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Evaluation of a Smart Mobile Robotic System for
Industrial Plant Inspection and Supervision

Georg K.J. Fischer* , Max Bergau* , D. Adriana Gómez-Rosal* ,
Andreas Wachaja , Johannes Gräter , Matthias Odenweller, Uwe Piechottka , Fabian Höflinger , Nikhil

Gosala , Niklas Wetzel , Daniel Büscher , Abhinav Valada , Wolfram Burgard

Abstract— Automated and autonomous industrial inspection is a
longstanding research field, driven by the necessity to enhance
safety and efficiency within industrial settings. In addressing this
need, we introduce an autonomously navigating robotic system
designed for comprehensive plant inspection. This innovative sys-
tem comprises a robotic platform equipped with a diverse array of
sensors integrated to facilitate the detection of various process and
infrastructure parameters. These sensors encompass optical (Li-
DAR, Stereo, UV/IR/RGB cameras), olfactory (electronic nose), and
acoustic (microphone array) capabilities, enabling the identification
of factors such as methane leaks, flow rates, and infrastructural
anomalies. The proposed system underwent individual evaluation
at a wastewater treatment site within a chemical plant, providing a practical and challenging environment for testing. The
evaluation process encompassed key aspects such as object detection, 3D localization, and path planning. Furthermore,
specific evaluations were conducted for optical methane leak detection and localization, as well as acoustic assessments
focusing on pump equipment and gas leak localization.

Index Terms— Industry 4.0, distributed AI system, autonomous robots, chemical plant supervision, anomaly detection,
object detection, acoustic signal processing, acoustic localization, gas detection, change detection

I. INTRODUCTION

Chemical production plants must adhere to stringent safety
standards, and the responsibility of routine plant inspection
typically falls on trained professionals. These inspections
involve recording essential process parameters and identifying
anomalies during safety rounds. This may include assessing
local gauge values, visually inspecting for abnormalities, con-
ducting olfactory and acoustic inspections to detect gas or
fluid leaks, and identifying changes in the environment such
as broken pipes or blocked passages. In environments within
Ex-Areas, or those that are harsh or remote, deploying human
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inspectors can pose significant dangers and incur financial bur-
dens. Alternatively, the installation of fixed sensor equipment,
while effective, can be costly and add to the maintenance
workload. Moreover, the deployment of high-precision sen-
sors across an entire plant is often economically impractical,
especially when looking at older brownfield plants. Recog-
nizing these challenges, there is a growing interest in mobile
inspection robots. Recent advancements in robotic technology,
exemplified by robots such as Boston Dynamics Spot and
others, have made it possible to access more challenging areas
of industrial plants [1]. While these robots primarily serve as
equipment carriers, numerous questions remain unanswered.
These include determining the optimal sensors for deployment,
devising effective data processing methods, and developing
efficient navigation strategies for these robots within the plant
environment. As mobile inspection robots gain prominence,
addressing these questions becomes imperative for their suc-
cessful integration into industrial safety and inspection pro-
cesses.

Sensing the state of industrial processes entails a diverse
array of sensors. For instance, detecting and localizing gas
leakages in chemical plants involves a range of sensors, from
metal oxide sensors to laser-based detection systems [2].
This diversity extends across industries, addressing changes in
the environment such as obstacles obstructing critical trans-
port routes, malfunctioning equipment (e.g., pipes, motors,
valves), and parameters such as foam build-up that require
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optical assessment. Replacing human inspection professionals
presents a challenging task, as each use case typically requires
bespoke development. This may involve the definition of spe-
cific physical parameters to observe, selecting an appropriate
sensor, establishing a tailored signal, and data processing
chain. However, different use cases can be independently
implemented, with the robot serving the role of safely trans-
porting measurement equipment to and from sites. Advance-
ments in mapping [3], [4], localization [5], and navigation [6]
in mobile robotics are essential for achieving human-level
navigation autonomously, encompassing tasks such as object
detection and obstacle avoidance. Although the opportunities
for autonomous supervising robots in industrial plants are
growing, few works of robots equipped with different sensing
capabilities for such tasks have been reported or are still at a
development stage, and furthermore, fewer works have been
validated in a fully working industrial plant. This work aims to
contribute to this field. In this paper, we introduce a system that
outlines the evolutionary trajectory in this domain. We delve
into the development of the robot’s navigation capabilities and
present a subset of developed use cases focused on gathering
essential process information.

This paper serves as an extension of the previously pre-
sented conference paper [7], augmenting the results with
tangible data and providing an extensive literature review of
existing works. Additionally, this contribution includes a more
comprehensive exploration of the working principles of our
inspection system and the associated sensors in a dedicated
section.

