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Abstract—In today’s chemical plants, human field operators
perform frequent integrity checks to guarantee high safety
standards, and thus are possibly the first to encounter dangerous
operating conditions. To alleviate their task, we present a system
consisting of an autonomously navigating robot integrated with
various sensors and intelligent data processing. It is able to detect
methane leaks and estimate its flow rate, detect more general
gas anomalies, recognize oil films, localize sound sources and
detect failure cases, map the environment in 3D, and navigate
autonomously, employing recognition and avoidance of dynamic
obstacles. We evaluate our system at a wastewater facility in full
working conditions. Our results demonstrate that the system is
able to robustly navigate the plant and provide useful information
about critical operating conditions.

Index Terms—Industry 4.0, distributed AI system, autonomous
robots, chemical plant supervision, anomaly detection

I. INTRODUCTION

Chemical production plants are required to meet high safety
standards. In case of a fault, integrated safety systems are
meant to automatically bring the industrial plant into a safe
state. However, they cannot detect all possible abnormal work-
ing conditions, so, human field operators perform additional
inspection rounds to check the plant’s integrity. Their tasks
comprise recording local gauge values, visual and olfactory
inspection for leakages of gases and fluids, temperature in-
spection, and listening for unusual noises. For these tasks, a
skilled and experienced labor force is necessary, which is, in
part due to demographic changes, incrementally challenging
to find. Robots equipped with a multimodal sensor setup
and corresponding sensor data interpretation capabilities are
envisioned to overtake such duties.

The employment of robots in dangerous conditions has
a long tradition [1], [2]. In [3], swarm robots performed
mobile robot tasks in a simulation with conditions of chemical
leakages, radiation, and high temperatures. In [4], mobile
robots search unknown radioactive sources and leakages of
nuclear and chemical substances, simulating highly dangerous
scenarios. While it is common to integrate mobile robots
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Fig. 1. Our robotic system intends to replicate and extend the human senses
of sight, smell and hearing for the supervision of chemical production plants.

with vision and range sensors, few works with sensors for
the chemical industry have been investigated, mainly due to
technical difficulties [5].

Recent works in the domain of deep learning [6], [7]
show promising results with the potential for an improved
understanding of the sensor data, which is highly relevant to
the autonomous supervision task.

In this paper, we present an intelligent robot for autonomous
supervision of industrial plants that aims to provide non-
human automated inspection for chemical production plants.
The system consists of an autonomous navigating robot inte-
grated with sensor modalities, that aim to resemble the human
sensing capabilities of sight, smell, and hearing, as depicted
in Figure 1. The strength of our system lies in the integration
of diverse, novel, and complementary sensors along with data
analysis based on Artificial Intelligence (AI) techniques for
the automation of the surveillance task. This sets our system
apart from existing ones [8], [9].
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Fig. 2. Our robotic system is based on the Husky mobile platform and is
integrated with diverse sensors.

II. SYSTEM DESCRIPTION

Our robotic system, as shown in Figure 2, consists of a
mobile robot platform integrated with diverse sensors. The
robot navigates the industrial plant autonomously with its
onboard processing capabilities. However, tasks that require
more resources, such as object or anomaly detection, are
executed on a remote server. To this end, the data is transmitted
over the wireless network employing the Robot Operating
System (ROS) [10].

A. Mobile robot

We employ the Clearpath Husky A200 as the mobile plat-
form since it is a rugged, all-terrain robot equipped with an
onboard computer that is designed to operate in indoor and
outdoor environments. The sensor arrangement weighs about
35 kg and is provided with power by the Husky base.

B. Electronic nose

For the task of gas anomaly detection, we developed an
Electronic Nose (E-Nose). Its working principle is based on
the integration of different gas sensors. We employ three
non-selective Metal Oxide Semiconductor (MOX) sensors
and, in combination with optical (non-dispersive infrared,
laser scattering) technologies, we measure air contaminants,
methane, CO2, and flammable gases. The second category of
gas sensors, based on electrochemical principles, are specific
and fast in their response. This data allowed the training of
a supervised learning network able to identify gas signatures.
Additionally, relevant information, such as humidity and wind
speed and direction, was logged.

