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Abstract— Multispectral analysis of the soil can provide rich
information about its physical and chemical properties. In this
study, we show how to leverage this information for localization
purposes. We describe a map representation suitable for soil
properties derived from multispectral images and demonstrate
how to integrate such maps in a localization approach. Exper-
imental results demonstrate the performance of the proposed
method, reaching a localization accuracy comparable to a GPS-
based solution. Apart from agricultural robots, the proposed
method may also be suitable for mining and extra-terrestrial
applications.

I. INTRODUCTION

Localizing agricultural robots is one of the fundamental
challenges in precision agriculture. Popular solutions are
based on GNSS (Global Navigation Satellite System), INS
(inertial navigation system) and wheel odometry [1]. While
GNSS is a very powerful tool, it is affected by signal
blocking and multipathing, arising in urban, heavily forested,
or mountainous environments. As a result, the accuracy and
robustness of GNSS typically vary depending on the actual
location and environment.

Due to these limitations, Cornick et. al. [2] recently
proposed a novel localization approach for ground vehicles,
in which they use a ground-penetrating radar system to
measure and map various subterranean features of the ground
underneath the vehicle. Levison and Thrun [3] successfully
build probabilistic ground surface intensity maps captured by
lidar sensors to achieve a high precision localization.

In precision agriculture, multispectral and hyperspectral
cameras are widely used to map and monitor vegetation
and soil conditions. So-called vegetation indices [4] were
developed to determine the amount and measure the condi-
tion of the vegetation within an image. In addition to that,
multispectral analysis of soil samples allows the characteri-
zation of soil compositions and properties [5], [6]. However,
such maps are typically used to coordinate individual plant
treatments like fertilizer distribution, rather than localizing a
vehicle on the field.

In this study, we explore the possibility of using soil
properties derived from multispectral images of the top soil
surface in the context of mapping and localization. The
investigated soil properties in this study are represented by
the Normalized Difference Vegetation Index (NDVI) [7]. All
experiments were conducted on the sugar beets dataset [8].
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II. APPROACH

The robot in the sugar beets dataset operates along in-
dividual rows or lanes within the field, which allows the
localization and mapping problem to be broken down to one
dimension. As the robot moves along a row of the field,
it simultaneously captures RGB and near-infrared (NIR)
images of the ground underneath it. A pre-processing step
calculates the mean NDVI value over each image pair, while
excluding vegetation pixels with a NDVI value greater than
0.2. The resulting mean NDVI values are then used for
mapping and for localizing the robot relative to a previously
acquired probabilistic NDVI map.

A. MAPPING

In our scenario, spectral indices are real-valued random
variables, measured at different locations. We use a special
form of Gaussian process regression called Kriging [9] to
approximate the true NDVI functions along the rows of the
field. Assuming a locally linear trend in the observed data,
Kriging provides the best linear prediction of the intermedi-
ate values along with a prediction variance. Given a set of
mean NDVI measurements Z and measurement locations X
(obtained via Real Time Kinematic (RTK) GPS), the Kriging
model estimates the expected NDVI function µ(X,Z, x)
along with the prediction standard deviation σ(X,Z, x) for
arbitrary locations x. Figure 1 shows an example NDVI map.

The investigation of the mean NDVI values along the same
row at different days revealed that even though they follow
a similar shape, they have different absolute offsets. As a
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Fig. 1: 1-D mean NDVI map obtained via Kriging (purple
line with confidence interval indicated by the dashed lines)
along with the three raw measurement series (from May 4,
5 and 12, 2016) used for map construction.



result, all measurement series are shifted by their negative
mean value prior to the mapping procedure.

B. LOCALIZATION

Localizing the robot relative to the spectral index map is
achieved by employing a particle filter based on wheel odom-
etry, RGB-NIR images and the probabilistic index map. As
the mean NDVI value offset is unknown during localization,
each particle represents a combination of a possible position
and mean NDVI value offset. The motion model uses the
current velocity reported by the wheel odometry with added
Gaussian noise (µv = 0 and σv = 0.36m) to predict the
future positions of the particles. The measurement model
calculates the likelihood of the currently measured mean
NDVI value given the map and particle positions:

p(z|X,Z, x) = N (z;µ(X,Z, x), σ2(X,Z, x))

where X and Z represent the training data as described
above, x is the particle position, and z is the current mean
NDVI measurement.

III. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
conducted two experiments using the sugar beets dataset [8].