II. RELATED WORK

Robots have established their presence in the manufacturing
sector, particularly in roles involving goods transportation
within factories and warehouses, as seen with Automated
Guided Vehicles (AGVs) [8], [9]. However, the application of
mobile robotics in plant inspection presents a more complex
challenge. On one hand, specific sensors need to be developed
for particular use cases, while on the other hand, navigation
and locomotion capabilities must reach a level that ensures
safe and secure operation in hazardous areas and effective
collaboration with humans and other vehicles.
Robotic System: The concept of industrial inspection robots is
not new; nevertheless, mobile robots for industrial inspection
is an active research topic. Furthermore, their mobility within
dynamic environments is a more recent development [10]–
[15]. Early works addressed inspection of industrial pipelines
[16] and nuclear power plants [17], [18]. Later, these proposals
evolved to include a broader range of industrial applications,
such as inspection of waste deposits and electric power cables
[19]. Soon after, these experiments ventured into the civil
realm with inspection of building facades, concrete construc-
tions [20], structures such as ships, wind turbines, and aircraft
[21], and even examination of underwater facilities [22].
Recent work in plant inspection [23] reviews chemical sensing
applications for mobile robots, addressing challenges such as
the quest for improved chemical sensors and the development
of more intelligent behavior.

In the context of diverse industries, a study [24] investigates
various approaches to inspection in the oil and gas sector. This
review encompasses diverse designs for inspections, including
those tailored for vertical structures, pipelines, and underwater
environments. The introduction of robots into inspection pro-
cesses significantly enhances safety by eliminating the need
to deploy humans in risky areas. Yet, expertise in technology
deployment is crucial, as highlighted in another study [25] that
delves into various use cases for robots in hazardous sites,
emphasizing the need for specialized knowledge in deploying
this technology.

Focusing on the exploration and mapping of gas sources, a
specific study [2] is centered on gas detection principles and
reviews existing works proposing mobile inspection vehicles.
Together, these works showcase the evolving landscape of
mobile robotics in-plant inspection, emphasizing both the
technological advancements and the need for domain-specific
expertise in deploying these systems effectively and safely.
However, autonomously conducted inspections of industrial
settings, such as processing plants, present ongoing research
challenges, such as regarding autonomous navigation, retrieval
of measurements in disordered environments, or its consequent
interpretation. Hence, to faithfully relieve human inspectors
from these challenging tasks, the proposals need to enhance
their intelligence and reliability. To this regard, few initiatives
aim to design an inspection robot with all their required
functions as a centralized, and yet flexible, system. This is
the gap that our system seeks to address.
Microphone Array: Sound Source Localization (SSL) is a
prevalent subject in robotics, with a comprehensive review
of common methods provided in [26]. Its applications span
Human-Machine Interaction (HMI), speaker or asset local-
ization, and event detection such as identifying leakages in
the surrounding environment [27]–[30]. While gas or air
leak localization is crucial for industrial inspection and has
been previously addressed, existing approaches often rely on
fixed installed acoustic transducers and static time-domain
features for locating points of leakage in pipes [31]. The
work in [32] applies a four element linear array to find two
leakage sources in the emission range of 63 kHz to 187 kHz.
The work in [30] utilizes ultrasonic emissions from leaks in
pressurized pipes, employing a peak search on a beam-formed
spectrum. By leveraging multiple poses of a robot, potential
leaks are localized, necessitating a microphone array with
32 elements. In contrast, our work introduces an algorithm
capable of achieving accurate sound source localization with
a significantly reduced number of microphones, providing a
more resource-efficient solution for industrial applications.
Gas Cameras: Modern Optical Gas Imaging (OGI) cameras
typically utilize a mid- or longwave-infrared camera in combi-
nation with a bandpass filter to detect and visualize gas leaks
[33]. The gas of interest absorbs parts of the omnipresent
background infrared radiation, leading to a contrast in the
Infrared (IR) camera image. This principle allows for the de-
tection of a wide range of gases, including methane, ammonia,
and sulfur hexafluoride. In this work, we present an active
gas camera that does not rely on background illumination.
Instead, it employs its own active illumination in the form of
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a laser which allows for more sensitivity, gas selectivity as
well as accurate concentration estimation. It comes to the cost
of a shorter detection range and the need of a background
[34]. Such active approaches are yet rare due to costs and
complexity. A laboratory setup has been published by Strahl
et al. [35] and a much simplified version of a camera by Nutt
et al. [36]. Commercially, the company QLM Technologies is
working on an advanced active scanning approach [37].

The main contributions of this paper are:
• An autonomous mobile robotic system equipped with a

diverse and integrated set of sensors, including olfactory,
optical, and acoustic capabilities. This advanced system
is designed not only for gas detection but also for
infrastructure monitoring.

• A robot navigation framework, enabling flexible and
independent mobility within industrial settings.

• In-depth examination of the performance of the integrated
sensors under diverse conditions. Notably, the study in-
cludes a detailed analysis of sensor functionality within
the wastewater treatment facility of a chemical plant
situated in Marl, Germany.

• To the best of the authors’ knowledge, an active gas
camera has been mounted on a mobile robotic platform
for the first time. Since the active approach requires
reflected light from a background, the robot has the
potential to adapt its filming position, thereby finding
ideal illumination locations.

• Apart from hyperspectral imaging which is typically
significantly more expensive, to the best of our knowledge
for the first time methane leaks as small as 40mLmin−1

leaks have been filmed in industrial conditions in real-
time.

III. SYSTEM ARCHITECTURE

Our robotic system, shown in Figure 1, consists of a mobile
robot platform integrated with diverse multimodal sensors,
summarized in Table I. The robot navigates the industrial
plant autonomously with its onboard processing capabilities.
However, tasks that require more resources, such as object
or anomaly detection, are executed on a remote server. To
this end, the data is transmitted over the wireless network
employing the Robot Operating System (ROS) [38]. Table I
gives an overview of the equipped sensors and devices.

