizes the results. The
error is around 10 % for walls and ranges from 10 % to 30 %
for tables. In comparison to models generated with vision,
laser or other sensors typically used in robotics, the models
obtained with our method are less accurate. This results from
the fact that we rely on the raw odometry of the suit to
collect data points of individual objects, which accumulates
errors and is particularly evident for larger objects such as
the tables. Here, the user had to move a lot to cover all edges.
Furthermore, the metal found in the table lead to disturbances
and increased the error in the pose estimate of the suit.

We evaluated the accuracy of the pose estimates for the
open-loop IMU trajectory as well as our optimized SLAM
solution with respect to the ground truth provided by the
optical motion capture system. Fig. 5 shows the resulting user
trajectories for one experimental run. As this plot illustrates,
after one round through the environment, starting and end
pose of the open-loop estimate are more than 1 m apart.
Our method, in contrast, stays close to the true trajectory
of the user as reported from the optical motion capture. We
observe some differences in local trajectories, for instance,
in the upper left corner of the plot. These result from head
movements during collection of data points from the tables,

Fig. 5. Trajectory comparison between open-loop body poses, ground truth
head pose (optical motion capture) and the body poses optimized by our
method.
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Fig. 6. Trajectory comparison of the open-loop body poses and the body
poses optimized by our method to the ground truth head pose recorded with
optical motion capture for nine different data sets.

while the hip position considered in our approach did not
move a lot. Fig. 6 provides a quantitative evaluation of the
reconstructed trajectories in terms of the root mean square
error (RMSE) for all nine data sets. It shows that the RMSE
is always smaller for the optimized trajectories compared
to the open-loop estimate from the suit. The error for the
open-loop estimates grows unbounded with the length of the
trajectory. As an example, Fig. 7 shows a comparison of the
generated models after three rounds through a 3.9 m × 8.7 m
big environment. For this data set, we measured the size of
the room manually. The reconstructed walls have a length of
8.6 × 3.8 × 8.8 × 3.5 m, thus, the average error of the walls
is less than 5 % for this environment. Hence, our approach is
able to globally correct the trajectory and to explain all data
associations correctly. A video demonstrating our system can
be found online.1

1http://ais.informatik.uni-freiburg.de/projects/
mvn/#3Drec

http://ais.informatik.uni-freiburg.de/projects/mvn/#3Drec
http://ais.informatik.uni-freiburg.de/projects/mvn/#3Drec
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TABLE I
ACCURACY OF RECONSTRUCTED OBJECTS IN TERMS OF THE MEAN

ABSOLUTE PERCENTAGE ERROR.

Object # instances avg. reconstruction error (%)

Tables 36 26.3 ± 8.7
Big screens 9 23.1 ± 2.7
Small screens 23 19.3 ± 4.8
Walls 36 7.1 ± 3.5

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to build object-
centric 3D models environments based on the activity of
a user captured with a wearable data suit. Our approach
uses specific gestures of the user to infer certain objects
and their positions. We employ a SLAM formulation of
the overall problem and optimize the data using a least-
squares method. As a result, we obtain an accurate 3D model
of the environment and at the same time a corrected pose
estimate for the user. Practical experiments demonstrate that
the reconstructed models are topologically correct and that
the reconstructed objects as well as the recovered trajectory
are accurate. In addition to geometric information, our model
naturally provides a segmentation into individual objects and
contains information on their functionality.

In future work, we will additionally consider dynamic
environments and will allow the user to move individual
objects in the scene. Further directions for future work could
include using information on natural movements of the user
during everyday activities in his environment such as opening
doors or placing objects. We also envision integrating visual
information into the system and performing object class
recognition on the images. Combined with the data from the
suit, this could give an even better semantic understanding
of the environment.
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