For this dataset, wheel odometry of the robot was recorded
at 20Hz, the JAI AD-130GE multispectral camera feed at
1Hz and ground truth location information from the Leica
RTK GPS at 10Hz. The JAI camera images cover a region of
24 cm× 31 cm at a resolution of approximatively 3 px/mm.
Apart from that, the dataset also provides a Ublox EVK7-P
GPS module recorded at 4Hz.

In the first experiment, the position tracking performance
of the proposed localization approach is compared against
pure odometry and a particle filter based on odometry and
the Ublox GPS module (see Table I). The image frequency
in this scenario is 0.5Hz, as the available RGB-NIR images
are split into training images used for map construction and
evaluation images used during localization. Each approach is
reinitialized with the true position at the beginning of each
measurement series of a row of the field. In comparison to
pure odometry, the proposed method is able to reduce the
mean absolute position error from 4.32m to 0.93m, which
is only 7 cm less accurate than the GPS-based solution.

Odometry Odometry Odometry +
+ GPS NDVI map

Mean abs. position error [m] 4.32 0.86 0.93
Position error std. dev. [m] 5.08 0.78 1.37

TABLE I: 1-D position tracking performance of pure odome-
try vs. odometry and GPS-based particle filter vs. odometry
and mean NDVI map based particle filter. Results are ob-
tained from 79 measurement series, recorded over a period
of 29 days, while traveling a total distance of almost 25 km.

In the second experiment, the particle filter has to recover
the initially unknown position and direction of the robot as
well as the mean NDVI value offset at the same time. The
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Fig. 2: Mean particle position error (solid line) and parti-
cle position standard deviation (dashed line) over traveled
distance, for the NDVI map based particle filter solving
the global localization problem. The particle filter requires
the robot to travel a certain distance before it is able to
correlate measurements with the map. After that, it quickly
converges to the true position, while maintaining multiple
possible solutions due to map symmetries.

map for this experiment is created from two measurement
series recorded on May 4 and 5, 2016, while the localization
is performed on a third measurement series recorded on
May 12. The evolution of the particle filter is illustrated in
Figure 2. After incorporating 45 mean NDVI measurements
over a distance of 12.5m, 95% of the particles are within
2m around the true position of the robot, pointing into the
correct direction. At this point in time, the predicted position
is 7.5 cm off the true position, with a standard deviation of
47 cm. The mean absolute position error along the remaining
306m of the measurement series is 1.36m with a position
error standard deviation of 1.62m.

IV. FUTURE WORK
As the concept behind the proposed approach is not limited

to one dimension, we intend to apply it to two dimensions.
Apart from that, we will investigate other indices than the
NDVI, as there exists a rich variety of spectral indices,
potentially encoding different aspects of the soil.

REFERENCES

[1] S. Kennedy and J. Rossi, “Performance of a deeply coupled commercial
grade GPS/INS system from KVH and NovAtel Inc.,” 06 2008.

[2] C. Matthew, K. Jeffrey, S. Byron, and Z. Beijia, “Localizing Ground
Penetrating RADAR: A Step Toward Robust Autonomous Ground
Vehicle Localization,” Journal of Field Robotics, vol. 33, no. 1, 2015.

[3] J. Levinson and S. Thrun, “Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps,” 06 2010.

[4] B. Abdou, D. Morin, F. Bonn, and A. Huete, “A Review of Vegetation
Indices,” Remote Sensing Reviews, vol. 13, pp. 95–120, 01 1996.

[5] R. V. Rossel, D. Walvoort, A. McBratney, L. Janik, and J. Skjemstad,
“Visible, near infrared, mid infrared or combined diffuse reflectance
spectroscopy for simultaneous assessment of various soil properties,”
Geoderma, vol. 131, no. 1, pp. 59 – 75, 2006.

[6] W. D. Hively, G. W. McCarty, J. B. Reeves, M. W. Lang, R. A.
Oesterling, and S. R. Delwiche, “Use of Airborne Hyperspectral Im-
agery to Map Soil Properties in Tilled Agricultural Fields,” Applied and
Environmental Soil Science, vol. 2011, 2011.

[7] J. W. Rouse, “Monitoring the vernal advancement and retrogradation
(green wave effect) of natural vegetation,” NASA/GSFCT Report, 1974.

[8] N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard,
and C. Stachniss, “Agricultural Robot Dataset for Plant Classification,
Localization and Mapping on Sugar Beet Fields,” The International
Journal of Robotics Research, 2017.

[9] T. Hengl, A Practical Guide to Geostatistical Mapping of Environmental
Variables. Office for Official Publications of the European Communi-
ties, 2007.