The core software component responsible for centralizing
the interactions, control, and data access is deployed on
the robot’s onboard computer and is managed by the ROS
middleware. It provides modules for package management,
hardware abstraction, and communication in a networked
fashion. This enabled the connectivity between the robot and
desktop computers to each Single Board Computer (SBC)
contained in the sensing devices.

Figure 2 shows the system architecture and communication
channels, comprised of the computer cluster on the mobile
robot platform and the stationary components, such as the
industrial remote computer and the remote joystick control.
Most of the sensing devices count with a SBC, which is
responsible for the connectivity to other onboard computers

Mapping LiDAR

Stereo rig of
RGB cameras

Microphone array

Wind direction and
speed indicator

UV camera

E-Nose

Active IR camera

Navigation LiDAR

Fig. 1: The mobile robotic platform with multimodal sensors.

via a Local Ethernet Network, among other data configuration
and processing functions.

The system is controlled live from a computer through
the industrial WLAN, and for development purposes, the
robot platform is manually controlled with a remote joystick.
The onboard sensing devices stream the data via the ROS
middleware; where predefined data types are used for internal
communication.

A. Electronic Nose

For the task of gas anomaly detection, we developed an
Electronic Nose (E-Nose). Its working principle is based on
the integration of different gas sensors. We employ three
non-selective Metal Oxide Semiconductor (MOX) sensors
and, in combination with optical (non-dispersive infrared,
laser scattering) technologies, we measure air contaminants,
methane, CO2, and flammable gases. The second category of
gas sensors, based on electrochemical principles, are specific
and fast in their response. This data allowed the training of a
supervised learning network able to identify gas signatures.
Additionally, relevant information, such as humidity, wind
speed, and direction, was logged.

B. Active Infrared Gas Camera

We developed an active infrared gas camera (IRcam) for
the sensitive detection of methane leaks, and the estimation
of gas concentration and flow rate. The light detection is
carried out by an ImageIR 8300 camera from Infratec, while its
field of view is illuminated by a 25mW tunable ∼3260 nm
single mode Distributed Feedback (DFB)-interband cascade
laser from nanoplus.

Three consecutive images are recorded while the laser’s
wavelength is tuned over a methane absorption line. We
process the image batches as described in [39] using Tunable
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TABLE I: Overview of equipped sensors and devices

Device Specs. Use Cases

Electronic Nose • 3 × non-selective MOX sensors • Methane, CO2, flammable gas detection

Active IR Camera

• Methane rate ≥40mLmin−1 • Methane Leak Localization

• Wind speed ≤2m s−1 • Concentration Length Measurements

• Distance to Leak ≤3m • Flowrate Quantification

UV Camera
• 365nm UV-LEDs • UV-excited fluorescence

• OpenMV Cam H7R2 CMOS camera • Oil film detection

Microphone Array

• UCA • Acoustic anomaly detection

• 5 × TDK ICS-40720 MEMS-microphones • Acoustic machine condition monitoring

• ∅ 6.8 cm • Leakage detection

Mapping LiDAR
• 2 × Velodyne VLP16 laser scanner • 3D mapping

• IMU • Geometric changes and anomaly detection

Passive Cameras
• 2× RGB Blackfly S GigE FLIR cameras • Dynamic object detection (pedestrians, obstacles, etc.)

• FLIR Boson Long wave infrared (LWIR) thermal camera

Navigation LiDAR
• OS128 Ouster LiDAR. • 2D mapping

• 90deg vertical field of view, 50m range • Localization and navigation

Robot Onboard Computer

- Client to industrial network
- Server to local network (ROS and sensors)
- Autonomous navigation functionalities 

(slam, path planning)
- Mobile platform, cameras and navigation 

LiDAR drivers
- Live-data record
- Untethered power supply

Ethernet Switch
Local Network

Industrial network and remote 
computer

- Human-Machine Interface for 
control and visualization

- Data transfer and analysis
- Relevant measurements recording
- Documentation

RGB and Thermal (Passive) Cameras

- Datastream for object detection
- Aid in navigation and data 

visualization

Navigation 
LiDAR

- Datastream 
for 
navigation

SBC: Electronic nose

- Gas sensors drivers
- Datastream of 

identified gases

SBC: Microphone 
Array

- Microphones 
drivers and 
synchronization

- Datastream of 
multichannel 
audio

SBC: Active IR Gas Camera

- Laser driver
- Camera and laser 

synchronization
- Datastream for detection of 

methane leak, and estimation of 
gas concentration and flow rate

SBC: Ultraviolet 
Camera

- Camera and 
ultraviolet LED 
drivers

- Datastream of 
images with detected 
oil

SBC: Mapping LiDAR setup

- LiDAR and IMU drivers
- Data storage for high resolution 

3D map (offline processed)

Ethernet (TCP/IP)

WiFi Remote Joystick

- Emergency stop
- Manual control (for 

development)

Bluetooth

Fig. 2: System architecture with communication between the components. Solid or dotted lines between the boxes represent,
respectively, Ethernet or wireless connectivity.
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Fig. 3: Setup of the active gas camera. A detailed description
of its working principle can be found in [39].