C. Active infrared gas camera

We developed an active infrared gas camera (IRcam) for
the detection of methane leaks, and the estimation of gas
concentration and flow rate. The light detection is carried out
by an ImageIR 8300 camera from Infratec, while its field of
view is illuminated by a 25 mW tunable ∼3260 nm single
mode DFB-interband cascade laser from nanoplus. Three
consecutive images are recorded while the lasers’ wavelength
is tuned over a methane absorption line. We process the image
batches as described in [11] to obtain concentration length
information. To ensure wavelength stability, a reference gas

cell is filled with methane. We feed the gas-image stream at
5 Hz to a 3D convolutional neural network (CNN) trained to
estimate the flow rate of the gas leak in realtime.

D. Ultraviolet camera

We developed a remote fluorescence detection system for
the recognition of oil films on surfaces and potential oil
rests. This system consists of a 365 nm Ultraviolet (UV)
LED (ODS75 Smart Vision Lights) and a CMOS camera
(OpenMV Cam H7R2). Pairs of images are taken by the
camera, one image with ambient light and one with additional
UV illumination. The difference between these two frames
yields an image containing UV-excited fluorescence, to reveal
information about oil films due to their aromatic molecular
structures [12]. While this sensor is able to detect oil films up
to a distance of 1m in indoor lighting conditions, the sensi-
tivity decreases outdoors, in particular in sunny conditions.

E. Microphone array

To provide the robot with hearing capabilities, we devel-
oped a five-microphone uniform circular array. We employ
TDK ICS-40720 MEMS-microphones with a sampling rate
of 96 kHz, and an inter-microphone spacing of ≈ 8 cm. The
setup is capable to localize sound sources with a maximum
frequency of around 2.1 kHz using a specifically designed
method for direction-of-arrival estimation [13]. Our algorithm
is able to directly resolve distinct sources, even though only
a few microphones are available in our setup, constrained in
size.

We detect sound anomalies by recognizing sound samples
as normal or abnormal through a supervised learning model.
The network is trained on the MIMII [14] dataset and can
be extended to include sound samples from the plant where
the robot is operated. The anomalies, constituted by unknown
sound samples, are detected using a deep neural network
with an encoder-decoder architecture. To this end, the network
learns features of the sound samples by encoding the sample
into a latent vector embedding and then, decoding the vector
to recreate the input sound sample. For unknown sounds, the
input cannot be reconstructed, which indicates an anomaly.

F. Mapping LiDAR setup

We developed a task-specific LiDAR setup to build accurate
3D maps of the environment of the robot. We furthermore map
the deep sewage channels at the plant. The unit comprises
two Velodyne VLP16 laser scanners mounted on a cuboid
structure. While the top laser is leveled with the ground to
capture the distant surroundings, the front laser scanner is
steeply inclined, allowing to capture the ground and possi-
ble channels in front of the robot. We employ an Inertial
Measurement Unit (IMU) to track the short-term motion of
the system, increasing mapping accuracy and robustness. A
dense 3D map of the environment is obtained by fusing the
continuously captured data with a 3D Simultaneous Local-
ization and Mapping (SLAM) approach when the robot is in
motion. The resulting map of the environment is represented



as a point cloud in 3D space. With this generic representation,
various applications are realized, such as embedding other
sensor information (like temperature), geometric alignment for
inventory purposes, changes or anomalies detection, and lastly
semantic segmentation with deep learning techniques.

G. Passive cameras

The optical perception system includes three forward-facing
cameras composed of a stereo rig of two RGB cameras,
Blackfly S GigE FLIR, with a resolution of 1544x2064, and
a thermal camera, FLIR Boson Long wave infrared (LWIR),
with 512x640 pixels and a spectral range of 7.5 µm-13.5 µm.
These three cameras are synchronized with an external trigger
at a frame rate of 30 fps.