Diode Laser Absorption Spectroscopy (TDLAS) to obtain
concentration length information. Thereby, the synchronization
between laser tuning and camera trigger is achieved with a
redpitaya STEMlab 125-10 single board computer with an
Field Programmable Gate Array (FPGA) on board. To ensure
wavelength stability across different temperatures as well as
to handle the aging effects of the laser diode, a reference gas
cell is filled with methane. Less than 1% of the laser light is
coupled out of the diverging laser beam and fed through the
cell as shown in figure 3. We feed the gas-image stream at
5Hz to a 3D Convolutional Neural Network (CNN) trained
to estimate the flow rate of the gas leak in real time. Due
to the nature of the TDLAS based gas detection, we gain
more precise concentration length information than state-of-
the-art gas cameras, which leads to more accurate flow rate
predictions [40], [41].

C. Ultraviolet Camera

We developed a remote fluorescence detection system for
the recognition of oil films on surfaces and potential oil
rests. This system consists of a 365 nm Ultraviolet (UV)
Light-emitting Diode (LED), ODS75 Smart Vision Lights,
and a CMOS camera, OpenMV Cam H7R2. Pairs of images
are taken by the camera, one image with ambient light and
one with additional UV illumination. The difference between
these two frames yields an image containing UV-excited
fluorescence, to reveal information about oil films due to their
aromatic molecular structures [42]. While this sensor is able
to detect oil films up to a distance of 1m in indoor lighting
conditions, the sensitivity decreases outdoors, in particular in
sunny conditions.

D. Microphone Array

To provide the robot with hearing capabilities, we developed
a five-microphone uniform circular array as shown in Figure 4.
We employ TDK ICS-40720 Micro-Electro-Mechanical Sys-
tems (MEMS) microphones with a sampling rate of 96 kHz,

Fig. 4: UCA Microphone Array with a windscreen for outdoor
usage. Details of the employed algorithms can be found in [43]

Measurement Data

FDFIB-Guess

Angle Correction

CSS-MUSIC

Angle Correction

Estimated
DoA (φ, θ)

Fig. 5: Sequential steps of the DoA estimation algorithm,
starting with a coarse but computationally efficient guess and
progressing to a more detailed peak search in the wideband
MUSIC spectrum for refined accuracy.

and an inter-microphone spacing of ≈ 8 cm. The setup is ca-
pable of localizing sound sources with a maximum frequency
of around 2.1 kHz using a specifically designed method for
Direction-of-Arrival (DoA) estimation.

The algorithms under consideration have been thoroughly
examined in a laboratory setting, as outlined in [43]. These al-
gorithms, originating from classical subspace DoA estimation
techniques such as Multiple Signal Classification (MUSIC),
have been expanded to accommodate the UCA configuration.
Recognizing that subspace methods are traditionally formu-
lated for narrowband estimation, whereas wideband signals
are expected (as detailed in a previous publication), these
algorithms have been further adapted to support an arbitrary
frequency range, extending up to the spatial Nyquist frequency.
The resulting algorithms comprise a two-step process, as
depicted in Figure 5. Initially, a computationally inexpensive
coarse Frequency-Domain Frequency-Invariant Beamformer
(FDFIB) guess step [44] is implemented, followed by a
more resource-intensive fine-search step within the Coherent
Subspace (CSS) MUSIC spectrum [45]. This hybrid approach
ensures an optimal balance between computational efficiency
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and accuracy. Notably, the algorithms exhibit the capability
to resolve multiple sources, facilitated by a selection criterion
applied to the singular values of the spectral covariance matrix.
However, it’s important to note that the algorithm’s perfor-
mance is constrained by the number of available microphones
in the array.

We detect sound anomalies by recognizing sound samples
as normal or abnormal through a supervised learning model.
The network is trained on the MIMII [46] dataset and can
be extended to include sound samples from the plant where
the robot is operated. The anomalies, constituted by unknown
sound samples, are detected using a deep neural network
with an encoder-decoder architecture. To this end, the network
learns features of the sound samples by encoding the sample
into a latent vector embedding and then, decoding the vector
to recreate the input sound sample. For unknown sounds, the
input cannot be reconstructed, which indicates an anomaly.

E. LiDAR Mapping System

We developed a task-specific LiDAR setup to build accurate
3D maps of the environment of the robot. We furthermore map
the deep sewage channels at the plant. The unit comprises
two Velodyne VLP16 laser scanners mounted on a cuboid
structure. While the top laser is leveled with the ground to
capture the distant surroundings, the front laser scanner is
steeply inclined, allowing to capture the ground and possi-
ble channels in front of the robot. We employ an Inertial
Measurement Unit (IMU) to track the short-term motion of
the system, increasing mapping accuracy and robustness. A
dense 3D map of the environment is obtained by fusing the
continuously captured data with a 3D Simultaneous Local-
ization and Mapping (SLAM) approach when the robot is in
motion. The resulting map of the environment is represented
as a point cloud in 3D space. With this generic representation,
various applications are realized, such as embedding other
sensor information (e.g., temperature), geometric alignment
for inventory purposes, changes or anomalies detection, and
lastly semantic segmentation with deep learning techniques.

F. Passive Cameras

The optical perception system includes three forward-facing
cameras composed of a stereo rig of two RGB cameras,
Blackfly S GigE FLIR, with a resolution of 1544× 2064, and
a thermal camera, FLIR Boson Long wave infrared (LWIR),
with 512×640 pixels and a spectral range of 7.5 µm-13.5 µm.
These three cameras are synchronized with an external trigger
at a frame rate of 30 FPS.

The live object detection module employs the images from
the RGB cameras to support the navigation functions. It detects
dynamic agents in the scene, such as cars and pedestrians, and
is based on CenterNet [47], a network for object detection.
CenterNet is a fully-supervised model that first predicts the
object centers and their corresponding center offsets, and then
combines these values to estimate bounding boxes around
dynamic objects.

G. Mobile Robot Navigation System

We employ the Clearpath Husky A200 as the mobile robotic
platform since it is a rugged, all-terrain robot equipped with
an onboard computer that is designed to operate in indoor and
outdoor environments. The robot achieves a safe maximum
speed of 1m/s in forward movement with the sensor arrange-
ment weighing about 35 kg. It also supplies electrical power to
most of the sensors, enabling an untethered performance in a
self-contained fashion. The onboard computer gets connected
to the wireless industrial network, from which, a remote
computer access and controls the system through the Human-
Machine Interface over ROS.

To enable autonomous navigation, we use an OS128 Ouster
LiDAR. It has a vertical field of view of 90°, 50m range, 128
times 1024 channels at a 20Hz rate, and a built-in IMU. The
navigation functionality consists of the tasks of localization,
mapping, and path planning. While the localization approach
in a known 2D grid map builds on Adaptive Monte Carlo
Localization (AMCL) [48], using a Rao-Blackwellized particle
filter (RBPF), we solved the SLAM task with an efficient
RBPF that creates grid maps [49]. To this end, the 3D point
clouds from the Ouster LiDAR were projected into 2D range
scans.

The path planning task involves two hierarchized planners.
While we solve the global planning using the A∗ [50] ap-
proach, we employ the more advanced timed elastic bands
(TEB) [51] approach for local planning. It is complemented
by a reinforcement learning (RL) algorithm supporting the
avoidance of dynamic obstacles. The RL algorithm uses the
dynamic obstacles detected in the RGB images and projects
them in the birds-eye view (BEV) using the Ouster LiDAR
data. We combine features extracted from this local semantic
map via a CNN with the robot’s low-dimensional internal state,
such as the navigation goal and recent controls.

IV. EXPERIMENTS

The experiments were conducted at the wastewater treat-
ment plant within the chemical facility of Marl, Germany. This
industrial setting offered a ground-level route encompassing
diverse points of interest, including tasks involving hot pipes,
noisy pumps, and sewage canals with occasional variations in
gas levels. The discussion in this section is divided into three
main parts. Firstly, the focus is on autonomous navigation
capabilities. The presentation includes a detailed discussion
of the experiments conducted to evaluate the robot’s ability to
navigate autonomously in this complex industrial environment.
Moving on to the second part, the section delves into gas
sensing experiments. Special attention is given to the out-
comes obtained from the infrared (IR) camera, providing a
comprehensive analysis of the robot’s performance in tasks
related to gas detection within the plant. In the final part
of this section, the focus shifts to acoustic experiments. The
initial set of experiments involves the localization of pump
equipment using acoustic signals, followed by experiments on
the detection and localization of acoustic leaks. The discussion
concludes with the introduction of a more general approach
to anomaly detection using acoustic data.
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A. Navigation Experiments

Robot information, related to position and localization
(Odometry), was computed through probabilistic approaches
using the navigating LiDAR data. This point cloud was used
in the tasks of Mapping, Localization, and Global/Local path
generation through the Dijkstra algorithm and the Dynamic
Window Approach, respectively. The 2D mapping capabilities
were compared across resolutions from 0.01 to 0.2 m, which
had a direct effect on the map size and update speed.

The robot was tasked with navigation missions and a
visualization interface from a remote station, allowed to know
relevant live information from the robot and the sensors. This
is displayed in Figure 6 with a representation of the real robot
on a map alongside indicators sensor data. In the figure, the
2D occupancy grid map of the complete test site is displayed.
When the ”real” robot is navigating the site, its position is
signed in the map by a 3D model of the robotic platform.
As the real robot changes its position in the test site, the 3D
model updates its localization through the costmap computed
with the particle filter and the ”live” LiDAR data. In the
same Figure, the three images correspond to the same moment
as the robot navigates the real-life test site. From the lower
images, a closer look at the perspective rear view of the 3D
model robot in the visualizer, shows the correspondence of
the costmap with the 2D map, allowing a correct localization
and consequently reliable navigation. Finally, an inspection
of the ”live” data transmitted by the RGB camera lets us
know that the ”real ”robot is in front of a fence, acting as
a landmark for the 2D map and enhancing the localization.
Additionally, diverse RL agents were trained using the Soft
Actor-Critic [52] algorithm with varying hyperparameters, to
compare the ability to navigate around dynamic objects in
simulations and real-world scenarios predicatively.