The live object detection module employs the images from
the RGB cameras to support the navigation functions. It detects
dynamic agents in the scene, such as cars and pedestrians,
and is based on CenterNet [15], a network for object de-
tection. It is a fully-supervised model that first predicts the
object centers and their corresponding center offsets, and then
combines these values to estimate bounding boxes around
dynamic objects. To overcome the problem of data labeling,
we leveraged existing object detection ground truth data from
the KITTI [16] autonomous driving dataset and then adapted
the model by fine-tuning it on 150 manually annotated images
from our chemical plant.

H. Navigation LiDAR

To enable autonomous navigation, we use an OS128 Ouster
LiDAR. It has a vertical field of view of 90°, 50 m range, 128
times 1024 channels at a 20 Hz rate, and a built-in IMU. The
navigation functionality consists of the tasks of localization,
mapping, and path planning. While the localization approach
in a known 2D grid map builds on Adaptive Monte Carlo
Localization (AMCL) [17], using a Rao-Blackwellized particle
filter (RBPF), we solved the SLAM task with an efficient
RBPF that creates grid maps [18]. To this end, the 3D point
clouds from the Ouster LiDAR were projected into 2D range
scans.

The path planning task involves two hierarchized planners.
While we solve the global planning using the A∗ [19] ap-
proach, we employ the more advanced timed elastic bands
(TEB) [20] approach for local planning. It is complemented
by a reinforcement learning (RL) algorithm supporting the
avoidance of dynamic obstacles. The RL algorithm uses the
dynamic obstacles detected in the RGB images and projects
them in the birds-eye view (BEV) using the Ouster LiDAR
data. We combine features extracted from this local semantic
map via a CNN with the robot’s low-dimensional internal state,
such as the navigation goal and recent controls. Several RL
agents were trained using the Soft Actor-Critic [21] algorithm
with different hyperparameters, to compare the ability to
predicatively navigate around dynamic objects in simulations
and real-world scenarios.

Fig. 3. Visualization of the sensor data. Upper left: RGB image with live
dynamic object detection. Lower left: robot localization in the 2D occupancy
grid map (gray), with the projected dynamic objects (red/blue), navigation
LiDAR data (red), static obstacles (cyan/pink), wind speed and direction
(purple arrow), and audio noise direction (yellow arrow). Upper right: E-Nose
data (red line: readings at the other data’s timestamp). Lower right: thermal
image.

III. EXPERIMENTS

We chose the wastewater area of the Marl chemical plant in
Germany for on-site tests. This area allows for a ground-level
route along various points of interest including hot pipes, loud
pumps, and sewage canals with occasionally increased gas
levels. In addition, samples of silicon oil, vinegar, engine oil,
and an artificial methane leak were placed along the inspection
path to test the robot’s capabilities. Figure 3 shows a sample
of the live robot state and sensor data transmitted to the
remote computer, including the detection of dynamic objects,
their projection into the BEV, further robot navigation data,
the thermal image, and a longer sample from the MOX gas
sensors.

Tests using the IRCam allowed the live visual detection and
quantification of synthetic methane leaks in the plant with a
gas flow rate of 20 to 200 mL/min from a 2 m distance with
static measurements. We also tested oil detection with the UV
camera by placing mineral oil on the metal surface of a pipe
partially covered by sunlight. The sample was recognized at
an approximate distance of 50 cm.

Using the microphone array, multiple pump noises were
detected with even small angular distances between two pumps
being discriminated. The direction of the strongest sound
source was estimated with a median error of around 5◦ in
azimuthal direction at rest. Various motor vehicles, such as
cars and trucks, and pumps with artificial noise sources were
identified by sound pattern recognition.

We employed the mapping LiDAR to extract 3D information
about the environment and for embedding additional sensor
data, e.g., images from the thermal camera were mapped and
visualized in the 3D model. We identified geometric changes in
the environment between inspection runs, and demonstrated an
online 3D mapping capability. In conclusion, we successfully
tested our system for its capability to autonomously perform
tasks of chemical plant inspection.
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