To achieve more robust navigation in environments with
dynamic obstacles, an object detection module for obstacle
avoidance was developed. This module can recognize car
and people categories, as well as determine their 2D and
3D extents. This leads to dynamic obstacle recognition and
its avoidance while navigating. Such a task is divided into
two subtasks: 1) recognition of specific objects in the scene
using an object detection pipeline, and 2) projection of the 2D
bounding boxes of the detected objects into the 3D world.

a) 2D Object Detection: The first subtask leverages the
state-of-the-art object detection framework CenterNet, which
is a single-stage object detection framework that accepts an
RGB image as input and outputs a center point heatmap while
simultaneously regressing the height, width, and offsets for
every object in the image. These separate outputs are later
fused with a post-processing step to generate the final 2D
bounding boxes. To train CenterNet for the object recognition
task, numerous labeled images were required in principle. To
avoid the time-consuming task of manual image annotation
for the object detection module training, we leveraged pre-
existing object detection ground truths from a different domain
and then adapted the model to work on the chemical plant
dataset. To this end, we pre-trained the model using labels
from the autonomous driving dataset KITTI [53] comprising

3712 train and 3769 validation samples and then fine-tuned it
on 167 manually annotated images from our chemical plant
and validating the model on 17 images. The evaluation of
20 manually annotated images resulted in Intersection over
Union (IoU) values and Average Precision (AP) scores at the
confidence threshold of 0.3 to 0.6855. These values were 0.300
and 0.668 for the Car class, and 0.300 and 0.703 for the
Pedestrian class respectively. The accuracy of locating only the
objects in the image without considering their width and height
predictions is referred to as the AP of Centerpoint matches and
obtained a value of 0.7662.

b) Estimation of 3D Position: The second subtask concerns
the estimation of the 3D locations of the detected objects and
leverages the depth information obtained from the onboard
LiDAR sensor along with the extrinsic calibration between
the LiDAR and camera sensors. The LiDAR point cloud is
projected onto the RGB image using the cameras’ intrinsic
parameters coupled with the extrinsic transformation between
the two sensors. For every detected object, the LiDAR points
outside the 2D extent of the bounding box are filtered out.
Afterward, the bounding boxes are shrunk by a factor of 0.7
to alleviate potential noise introduced by incorrect intrinsic or
extrinsic calibration matrices, thus improving the robustness of
the model. The filtered LiDAR point cloud represents all the
points belonging to the object being considered, which is then
used to compute the 3D extent of the object. These 3D extents
are then flattened along the height dimension to determine the
extent of the object in the Bird’s Eye View (BEV) space.

Figure 7 illustrates the pipeline of the object detection
modules and its position estimation.This information is utilized
to plan safe collision-free paths around movable obstacles.

Figure 8 shows sequential captures of the robot navigating
the test site in real life in alphabetical order. It is observed
that as the robot navigates close to fixed objects at the time
the map was created, the robot recognizes the features (such
as fences, pipes, buildings, etc) and the generated costmaps
enable the localization. Accordingly, these elements remain
unidentified by the object detection module. When a car or
a human enters the field of view of the RGB cameras, the
system identifies them and obtains their 3D extent. This data
is consequently displayed in the 2D map with red and blue
markers, and considered by the path planner to generate a
collision-free path around these objects.

B. 3D Mapping and Change Detection

Detecting and tracking geometric changes in industrial
environments is crucial for ensuring safe plant operation.
Moreover, it can be the keystone for predictive maintenance.
To evaluate the capability of the module for 3D mapping
and change detection multiple data recordings were obtained
with the robot in the chemical plant Marl. The foundation is
a highly detailed 3D point cloud captured by the Mapping
LiDAR Setup as described in Section III-E. This reference
model is converted into a continuous surface representation, a
triangular mesh. Test point clouds recorded in other runs are
then compared to this mesh by computing the nearest distances
of all points to the reference mesh. In this way, different
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Robot

Fig. 6: Visualization of robot in map and markers for wind and audio direction. The three images depict the same instance
of the robot navigating the test site in real life. Upper: Complete 2D occupancy grid map of the test site, shown in gray and
black from a top-down perspective. The position of the real robot is displayed on the map with its 3D model. Lower left:
Perspective rearview of the 3D model robot in the visualizer, in the same position as the upper figure. Its navigation in the
map is enabled by the costmap (in cyan and magenta), which aligns with the map. Simultaneously, the purple arrow marks
the wind direction (data obtained from the e-nose), and the yellow arrow signals the audio noise direction (data from the
microphone-array). Lower right: Image from the RGB camera on the right side of the robot. The robot is front-facing a fence,
which is recognized in the map and creates consequently the costmap. This supports the localization in the map.

Fig. 7: Pipeline of object detection and its 3D position estimation for robot navigation in a dynamic environment.
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Robot
Costmap

Detected 
objects

3D Extent of 
detected objects

3D Extent of 
detected objects

Detected 
objects

a) b)

c) d)

Fig. 8: Visualization from a top-view perspective of the robot navigating the test site and detecting objects. The order of
images corresponds to successive time points following the alphabetical order, with ’a’ being the initial moment, followed by
’b,’ ’c,’ and ’d.’ Every image displays the robot’s real-world localization, featuring the robot model overlaid on the 2D map, its
localization (costmap matching the map), and capture from the right RGB camera on the real robot. Upper left: First position
of the robot in a northeast fashion. The accompanying RGB Image shows some white industrial containers, a white fence,
and a purple pipe in the background. While the proximity of the containers and fence contributes to the robot’s localization
through the costmap, they remain unidentified by the object-detection module. Upper right: Second position of the robot. Since
the robot moved in the northeast direction, the costmap (colored in cyan) accompanies the movement and by matching the 2D
map stabilizes the localization. The RGB image shows a closer look at the pink pipe, along with the first car detected in a tiny
green box. Lower left: Third position of the robot, where it moved in a northwest direction, losing the purple pipe from the
field of view. The robot faces now a parking lot where people are also present. The detected objects are classified as human
(in blue boxes) or as car (in green boxes) in the RGB Image and their 3D extents are projected in the 2D map with small
markers. Lower right: Final position of the robot, after a slight northeast movement from the previous position. Cars are still
in the robot’s field of view and therefore, their position in the 2D map is still displayed. The costmap matching the 2D map
means that the robot is still properly localized.

clusters of points can be identified that represent geometric
change, as illustrated in Figure 9. The proposed method allows
for intuitive anomaly detection and assessment.

C. Gas Detection Experiments
The active gas camera was used to detect artificial gas leaks

that we installed on an industrial site of a chemical park in
Germany. Figure 10 shows a ∼40mLmin−1 methane leak
that we place in front of a pipeline. The flow rate was set
using a mechanical flowmeter from Brooks instruments which
had 40mLmin−1 as the lower limit. The leak was filmed
from 2m distance. The point cloud is achieved by a geometric
calibration of the stereo camera to the IR camera. This allows
to project the source of the gas leak to the depth frame and
project it at the correct distance in the pointcloud. The gas
overlay on the IR image is scaled such that stronger occupancy
relates to a higher methane concentration length. The scene is

also available as a video1 published together with this article.
The red-masked objects are detected as moving objects and
are not considered to be gas information. A description of
how these algorithms work can be found in [39].

Methane leaks of ∼40mLmin−1 could be visualized while
this limit strongly depends on the wind conditions. It should
be noted that the active approach is challenged by the wind as
it uses subsequent images for the concentration calculation,
in which wind disturbs the static scene. An improvement
of the camera during this project resulted in stable methane
detection up to wind speed of ∼2m s−1 by minimizing the
relevant times in between the recorded subsequent frames.
Apart of hyperspectral imaging which is typically significantly
more expensive, to the best of our knowledge, this is the first
reported gas camera to visualize such small leaks under real-
world conditions in real-time.

1https://dx.doi.org/10.21227/4ms5-rs57

https://dx.doi.org/10.21227/4ms5-rs57
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Fig. 9: Top: Reference point cloud built by the Mapping
LiDAR Setup. Colorization is based on surface reflectivity
for infrared light. Bottom: Results of the change detection
algorithm. In this experiment, objects and a person were
relocated from one location (gray) to a new location (red).
Colors represent the distance to the reference mesh.

D. Acoustic Experiments

The acoustic experiments are structured into three distinct
parts. Initially, a static phase is implemented to assess the DoA
estimation accuracy using the sound emitted by pumps. This
phase serves to evaluate the precision of the DoA estimator
under controlled conditions. Following the static phase, a
dynamic experiment is executed, involving the robot being
driven into the proximity of the pumps. The objective of
this phase is to evaluate the source detection capabilities in
a more dynamic setting, considering the robot’s movement in
relation to the pumps. In the final part of the experiments,
the focus shifts to anomaly detection. Various experiments are
conducted to assess the system’s ability to detect anomalies
in the acoustic environment. This phase aims to evaluate
the robustness and effectiveness of the anomaly detection
mechanisms implemented in the system.

a) Static Experiments (Pump Equipment Localization): In this
experiment, the robot is positioned in front of an operational
pump. Subsequently, the robot undergoes rotational movement
by a specific degree in each step, as illustrated in Figure 11.
The analysis reveals a median circular error of approximately
5◦, accompanied by a 95% confidence interval of around
15◦. The evaluation of the Cumulative Distribution Function
(CDF) for individual sections indicates no significant devia-
tion. Therefore, it can be inferred that the DoA estimation
performance remains isotropic across the azimuthal range.

RGB

IR-Gas 
overlay

Pointcloud

Fig. 10: Different image streams of the active gas camera are
shown filming an artificial methane leakage on an industrial
plant. The registered point cloud (bottom) is possible through
an RGB-Depth-IR calibration. A video of this scene, from
which the images are taken, is published together with this
work.

b) Dynamic Experiment (Leak Localization): A sound
speaker is positioned near a pipe, emitting a recorded sound
mimicking a pipe leak. The robot follows a linear trajectory
(refer to Figure 12 (b)) during the experiment, and due to
the recording’s brevity, a brief interruption occurs. To create
a detection feature, a simple inner product detection method
is employed based on the frequency distribution of the leak
signal. Using the LiDAR sensor, the position of the speaker is
established as a reference. Since a substantial portion of the
leak signal surpasses the array’s maximum spatial frequency,
conventional DoA estimation methods discussed earlier are not
applicable. Instead, the well-known Steered Response Power
Phase Transform (SRP-PHAT) algorithm [54] is employed for
DoA estimation in this experiment. With the LiDAR reference,
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Fig. 11: Static Experiment (a) Features the spectrogram of
the recorded signal, highlighting the discernible motor noise
just below 20 kHz during robot movement. A distinctive
clap performed by the experimenter is denoted in the plot
when the robot faces 180 degrees away from the working
pump. (b) Displays the evolution of the estimated Direction of
Arrival (DOA) throughout the experiment run. (c) Illustrates
the frequency power distribution of the sounds emitted by the
working pump. In this instance, a significant portion of the
frequency content falls below the array’s maximum spatial
frequency. (d) Depicts the cumulative error distribution of the
DOA error. The DOA estimation performance demonstrates a
median circular error of approximately 5 degrees, with a 95%
confidence interval of around 15 degrees.

a DOA estimation accuracy of approximately 1.13◦ degrees (or
2.8◦ degrees at the 95th percentile) is achieved, considering
only the estimated values falling within regions where the
detection feature exceeds 0. Combining the odometry-based
position information from the robot with the estimated DOA
values, the leak’s position is determined. This localization is
executed by intersecting various pairs of generated lines, and
the median of these intersections yields the leak’s position.
This estimated position is within 0.5m of the LiDAR mea-
surement.

c) Anomaly Detection: Two strategies were tested to detect
sound anomalies, namely, reconstruction error, and latent space
distance. In the reconstruction error strategy, the network tries

to recreate the input sound signal using the intermediate latent
vector. Since the network is solely trained on normal samples,
it can recreate (decode) normal samples but fails to recreate an
anomalous sound sample. The reconstruction error between the
input and output samples is compared against a threshold value
and used to differentiate between a normal and an anomalous
sound sample. The latter strategy relies on the fact that latent
vectors of similar objects are clustered near one another in the
latent space, hence, the latent vector of an anomalous sample
gets placed far from the latent vectors of the normal samples.
An anomaly is detected when the distance between the latent
vector of the current sample and the mean of all latent vectors
from training is above a predefined threshold.

The encoder-decoder model was initially trained on the
MIMII [46] dataset, which comprises numerous sequences
of normal and anomalous sound samples. From them, 4800
samples were used for training, 447 for validation, and 1524
for testing. The reconstruction error-based strategy achieved
an accuracy of 69.62% on the test set, while the latent
distance-based approach achieved an accuracy of 82.28% on
the test set. Additionally, the model was further trained to
include sound samples from the Marl chemical plant, adding
splits of 32 train, 6 validation, and 7 test samples. With this
extended dataset, the model achieved an accuracy of 84%
using the reconstruction error-based approach and 100% using
the latent distance-based approach. In the field, anomalies were
simulated by playing ”broken” sounds near the pumps.

V. CONCLUSION AND OUTLOOK

This paper introduced a robotic system designed for the
comprehensive inspection of an industrial chemical plant. The
system encompasses various key features, including navigation
capabilities, and 2D object detection with a demonstrated
general Average Precision (AP) of 0.7662, covering objects
such as cars and pedestrians. Through extrinsic calibration of
multiple optical sensors, the system is proven to estimate the
3D position of detected objects, which, in turn, is employed
for planning collision-free paths. Additionally, the paper high-
lights the sensitivity and the real-world capability of the active
gas camera. It visualizes an artificial methane leak of only
40mLmin−1 in real-time and successfully estimates its 3D
position by combining depth information of the stereo camera
up to 2m distance. The final aspect presented is the elucidation
of the working principles behind the acoustic pump equipment
and leak localization. This section demonstrates the system’s
capability to localize a leak with an absolute error of around
0.5m while the robot is in motion.

Routine inspection rounds are mandatory in many compa-
nies in process industries. The frequency and duration of these
field rounds depend on the potential hazard of the plant, and
they are conducted 24/7. The reduced availability of qualified
candidates for such jobs, the desire to increase their appeal,
and the need to collect reliable and objective sensor data
fuel the development and testing of robots that can take over
these tasks in diverse companies with industrial processes.
Whereas navigation with legged robots in such plants seems
already feasible, further development of adequate sensors and
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Fig. 12: Dynamic Experiment (a) Depicts the spectrogram of the recording signal, incorporating the played-back sound of a
leak. Overlayed on the spectrogram is the crafted detection feature designed for the leak signal. (b) Illustrates the trajectory
of the robot during the experiment, with the measured leak positions obtained from both LiDAR and acoustic estimation.
The single DoA measurements are represented by thin black lines. The position of the leak can be performed by acoustic
means to an error of around 0.5m to the LiDAR measurement. (c) Presents a comparison between the estimated acoustic
DOA values and the LiDAR-measured DoA values. Larger deviations happen when another sound source is interfering with
the measurement. Shading highlights regions with a positive detection feature. (d) Displays the cumulative error distribution
of the absolute circular error. The system demonstrates the capability to estimate with a median accuracy of 1.13◦ (or 2.8◦ at
the 95th percentile).

algorithms for the evaluation and interpretation of their signals
is still necessary. Further, the ability of humans to depart from
routine rounds when detecting an incident in peripheral vision
is an open issue that needs to be transferred to such robots.
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